SparseFactorAnalysis: Scaling Count and Binary Data with Sparse Factor Analysis

Multidimensional scaling provides a means of uncovering a latent structure underlying observed data, while estimating the number of latent dimensions. This package presents a means for scaling binary and count data, for example the votes and word counts for legislators. Future work will include an EM implementation and extend this work to ordinal and continuous data.

Version: 1.0
Depends: directlabels, proto, ggplot2
Imports: Rcpp (≥ 0.11.4), MASS, VGAM, truncnorm
LinkingTo: Rcpp, RcppArmadillo
Published: 2015-07-23
Author: Marc Ratkovic, In Song Kim, John Londregan, and Yuki Shiraito
Maintainer: Marc Ratkovic <ratkovic at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
In views: Psychometrics
CRAN checks: SparseFactorAnalysis results


Reference manual: SparseFactorAnalysis.pdf


Package source: SparseFactorAnalysis_1.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): SparseFactorAnalysis_1.0.tgz, r-oldrel (arm64): SparseFactorAnalysis_1.0.tgz, r-release (x86_64): SparseFactorAnalysis_1.0.tgz, r-oldrel (x86_64): SparseFactorAnalysis_1.0.tgz


Please use the canonical form to link to this page.