Package 'aihuman'

March 2, 2023
Type Package
Title Experimental Evaluation of Algorithm-Assisted Human Decision-Making
Version 0.1.0
Date 2023-02-22
Description Provides statistical methods for analyzing experimental evaluation of the causal impacts of algorithmic recommendations on human decisions developed by Imai, Jiang, Greiner, Halen, and Shin (2023) doi:10.1093/jrsssa/qnad010.
The data used for this paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.
License GPL (>=2)
URL https://github.com/sooahnshin/aihuman
BugReports https://github.com/sooahnshin/aihuman/issues

Encoding UTF-8

RoxygenNote 7.2.1
Imports Rcpp, coda, stats, magrittr, purrr, abind, foreach, parallel, doParallel, ggplot2, dplyr, tidyr, metR, MASS, lme4
LinkingTo Rcpp, RcppArmadillo, RcppEigen
Depends R (>=2.10)
Suggests knitr, rmarkdown
VignetteBuilder knitr
LazyData true
NeedsCompilation yes
Author Sooahn Shin [aut, cre] (https://orcid.org/0000-0001-6213-2197), Zhichao Jiang [aut], Kosuke Imai [aut]
Maintainer Sooahn Shin sooahnshin@g.harvard.edu
Repository CRAN
Date/Publication 2023-03-02 06:50:02 UTC
R topics documented:
aihuman-package 3
AiEvalmcmc 4
APCEsummary 6
APCEsummaryipw 7
BootstrapAPCEipw 8
BootstrapAPCEipwRE 9
BootstrapAPCEipwREparallel 10
CalAPCE 11
CalAPCEipw 14
CalAPCEipwRE 15
CalAPCEparallel 16
CalDelta 18
CalDIM 19
CalDIMsubgroup 20
CalFairness 20
CalOptimalDecision 21
CalPS 23
FTAdata 23
g_legend 24
HearingDate 25
hearingdate_synth 25
NCAdata 26
NVCAdata 27
PlotAPCE 28
PlotDIMdecisions 29
PlotDIMoutcomes 30
PlotFairness 31
PlotOptimalDecision 32
PlotPS 33
PlotSpilloverCRT 34
PlotSpilloverCRTpower 35
PlotStackedBar 35
PlotStackedBarDMF 36
PlotUtilityDiff 37
PlotUtilityDiffCI 38
PSAdata 39
psa_synth 39
SpilloverCRT 40
SpilloverCRTpower 41
synth 42
TestMonotonicity 42
TestMonotonicityRE 43

aihuman-package	Experimental Evaluation of Algorithm-Assisted Human Decision-
Making	

Description

Provides statistical methods for analyzing experimental evaluation of the causal impacts of algorithmic recommendations on human decisions developed by Imai, Jiang, Greiner, Halen, and Shin (2023) doi:10.1093/jrsssa/qnad010. The data used for this paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

Package Content

Index of help topics:

APCEsummary	Summary of APCE
APCEsummaryipw	Summary of APCE for frequentist analysis
AiEvalmcmc	Gibbs sampler for the main analysis
BootstrapAPCEipw	Bootstrap for estimating variance of APCE
BootstrapAPCEipwRE	Bootstrap for estimating variance of APCE with random effects
BootstrapAPCEipwREparallel	
	Bootstrap for estimating variance of APCE with random effects
CalAPCE	Calculate APCE
CalAPCEipw	Compute APCE using frequentist analysis
CalAPCEipwRE	Compute APCE using frequentist analysis with random effects
CalAPCEparallel	Calculate APCE using parallel computing
CalDIM	Calculate diff-in-means estimates
CalDIMsubgroup	Calculate diff-in-means estimates
CalDelta	Calculate the delta given the principal stratum
CalFairness	Calculate the principal fairness
CalOptimalDecision	Calculate optimal decision \& utility
CalPS	Calculate the proportion of principal strata (R)
FTAdata	Interim Dane data with failure to appear (FTA) as an outcome
HearingDate	Interim court event hearing date
NCAdata	Interim Dane data with new criminal activity (NCA) as an outcome
NVCAdata	Interim Dane data with new violent criminal activity (NVCA) as an outcome
PSAdata	Interim Dane PSA data

PlotAPCE	Plot APCE
PlotDIMdecisions	Plot diff-in-means estimates
PlotDIMoutcomes	Plot diff-in-means estimates
PlotFairness	Plot the principal fairness
PlotOptimalDecision	Plot optimal decision
PlotPS	Plot the proportion of principal strata (R)
PlotSpilloverCRT	Plot conditional randomization test
PlotSpilloverCRTpower	Plot power analysis of conditional randomization test
PlotStackedBar	Stacked barplot for the distribution of the decision given psa
PlotStackedBarDMF	Stacked barplot for the distribution of the decision given DMF recommendation
PlotUtilityDiff	Plot utility difference
PlotUtilityDiffCI	Plot utility difference with 95 interval
SpilloverCRT	Conduct conditional randomization test
SpilloverCRTpower	Conduct power analysis of conditional randomization test
TestMonotonicity	Test monotonicity
TestMonotonicityRE	Test monotonicity with random effects
aihuman-package	Experimental Evaluation of Algorithm-Assisted Human Decision-Making
g_legend	Pulling ggplot legend
hearingdate_synth	Synthetic court event hearing date
psa_synth	Synthetic PSA data
synth	Synthetic data

Maintainer

NA

Author(s)
NA

Description

See Appendix S5 for more details.

Usage

AiEvalmcmc(data,

```
    rho = 0,
    Sigma0.beta.inv = NULL,
    Sigma0.alpha.inv = NULL,
    sigma0 = NULL,
    beta = NULL,
    alpha = NULL,
    theta = NULL,
    delta = NULL,
    n.mcmc = 5 * 10,
    verbose = FALSE,
    out.length = 10,
    beta.zx.off = FALSE,
    theta.z.off = FALSE
)
```


Arguments

data A data. frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D$)$, and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y" respectively.
rho A sensitivity parameter. The default is 0 which implies the unconfoundedness assumption (Assumption 4).
Sigma0.beta.inv
Inverse of the prior covariance matrix of beta. The default is a diagonal matrix with 0.01 diagonal entries.
Sigma0.alpha.inv
Inverse of the prior covariance matrix of alpha. The default is a diagonal matrix with 0.01 diagonal entries.
sigma0 Prior variance of the cutoff points (theta and delta)
beta Initial value for beta.
alpha Initial value for alpha.
theta Initial value for theta.
delta Initial value for delta.
n.mamc The total number of MCMC iterations. The default is 50 .
verbose A logical argument specified to print the progress on the screen. The default is FALSE.
out.length An integer to specify the progress on the screen. If verbose $=T R U E$, every out. length-th iteration is printed on the screen. The default is 10 .
beta.zx.off A logical argument specified to exclude the interaction terms (Z by X) from the model. The default is FALSE.
theta.z.off A logical argument specified to set same cutoffs theta for treatment and control group. The default is FALSE.

Value

An object of class mcmc containing the posterior samples.

Examples

```
data(synth)
sample_mcmc = AiEvalmcmc(data = synth, n.mcmc = 2)
```

 APCEsummary Summary of APCE

Description

Summary of average principal causal effects (APCE) with ordinal decision.

Usage

APCEsummary (apce.mcmc)

Arguments

apce.mcmc \quad APCE.mcmc array generated from CalAPCE or CalAPCEparallel.

Value

A data. frame that consists of mean and quantiles (2.5

Examples

```
data(synth)
sample_mcmc = AiEvalmcmc(data = synth, n.mcmc = 10)
subgroup_synth = list(1:nrow(synth),which(synth$Sex==0),which(synth$Sex==1),
    which(synth$Sex==1&synth$White==0), which(synth$Sex==1&synth$White==1))
sample_apce = CalAPCE(data = synth, mcmc.re = sample_mcmc, subgroup = subgroup_synth)
sample_apce_summary = APCEsummary(sample_apce[["APCE.mcmc"]])
```


Description

Summary of average principal causal effects (APCE) with ordinal decision with frequentist results.

Usage

```
APCEsummaryipw(
        G1_est,
        G2_est,
        G3_est,
        G4_est,
        G5_est,
        G1_boot,
        G2_boot,
        G3_boot,
        G4_boot,
        G5_boot,
        name.group = c("Overall", "Female", "Male", "Non-white\nMale", "White\nMale")
    )
```


Arguments

G1_est List generated from CalAPCEipw for the first subgroup.
G2_est List generated from CalAPCEipw for the second subgroup.
G3_est List generated from CalAPCEipw for the third subgroup.
G4_est List generated from CalAPCEipw for the fourth subgroup.
G5_est List generated from CalAPCEipw for the fifth subgroup.
G1_boot List generated from BootstrapAPCEipw for the first subgroup.
G2_boot List generated from BootstrapAPCEipw for the second subgroup.
G3_boot List generated from BootstrapAPCEipw for the third subgroup.
G4_boot List generated from BootstrapAPCEipw for the fourth subgroup.
G5_boot List generated from BootstrapAPCEipw for the fifth subgroup.
name. group A list of character vectors for the label of five subgroups.

Value

A data. frame that consists of mean and quantiles (2.5

Examples

```
    data(synth)
    synth$SexWhite = synth$Sex * synth$White
    freq_apce = CalAPCEipw(synth)
    boot_apce = BootstrapAPCEipw(synth, rep = 10)
    # subgroup analysis
    data_s0 = subset(synth, synth$Sex==0, select=-c(Sex,SexWhite))
    freq_s0 = CalAPCEipw(data_s0)
    boot_s0 = BootstrapAPCEipw(data_s0, rep = 10)
    data_s1 = subset(synth, synth$Sex==1, select=-c(Sex,SexWhite))
    freq_s1 = CalAPCEipw(data_s1)
    boot_s1 = BootstrapAPCEipw(data_s1, rep = 10)
    data_s1w0 = subset(synth, synth$Sex==1&synth$White==0, select=-c(Sex,White,SexWhite))
    freq_s1w0 = CalAPCEipw(data_s1w0)
    boot_s1w0 = BootstrapAPCEipw(data_s1w0, rep = 10)
    data_s1w1 = subset(synth, synth$Sex==1&synth$White==1,select=-c(Sex,White,SexWhite))
    freq_s1w1 = CalAPCEipw(data_s1w1)
    boot_s1w1 = BootstrapAPCEipw(data_s1w1, rep = 10)
    freq_apce_summary <- APCEsummaryipw(freq_apce, freq_s0, freq_s1, freq_s1w0, freq_s1w1,
    boot_apce, boot_s0, boot_s1, boot_s1w0, boot_s1w0)
    PlotAPCE(freq_apce_summary, y.max = 0.25, decision.labels = c("signature","small cash",
        "middle cash","large cash"), shape.values = c(16, 17, 15, 18),
        col.values = c("blue", "black", "red", "brown", "purple"), label = FALSE)
```

 BootstrapAPCEipw Bootstrap for estimating variance of APCE

Description

Estimate variance of APCE for frequentist analysis using bootstrap. See S7 for more details.

Usage

BootstrapAPCEipw(data, rep $=1000$)

Arguments

data A data. frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D$)$, and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y" respectively.
rep Size of bootstrap

Value

An object of class list with the following elements:
P.D1.boot An array with dimension rep by $(k+1)$ by $(k+2)$ for quantity $\mathrm{P}(\mathrm{D}(1)=\mathrm{d} \mid \mathrm{R}=\mathrm{r})$, dimension 1 is rep (size of bootstrap), dimension 2 is ($k+1$) values of D from 0 to k, dimension 3 is $(k+2)$ values of R from 0 to $k+1$.
P.D0.boot An array with dimension rep by $(k+1)$ by $(k+2)$ for quantity $P(D(0)=d \mid R=r)$.

APCE. boot An array with dimension rep by $(k+1)$ by $(k+2)$ for quantity $\mathrm{P}(\mathrm{D}(1)=\mathrm{d} \mid \mathrm{R}=\mathrm{r})$ $P(D(0)=d \mid R=r)$.
P.R.boot An array with dimension rep by $(k+2)$ for quantity $P(R=r)$ for r from 0 to $(k+1)$.
alpha.boot An array with estimated alpha for each bootstrap.
delta.boot An array with estimated delta for each bootstrap.

Examples

```
data(synth)
set.seed(123)
boot_apce = BootstrapAPCEipw(synth, rep = 100)
```


Description

Estimate variance of APCE for frequentist analysis with random effects using bootstrap. See S7 for more details.

Usage

BootstrapAPCEipwRE(data, rep = 1000, formula, CourtEvent_HearingDate, nAGQ = 1)

Arguments

data	A data.frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D$)$, and an outcome variable (Y). The column names of the latter three should be specified as " $\mathrm{Z} ", ~ " D ", ~ a n d ~ " Y " ~$
respectively.	
rep	Size of bootstrap
formula	A formula of the model to fit.
CourtEvent_HearingDate	
The court event hearing date.	
nAGQ	Integer scalar - the number of points per axis for evaluating the adaptive Gauss- Hermite approximation to the log-likelihood. Defaults to 1, corresponding to the Laplace approximation.

Value

An object of class list with the following elements:

P.D1.boot	An array with dimension rep by $(k+1)$ by $(k+2)$ for quantity $P(D(1)=d \mid R=r)$, dimension 1 is rep (size of bootstrap), dimension 2 is $(k+1)$ values of D from 0 to k, dimension 3 is $(k+2)$ values of R from 0 to $k+1$.
P.D0.boot	An array with dimension rep by $(k+1)$ by $(k+2)$ for quantity $P(D(0)=d \mid R=r)$. APCE.boot\quadAn array with dimension rep by $(k+1)$ by $(k+2)$ for quantity $P(D(1)=d \mid R=r)-$ $P(D(0)=d \mid R=r)$.
P.R.boot	An array with dimension rep by $(k+2)$ for quantity $P(R=r)$ for r from 0 to $(k+1)$.

Examples

```
data(synth)
data(hearingdate_synth)
synth$CourtEvent_HearingDate = hearingdate_synth
set.seed(123)
boot_apce_re = BootstrapAPCEipwRE(synth, rep = 10, formula = "Y ~ Sex + White + Age +
                                    CurrentViolentOffense + PendingChargeAtTimeOfOffense +
                                    PriorMisdemeanorConviction + PriorFelonyConviction +
    PriorViolentConviction + (1|CourtEvent_HearingDate) + D",
        CourtEvent_HearingDate = hearingdate_synth)
```

 BootstrapAPCEipwREparallel
 Bootstrap for estimating variance of APCE with random effects

Description

Estimate variance of APCE for frequentist analysis with random effects using bootstrap. See S7 for more details.

Usage

BootstrapAPCEipwREparallel(data, rep $=1000$, formula, nAGQ = 1, size $=5$)

Arguments

data	A data.frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y), The column names of the latter three should be specified as "Z", "D", and "Y" respectively.
rep	Size of bootstrap
formula	A formula of the model to fit.

nAGQ	Integer scalar - the number of points per axis for evaluating the adaptive Gauss-
Hermite approximation to the log-likelihood. Defaults to 1 , corresponding to	
the Laplace approximation.	

Value

An object of class list with the following elements:

> P.D1.boot An array with dimension rep by $(k+1)$ by $(k+2)$ for quantity $P(D(1)=d \mid R=r)$, dimension 1 is rep (size of bootstrap), dimension 2 is $(k+1)$ values of D from 0 to k, dimension 3 is $(k+2)$ values of R from 0 to $k+1$.
> P.D0.boot An array with dimension rep by $(k+1)$ by $(k+2)$ for quantity $P(D(0)=d \mid R=r)$.
> APCE. boot An array with dimension rep by $(k+1)$ by $(k+2)$ for quantity $\mathrm{P}(\mathrm{D}(1)=\mathrm{dl} \mathrm{R}=\mathrm{r})$ $P(D(0)=d \mid R=r)$.
> P.R.boot An array with dimension rep by $(k+2)$ for quantity $P(R=r)$ for r from 0 to $(k+1)$.

Examples

```
data(synth)
data(hearingdate_synth)
synth$CourtEvent_HearingDate = hearingdate_synth
set.seed(123)
boot_apce_re = BootstrapAPCEipwREparallel(synth, rep = 10,
                            formula = "Y ~ Sex + White + Age +
                            CurrentViolentOffense + PendingChargeAtTimeOfOffense +
                        PriorMisdemeanorConviction + PriorFelonyConviction +
                        PriorViolentConviction + (1|CourtEvent_HearingDate) +
                    D", size = 1) # adjust the size
```

 CalAPCE Calculate APCE

Description

Calculate average principal causal effects (APCE) with ordinal decision. See Section 3.4 for more details.

Usage

CalAPCE (
data,
mcmc.re,
subgroup,
name.group = c("overall", "Sex0", "Sex1", "Sex1 White0", "Sex1 White1"),

```
    rho = 0,
    burnin = 0,
    out.length = 500,
    c0 = 0,
    c1 = 0,
    ZX = NULL,
    save.individual.optimal.decision = FALSE,
    parallel = FALSE,
    optimal.decision.only = FALSE,
    dmf = NULL,
    fair.dmf.only = FALSE
)
```


Arguments

data A data.frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y" respectively.
mcmc.re A mcmc object generated by AiEvalmcmc() function.
subgroup A list of numeric vectors for the index of each of the five subgroups.
name.group A list of character vectors for the label of five subgroups.
rho A sensitivity parameter. The default is 0 which implies the unconfoundedness assumption (Assumption 4).
burnin A proportion of burnin for the Markov chain. The default is 0 .
out.length An integer to specify the progress on the screen. Every out.length-th iteration is printed on the screen. The default is 500.
c0 The cost of an outcome. See Section 3.7 for more details. The default is 0 .
c1 The cost of an unnecessarily harsh decision. See Section 3.7 for more details. The default is 0 .
ZX The data matrix for interaction terms. The default is the interaction between Z and all of the pre-treatment covariates (X).
save.individual.optimal.decision
A logical argument specified to save individual optimal decision rules. The default is FALSE.
parallel A logical argument specifying whether parallel computing is conducted. Do not change this argument manually.
optimal.decision.only
A logical argument specified to compute only the optimal decision rule. The default is FALSE.
dmf A numeric vector of binary DMF recommendations. If null, use judge's decisions (0 if the decision is 0 and $1 \mathrm{o} . \mathrm{w}$; e.g., signature or cash bond).
fair.dmf.only A logical argument specified to compute only the fairness of given DMF recommendations. The default is FALSE. Not used in the analysis for the JRSSA paper.

Value

An object of class list with the following elements:
P.D1.mcmc An array with dimension n.memc by 5 by $(k+1)$ by $(k+2)$ for quantity $P(D(1)=d \mid$ $\mathrm{R}=\mathrm{r}$), dimension 1 is each posterior sample; dimension 2 is subgroup, dimension 3 is ($k+1$) values of D from 0 to k, dimension 4 is $(k+2)$ values of R from 0 to $\mathrm{k}+1$.
P.D0.mcmc An array with dimension $n . m c m c$ by 5 by $(k+1)$ by $(k+2)$ for quantity $P(D(0)=d l$ $\mathrm{R}=\mathrm{r}$).

APCE .mcmc An array with dimension n.macme by 5 by $(k+1)$ by $(k+2)$ for quantity $\mathrm{P}(\mathrm{D}(1)=\mathrm{dl}$ $R=r)-P(D(0)=d \mid R=r)$.
P.R.mcmc An array with dimension n.memc by 5 by $(k+2)$ for quantity $P(R=r)$ for r from 0 to ($k+1$).

Optimal.Z.mcmc An array with dimension n.memc by 5 for the proportion of the cases where treatment (PSA provided) is optimal.
Optimal.D.mcmc An array with dimension n.mcmc by 5 by $(\mathrm{k}+1)$ for the proportion of optimal decision rule (average over observations). If save. individual.optimal. decision $=$ TRUE, the dimension would be n by $(k+1)$ (average over mcmc samples).
P.DMF.mcmi An array with dimension n.memc by 5 by $(k+1)$ by $(k+2)$ for the proportion of binary DMF recommendations. Not used in the analysis for the JRSSA paper.
Utility.g_d.mcmc
Included if save.individual.optimal.decision = TRUE. An array with dimension n for the individual utility of judge's decisions.
Utility.g_dmf.mcmc
Included if save.individual.optimal.decision = TRUE. An array with dimension n for the individual utility of DMF recommendation.
Utility.diff.control.mcmc
Included if save.individual.optimal. decision = TRUE. An array with dimension n.mcmc for estimated difference in utility between judge's decisions and DMF recommendation among control group.
Utility.diff.treated.mcmc
Included if save.individual.optimal.decision = TRUE. An array with dimension n.mcmc for estimated difference in utility between judge's decisions and DMF recommendation among treated group.

Examples

```
data(synth)
sample_mcmc = AiEvalmcmc(data = synth, n.mcmc = 2)
subgroup_synth = list(1:nrow(synth),which(synth$Sex==0),which(synth$Sex==1),
    which(synth$Sex==1&synth$White==0), which(synth$Sex==1&synth$White==1))
sample_apce = CalAPCE(data = synth, mcmc.re = sample_mcmc, subgroup = subgroup_synth)
```


Description

Estimate propensity score and use Hajek estimator to compute APCE. See S7 for more details.

Usage

CalAPCEipw(data)

Arguments

data A data. frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y" respectively.

Value

An object of class list with the following elements:
P.D1 An array with dimension $(k+1)$ by $(k+2)$ for quantity $P(D(1)=d \mid R=r)$, dimension 1 is $(k+1)$ values of D from 0 to k, dimension 2 is $(k+2)$ values of R from 0 to $\mathrm{k}+1$.
P.D0 An array with dimension $(k+1)$ by $(k+2)$ for quantity $P(D(0)=d \mid R=r)$.

APCE An array with dimension $(k+1)$ by $(k+2)$ for quantity $P(D(1)=d \mid R=r)-P(D(0)=d \mid$ $\mathrm{R}=\mathrm{r}$).
P.R An array with dimension $(k+2)$ for quantity $P(R=r)$ for r from 0 to $(k+1)$.
alpha An array with estimated alpha.
delta An array with estimated delta.

Examples

```
data(synth)
freq_apce = CalAPCEipw(synth)
```

CalAPCEipwRE

Description

Estimate propensity score and use Hajek estimator to compute APCE. See S7 for more details.

Usage

CalAPCEipwRE(data, formula, nAGQ = 1)

Arguments

data	A data.frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y" respectively.
formula	A formula of the model to fit.
nAGQ	Integer scalar - the number of points per axis for evaluating the adaptive Gauss- Hermite approximation to the log-likelihood. Defaults to 1, corresponding to the Laplace approximation.

Value

An object of class list with the following elements:
P.D1 An array with dimension $(k+1)$ by $(k+2)$ for quantity $P(D(1)=d \mid R=r)$, dimension 1 is ($k+1$) values of D from 0 to k, dimension 2 is $(k+2)$ values of R from 0 to $\mathrm{k}+1$.
P.D0 An array with dimension $(k+1)$ by $(k+2)$ for quantity $P(D(0)=d \mid R=r)$.

APCE An array with dimension $(k+1)$ by $(k+2)$ for quantity $P(D(1)=d \mid R=r)-P(D(0)=d \mid$ $\mathrm{R}=\mathrm{r}$).
P.R An array with dimension $(k+2)$ for quantity $P(R=r)$ for r from 0 to $(k+1)$.
alpha An array with estimated alpha.
delta An array with estimated delta.

Examples

```
data(synth)
data(hearingdate_synth)
synth$CourtEvent_HearingDate = hearingdate_synth
freq_apce_re = CalAPCEipwRE(synth, formula = "Y ~ Sex + White + Age +
    CurrentViolentOffense + PendingChargeAtTimeOfOffense +
    PriorMisdemeanorConviction + PriorFelonyConviction +
    PriorViolentConviction + (1|CourtEvent_HearingDate) + D")
```


Description

Calculate average principal causal effects (APCE) with ordinal decision using parallel computing. See Section 3.4 for more details.

Usage

CalAPCEparallel(
data,
mcme.re,
subgroup,
name.group $=c(" o v e r a l l ", ~ " S e x 0 ", ~ " S e x 1 ", ~ " S e x 1 ~ W h i t e 0 ", ~ " S e x 1 ~ W h i t e 1 "), ~$
rho = 0,
burnin = 0,
out.length $=500$,
c0 = 0,
c1 = 0,
ZX = NULL,
save.individual.optimal.decision = FALSE,
optimal.decision.only = FALSE,
dmf = NULL,
fair.dmf.only = FALSE,
size = 5
)

Arguments

data A data.frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y" respectively.
mcmc.re A mcmc object generated by AiEvalmcmc() function.
subgroup A list of numeric vectors for the index of each of the five subgroups.
name.group A list of character vectors for the label of five subgroups.
rho A sensitivity parameter. The default is 0 which implies the unconfoundedness assumption (Assumption 4).
burnin A proportion of burnin for the Markov chain. The default is 0 .
out.length An integer to specify the progress on the screen. Every out.length-th iteration is printed on the screen. The default is 500.
c0 The cost of an outcome. See Section 3.7 for more details. The default is 0 .
c1 The cost of an unnecessarily harsh decision. See Section 3.7 for more details. The default is 0 .

ZX The data matrix for interaction terms. The default is the interaction between Z and all of the pre-treatment covariates (X).
save.individual.optimal.decision
A logical argument specified to save individual optimal decision rules. The default is FALSE.
optimal.decision.only
A logical argument specified to compute only the optimal decision rule. The default is FALSE.
dmf A numeric vector of binary DMF recommendations. If null, use judge's decisions (0 if the decision is 0 and $1 \mathrm{o} . \mathrm{w}$; e.g., signature or cash bond).
fair.dmf.only A logical argument specified to compute only the fairness of given DMF recommendations. The default is FALSE. Not used in the analysis for the JRSSA paper.
size \quad The number of parallel computing. The default is 5 .

Value

An object of class list with the following elements:
P.D1.mcmc An array with dimension $n . m c m c$ by 5 by $(k+1)$ by $(k+2)$ for quantity $P(D(1)=d$ $\mathrm{R}=\mathrm{r}$), dimension 1 is each posterior sample; dimension 2 is subgroup, dimension 3 is $(k+1)$ values of D from 0 to k, dimension 4 is $(k+2)$ values of R from 0 to $\mathrm{k}+1$.
P.D0.mcmc An array with dimension n.mcmc by 5 by $(k+1)$ by $(k+2)$ for quantity $P(D(0)=d l$ $\mathrm{R}=\mathrm{r}$).

APCE .mcmc An array with dimension n.mcmc by 5 by $(k+1)$ by $(k+2)$ for quantity $\mathrm{P}(\mathrm{D}(1)=\mathrm{dl}$ $R=r)-P(D(0)=d \mid R=r)$.
P.R.mcmc An array with dimension n.memc by 5 by $(k+2)$ for quantity $P(R=r)$ for r from 0 to ($k+1$).
Optimal.Z.mcmc An array with dimension n.mcmc by 5 for the proportion of the cases where treatment (PSA provided) is optimal.
Optimal.D.memc An array with dimension n.memc by 5 by ($k+1$) for the proportion of optimal decision rule.
P.DMF.mcmc An array with dimension n.memc by 5 by $(k+1)$ by $(k+2)$ for the proportion of binary DMF recommendations. Not used in the analysis for the JRSSA paper.
Utility.g_d.mcmc
Included if save.individual.optimal.decision = TRUE. An array with dimension n for the individual utility of judge's decisions.
Utility.g_dmf.mcmc
Included if save.individual.optimal.decision = TRUE. An array with dimension n for the individual utility of DMF recommendation.
Utility.diff.control.mcmc
Included if save.individual.optimal. decision = TRUE. An array with dimension n.mcmc for estimated difference in utility between judge's decisions and DMF recommendation among control group.

```
Utility.diff.treated.mcmc
    Included if save.individual.optimal.decision=TRUE. An array with di-
        mension n.mcmc for estimated difference in utility between judge's decisions
        and DMF recommendation among treated group.
```


Examples

```
data(synth)
sample_mcmc = AiEvalmcmc(data = synth, n.mcmc = 10)
subgroup_synth = list(1:nrow(synth),which(synth$Sex==0),which(synth$Sex==1),
    which(synth$Sex==1&synth$White==0), which(synth$Sex==1&synth$White==1))
sample_apce = CalAPCEparallel(data = synth, mcmc.re = sample_mcmc,
    subgroup = subgroup_synth,
    size = 1) # adjust the size
```

 CalDelta

Description

Calculate the maximal deviation of decisions probability among the distributions for different groups (delta) given the principal stratum (R).

Usage

CalDelta(r, k, pd0, pd1, attr)

Arguments

$r \quad$ The given principal stratum.
$k \quad$ The maximum decision (e.g., largest bail amount).
pd0 P.D0.memc array generated from CalAPCE or CalAPCEparallel.
pd1 P.D1.memc array generated from CalAPCE or CalAPCEparallel.
attr The index of subgroups (within the output of CalAPCE/CalAPCEparallel) that corresponds to the protected attributes.

Value

A data. frame of the delta.

Examples

```
data(synth)
subgroup_synth = list(1:nrow(synth), which(synth$Sex==0), which(synth$Sex==1),
                which(synth$Sex==1&synth$White==0), which(synth$Sex==1&synth$White==1))
sample_mcmc = AiEvalmcmc(data = synth, n.mcmc = 10)
sample_apce = CalAPCE(data = synth, mcmc.re = sample_mcmc, subgroup = subgroup_synth,
    burnin = 0)
CalDelta(0, 3, sample_apce[["P.D0.mcmc"]], sample_apce[["P.D1.mcmc"]], c(2,3))
```

CalDIM Calculate diff-in-means estimates

Description

Calculate average causal effect based on diff-in-means estimator.

Usage

CalDIM(data)

Arguments

data A data.frame of which columns includes a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y).

Value

A data. frame of diff-in-means estimates effect for each value of D and Y .

Examples

```
data(synth)
CalDIM(synth)
```


Description

Calculate average causal effect based on diff-in-means estimator.

Usage

```
CalDIMsubgroup(
        data,
        subgroup,
        name.group = c("Overall", "Female", "Male", "Non-white\nMale", "White\nMale")
    )
```


Arguments

data	A data. frame of which columns includes a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y).
subgroup	A list of numeric vectors for the index of each of the five subgroups.
name.group	A character vector including the labels of five subgroups.

Value

A data. frame of diff-in-means estimates for each value of D and Y for each subgroup.

Examples

```
data(synth)
subgroup_synth = list(1:nrow(synth),which(synth$Sex==0),which(synth$Sex==1),
    which(synth$Sex==1&synth$White==0), which(synth$Sex==1&synth$White==1))
    CalDIMsubgroup(synth, subgroup = subgroup_synth)
```

 CalFairness
 Calculate the principal fairness

Description

See Section 3.6 for more details.

Usage

CalFairness(apce, attr $=c(2,3))$

Arguments

apce The list generated from CalAPCE or CalAPCEparallel.
attr The index of subgroups (within the output of CalAPCE/CalAPCEparallel) that corresponds to the protected attributes.

Value

A data.frame of the delta.

Examples

```
data(synth)
subgroup_synth = list(1:nrow(synth), which(synth$Sex==0), which(synth$Sex==1),
    which(synth$Sex==1&synth$White==0), which(synth$Sex==1&synth$White==1))
sample_mcmc = AiEvalmcmc(data = synth, n.mcmc = 10)
sample_apce = CalAPCE(data = synth, mcmc.re = sample_mcmc, subgroup = subgroup_synth,
    burnin = 0)
CalFairness(sample_apce)
```


Description

(1) Calculate optimal decision for each observation given each of c0 (cost of an outcome) and c1 (cost of an unnecessarily harsh decision) from the lists. (2) Calculate difference in the expected utility between binary version of judge's decisions and DMF recommendations given each of c0 (cost of an outcome) and c1 (cost of an unnecessarily harsh decision) from the lists.

Usage

```
CalOptimalDecision(
    data,
    mcmc.re,
    c0.1s,
    c1.ls,
    dmf = NULL,
    rho = 0,
    burnin = 0,
    out.length = 500,
    ZX = NULL,
    size = 5,
    include.utility.diff.mcmc = FALSE
)
```


Arguments

$$
\begin{aligned}
& \text { data A data. frame or matrix of which columns consists of pre-treatment covariates, } \\
& \text { a binary treatment (} \mathrm{Z} \text {), an ordinal decision (} \mathrm{D}) \text {, and an outcome variable (} \mathrm{Y} \text {). } \\
& \text { The column names of the latter three should be specified as "Z", "D", and "Y" } \\
& \text { respectively. } \\
& \text { mcmc.re A mcmc object generated by AiEvalmcmc() function. } \\
& \text { c0.ls The list of cost of an outcome. See Section } 3.7 \text { for more details. } \\
& \text { c1.1s The list of cost of an unnecessarily harsh decision. See Section } 3.7 \text { for more } \\
& \text { details. } \\
& \text { dmf A numeric vector of binary DMF recommendations. If null, use judge's deci- } \\
& \text { sions (} 0 \text { if the decision is } 0 \text { and } 1 \mathrm{o} . \mathrm{w} \text {; e.g., signature or cash bond). } \\
& \text { rho A sensitivity parameter. The default is } 0 \text { which implies the unconfoundedness } \\
& \text { assumption (Assumption 4). } \\
& \text { burnin A proportion of burnin for the Markov chain. The default is } 0 \text {. } \\
& \text { out.length An integer to specify the progress on the screen. Every out.length-th iteration } \\
& \text { is printed on the screen. The default is } 500 . \\
& \text { ZX The data matrix for interaction terms. The default is the interaction between } \mathrm{Z} \\
& \text { and all of the pre-treatment covariates (X). } \\
& \text { size } \quad \text { The number of parallel computing. The default is } 5 \text {. } \\
& \text { include.utility.diff.mcmc } \\
& \text { A logical argument specifying whether to save Utility.diff. control.mcmc } \\
& \text { and Utility.diff.treated.mcmc for Figure S17. The default is FALSE. }
\end{aligned}
$$

Value

A data.frame of (1) the probability that the optimal decision for each observation being d in $0,1, \ldots, k,(2)$ expected utility of binary version of judge's decision (g_d), (3) expected utility of binary DMF recommendation, and (4) the difference between (2) and (3). If include.utility.diff.mcmc $=$ TRUE, returns a list of such data.frame and a data.frame that includes the result for mean and quantile of Utility.diff. control.mcmc and Utility.diff.treated.mcmc across mcmc samples.

Examples

```
data(synth)
sample_mcmc = AiEvalmcmc(data = synth, n.mcmc = 10)
sample_optd = CalOptimalDecision(data = synth, mcmc.re = sample_mcmc,
    c0.ls = seq(0,5,1), c1.ls = \operatorname{seq}(0,5,1),
    size = 1) # adjust the size
```


CalPS

Calculate the proportion of principal strata (R)

Description

Calculate the proportion of each principal stratum (R).

Usage

CalPS
p.r.mcmc,

)

Arguments

$$
\begin{array}{ll}
\text { p.r.mcmc } & \text { P.R.mcmc array generated from CalAPCE or CalAPCEparallel. } \\
\text { name.group } & \text { A character vector including the labels of five subgroups. }
\end{array}
$$

Value

A data. frame of the proportion of each principal stratum.

Examples

```
data(synth)
sample_mcmc = AiEvalmcmc(data = synth, n.mcmc = 10)
subgroup_synth = list(1:nrow(synth),which(synth$Sex==0),which(synth$Sex==1),
            which(synth$Sex==1&synth$White==0), which(synth$Sex==1&synth$White==1))
    sample_apce = CalAPCE(data = synth, mcmc.re = sample_mcmc,
                subgroup = subgroup_synth)
    CalPS(sample_apce[["P.R.mcmc"]])
```

 FTAdata Interim Dane data with failure to appear (FTA) as an outcome

Description

An interim dataset containing pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The data used for the paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

Usage

FTAdata

Format

A data frame with 1891 rows and 19 variables:
Z binary treatment
D ordinal decision
Y outcome
Sex male or female
White white or non-white
SexWhite the interaction between gender and race
Age age
PendingChargeAtTimeOfOffense binary variable for pending charge (felony, misdemeanor, or both) at the time of offense
NCorNonViolentMisdemeanorCharge binary variable for current non-violent felony charge
ViolentMisdemeanorCharge binary variable for current violent misdemeanor charge
ViolentFelonyCharge binary variable for current violent felony charge
NonViolentFelonyCharge binary variable for current non-violent felony charge
PriorMisdemeanorConviction binary variable for prior conviction of misdemeanor
PriorFelonyConviction binary variable for prior conviction of felony
PriorViolentConviction four-level ordinal variable for prior violent conviction
PriorSentenceToIncarceration binary variable for prior sentence to incarceration
PriorFTAInPastTwoYears three-level ordinal variable for FTAs from past two years
PriorFTAOlderThanTwo Years binary variable for FTAs from over two years ago
Staff_ReleaseRecommendation four-level ordinal variable for the DMF recommendation
g_legend Pulling ggplot legend

Description

Pulling ggplot legend

Usage

g_legend(p)

Arguments

p
A ggplot of which legend should be pulled.

Value

A ggplot legend.
HearingDate Interim court event hearing date

Description

An Interim Dane court event hearing date of Dane data in factor format. The data used for the paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

Usage

HearingDate

Format

A date variable in factor format.
hearingdate_synth Synthetic court event hearing date

Description

A synthetic court event hearing date

Usage

hearingdate_synth

Format

A date variable.

Description

An interim dataset containing pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The data used for the paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

Usage

NCAdata

Format

A data frame with 1891 rows and 19 variables:
\mathbf{Z} binary treatment
D ordinal decision
Y outcome
Sex male or female
White white or non-white
SexWhite the interaction between gender and race
Age age
PendingChargeAtTimeOfOffense binary variable for pending charge (felony, misdemeanor, or both) at the time of offense

NCorNonViolentMisdemeanorCharge binary variable for current non-violent felony charge
ViolentMisdemeanorCharge binary variable for current violent misdemeanor charge
ViolentFelonyCharge binary variable for current violent felony charge
NonViolentFelonyCharge binary variable for current non-violent felony charge
PriorMisdemeanorConviction binary variable for prior conviction of misdemeanor
PriorFelonyConviction binary variable for prior conviction of felony
PriorViolentConviction four-level ordinal variable for prior violent conviction
PriorSentenceToIncarceration binary variable for prior sentence to incarceration
PriorFTAInPastTwoYears three-level ordinal variable for FTAs from past two years
PriorFTAOlderThanTwo Years binary variable for FTAs from over two years ago
Staff_ReleaseRecommendation four-level ordinal variable for the DMF recommendation

Interim Dane data with new violent criminal activity (NVCA) as an outcome

Description

An interim dataset containing pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The data used for the paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

Usage

NVCAdata

Format

A data frame with 1891 rows and 19 variables:
\mathbf{Z} binary treatment
D ordinal decision
Y outcome
Sex male or female
White white or non-white
SexWhite the interaction between gender and race
Age age
PendingChargeAtTimeOfOffense binary variable for pending charge (felony, misdemeanor, or both) at the time of offense

NCorNonViolentMisdemeanorCharge binary variable for current non-violent felony charge
ViolentMisdemeanorCharge binary variable for current violent misdemeanor charge
ViolentFelonyCharge binary variable for current violent felony charge
NonViolentFelonyCharge binary variable for current non-violent felony charge
PriorMisdemeanorConviction binary variable for prior conviction of misdemeanor
PriorFelonyConviction binary variable for prior conviction of felony
PriorViolentConviction four-level ordinal variable for prior violent conviction
PriorSentenceToIncarceration binary variable for prior sentence to incarceration
PriorFTAInPastTwoYears three-level ordinal variable for FTAs from past two years
PriorFTAOlderThanTwoYears binary variable for FTAs from over two years ago
Staff_ReleaseRecommendation four-level ordinal variable for the DMF recommendation

PlotAPCE Plot APCE

Description

See Figure 4 for example.

Usage

```
PlotAPCE(
    res,
    y.max = 0.1,
    decision.labels = c("signature bond", "small cash bond", "large cash bond"),
    shape.values = c(16, 17, 15),
    col.values = c("blue", "black", "red", "brown"),
    label = TRUE,
    r.labels = c("safe", "easily\npreventable", "prevent-\nable", "risky\n"),
    label.position = c("top", "top", "top", "top"),
    top.margin = 0.01,
    bottom.margin = 0.01,
    name.group = c("Overall", "Female", "Male", "Non-white\nMale", "White\nMale"),
    label.size = 4
)
```


Arguments

res	A data. frame generated with APCEsummary ().
$y . \max$	Maximum value of y -axis.
decision.labels	
	Labels of decisions (D).
shape.values	Shape of point for each decisions.
col.values	Color of point for each principal stratum.
label	A logical argument whether to specify label of each principal stratum. The default is TRUE.
r.labels	Label of each principal stratum.
label.position	The position of labels.
top.margin	Top margin of labels.
bottom.margin	Bottom margin of labels.
name.group	A character vector including the labels of five subgroups.
label.size	Size of label.

Value

A ggplot.

Examples

```
data(synth)
sample_mcmc = AiEvalmcmc(data = synth, n.mcmc = 10)
subgroup_synth = list(1:nrow(synth),which(synth$Sex==0),which(synth$Sex==1),
                which(synth$Sex==1&synth$White==0), which(synth$Sex==1&synth$White==1))
sample_apce = CalAPCE(data = synth, mcmc.re = sample_mcmc,
                    subgroup = subgroup_synth)
sample_apce_summary = APCEsummary(sample_apce[["APCE.mcmc"]])
PlotAPCE(sample_apce_summary, y.max = 0.25, decision.labels = c("signature","small cash",
    "middle cash","large cash"), shape.values = c(16, 17, 15, 18),
    col.values = c("blue", "black", "red", "brown", "purple"), label = FALSE)
```


Description

See Figure 2 for example.

Usage

```
PlotDIMdecisions(
    res,
    y.max = 0.2,
    decision.labels = c("signature bond ", "small cash bond ", "large cash bond"),
    col.values = c("grey60", "grey30", "grey6"),
    shape.values \(=c(16,17,15)\)
)
```


Arguments

res A data.frame generated with CalDIMsubgroup.
y.max Maximum value of y-axis.
decision.labels
Labels of decisions (D).
col.values Color of point for each decisions.
shape.values Shape of point for each decisions.

Value

A ggplot.

Examples

```
data(synth)
subgroup_synth = list(1:nrow(synth),which(synth$Sex==0),which(synth$Sex==1),
    which(synth$Sex==1&synth$White==0), which(synth$Sex==1&synth$White==1))
res_dec = CalDIMsubgroup(synth, subgroup = subgroup_synth)
PlotDIMdecisions(res_dec, decision.labels = c("signature","small cash","middle cash","large cash"),
    col.values = c("grey60", "grey30", "grey6", "grey1"),
    shape.values = c(16, 17, 15, 18))
```

PlotDIMoutcomes Plot diff-in-means estimates

Description

See Figure 2 for example.

Usage

```
PlotDIMoutcomes(
    res.fta,
    res.nca,
    res.nvca,
    label.position = c("top", "top", "top"),
    top.margin = 0.01,
    bottom.margin = 0.01,
    y.max = 0.2,
    label.size = 7,
    name.group = c("Overall", "Female", "Male", "Non-white\nMale", "White\nMale")
)
```


Arguments

res.fta	A data.frame generated with CalDIMsubgroup with Y = FTA.
res.nca	A data.frame generated with CalDIMsubgroup with Y = NCA.
res.nvca	A data.frame generated with CalDIMsubgroup with Y = NVCA.
label.position	The position of labels.
top.margin	Top margin of labels.
bottom.margin	Bottom margin of labels.
y.max	Maximum value of y-axis.
label.size	Size of label.
name.group	A character vector including the labels of five subgroups.

Value

A ggplot.

Examples

```
data(synth)
subgroup_synth = list(1:nrow(synth),which(synth$Sex==0),which(synth$Sex==1),
                            which(synth$Sex==1&synth$White==0), which(synth$Sex==1&synth$White==1))
synth_fta <- synth_nca <- synth_nvca <- synth
set.seed(123)
synth_fta$Y <- sample(0:1, 1000, replace = TRUE)
synth_nca$Y <- sample(0:1, 1000, replace = TRUE)
synth_nvca$Y <- sample(0:1, 1000, replace = TRUE)
res_fta = CalDIMsubgroup(synth_fta, subgroup = subgroup_synth)
res_nca = CalDIMsubgroup(synth_nca, subgroup = subgroup_synth)
res_nvca = CalDIMsubgroup(synth_nvca, subgroup = subgroup_synth)
PlotDIMoutcomes(res_fta, res_nca, res_nvca)
```


PlotFairness Plot the principal fairness

Description

See Figure 5 for example.

Usage

```
    PlotFairness(
```

 res,
 top.margin = 0.01,
 y.max \(=0.2\),
 \(y . \min =-0.1\),
 r.labels = c("Safe", "Easily\nPreventable", "Preventable", "Risky"),
 label = TRUE
)

Arguments

res	The data frame generated from CalFairness.
top.margin	The index of subgroups (within the output of CalAPCE/CalAPCEparallel) that corresponds to the protected attributes.
y.max	Maximum value of y-axis. y.min
Minimum value of y-axis. r.labels	Label of each principal stratum.
label	A logical argument whether to specify label.

Value

A data.frame of the delta.

Examples

```
data(synth)
subgroup_synth = list(1:nrow(synth), which(synth$Sex==0), which(synth$Sex==1),
    which(synth$Sex==1&synth$White==0), which(synth$Sex==1&synth$White==1))
sample_mcmc = AiEvalmcmc(data = synth, n.mcmc = 10)
sample_apce = CalAPCE(data = synth, mcmc.re = sample_mcmc, subgroup = subgroup_synth,
    burnin = 0)
sample_fair = CalFairness(sample_apce)
PlotFairness(sample_fair, y.max = 0.4, y.min = -0.4, r.labels = c("Safe", "Preventable 1",
    "Preventable 2", "Preventable 3", "Risky"))
```


Description

See Figure 6 for example.

Usage

PlotOptimalDecision(res, colname.d, idx = NULL)

Arguments

res The data frame generated from CalOptimalDecision.
colname.d The column name of decision to be plotted.
idx The row index of observations to be included. The default is all the observations from the data.

Value

A ggplot.

Examples

```
data(synth)
sample_mcmc = AiEvalmcmc(data = synth, n.mcmc = 10)
sample_optd = CalOptimalDecision(data = synth, mcmc.re = sample_mcmc,
    c0.ls = seq(0,5,1), c1.ls = seq(0,5,1),
    size = 1) # adjust the size
sample_optd$cash = sample_optd$d1 + sample_optd$d2 + sample_optd$d3
PlotOptimalDecision(sample_optd, "cash")
```

```
PlotPS Plot the proportion of principal strata (R)
```


Description

See Figure 3 for example.

Usage

```
    PlotPS(
        res,
        y.min = 0,
        y.max = 0.75,
        col.values = c("blue", "black", "red", "brown"),
        label = TRUE,
        r.labels = c("safe", " easily \n preventable ",
            "\n preventable\n", " risky"),
        label.position = c("top", "top", "top", "bottom"),
        top.margin = 0.02,
        bottom.margin = 0.02,
        label.size = 6.5
    )
```


Arguments

res	A data.frame generated with CalPS.
y.min	Minimum value of y-axis.
y.max	Maximum value of y-axis.
col.values	Color of point for each principal stratum.
label	A logical argument whether to specify label of each principal stratum. The default is TRUE.
r.labels	Label of each principal stratum.
label.position	The position of labels.
top.margin	Top margin of labels.
bottom.margin	Bottom margin of labels.
label.size	Size of label.

Value

A ggplot.

Examples

```
data(synth)
sample_mcmc = AiEvalmcmc(data = synth, n.mcmc = 10)
subgroup_synth = list(1:nrow(synth),which(synth$Sex==0),which(synth$Sex==1),
    which(synth$Sex==1&synth$White==0), which(synth$Sex==1&synth$White==1))
sample_apce = CalAPCE(data = synth, mcmc.re = sample_mcmc,
    subgroup = subgroup_synth)
sample_ps = CalPS(sample_apce[["P.R.mcmc"]])
PlotPS(sample_ps, col.values = c("blue", "black", "red", "brown", "purple"), label = FALSE)
```

PlotSpilloverCRT Plot conditional randomization test

Description

See Figure S8 for example.

Usage

PlotSpilloverCRT(res)

Arguments

res A list generated with SpilloverCRT.

Value

A ggplot

Examples

```
data(synth)
data(hearingdate_synth)
crt <- SpilloverCRT(D = synth$D, Z = synth$Z, CourtEvent_HearingDate = hearingdate_synth)
PlotSpilloverCRT(crt)
```


PlotSpilloverCRTpower Plot power analysis of conditional randomization test

Description

See Figure S9 for example.

Usage

PlotSpilloverCRTpower(res)

Arguments

res
A data.frame generated with SpilloverCRTpower.

Value

A ggplot

Examples

```
data(synth)
data(hearingdate_synth)
crt_power <- SpilloverCRTpower(D = synth$D, Z = synth$Z,
                                    CourtEvent_HearingDate = hearingdate_synth,
    size = 1) # adjust the size
PlotSpilloverCRTpower(crt_power)
```

PlotStackedBar Stacked barplot for the distribution of the decision given psa

Description

See Figure 1 for example.

Usage

PlotStackedBar (data,
fta.label = "FTAScore",
nca.label = "NCAScore",
nvca.label = "NVCAFlag",
d.colors = c("grey60", "grey30", "grey10"),
d.labels = c("signature bond", "small cash bond", "large cash bond"),
legend.position = "none"
)

Arguments

```
    data A data.frame of which columns includes an ordinal decision (D), and psa vari- ables (fta, nca, and nvca).
fta.label Column name of fta score in the data. The default is "FTAScore".
nca.label Column name of nca score in the data. The default is "NCAScore".
nvca. label Column name of nvca score in the data. The default is "NVCAFlag".
d.colors The color of each decision.
d.labels The label of each decision.
legend. position
The position of legend. The default is "none".
```

Value
A list of three ggplots.

Examples

```
data(psa_synth)
# Control group (PSA not provided)
PlotStackedBar(psa_synth[psa_synth$Z == 0, ], d.colors = c("grey80", "grey60",
    "grey30", "grey10"), d.labels = c("signature","small",
    "middle","large"))
# Treated group (PSA provided)
PlotStackedBar(psa_synth[psa_synth$Z == 0, ], d.colors = c("grey80", "grey60",
    "grey30", "grey10"), d.labels = c("signature","small",
    "middle","large"))
```

PlotStackedBarDMF Stacked barplot for the distribution of the decision given DMF recom-
mendation

Description

See Figure 1 for example.

Usage

PlotStackedBarDMF (
data,
dmf.label = "dmf",
dmf.category = NULL,
d.colors = c("grey60", "grey30", "grey10"),
d.labels = c("signature bond", "small cash bond", "large cash bond"),
legend.position = "none"
)

Arguments

data A data.frame of which columns includes a binary treatment (Z; PSA provision), an ordinal decision (D), and DMF recommendation.
dmf.label Column name of DMF recommendation in the data. The default is "dmf".
dmf.category The name of each category of DMF recommendation.
d.colors The color of each decision.
d.labels The label of each decision.
legend. position
The position of legend. The default is "none".

Value

A list of three ggplots.

Examples

```
data(psa_synth)
PlotStackedBarDMF (psa_synth, dmf.label = "DMF", d.colors = c("grey80",
    "grey60", "grey30", "grey10"), d.labels = c("signature",
    "small","middle","large"))
```

PlotUtilityDiff Plot utility difference

Description

See Figure 7 for example.

Usage

PlotUtilityDiff(res, idx = NULL)

Arguments

res The data frame generated from CalUtilityDiff.
idx The row index of observations to be included. The default is all the observations from the data.

Value

A ggplot.

Examples

```
data(synth)
sample_mcmc = AiEvalmcmc(data = synth, n.mcmc = 10)
synth_dmf = sample(0:1, nrow(synth), replace = TRUE) # random dmf recommendation
sample_utility = CalOptimalDecision(data = synth, mcmc.re = sample_mcmc,
c0.ls = seq(0,5,1), c1.ls = \operatorname{seq}(0,5,1),
    dmf = synth_dmf, size = 1) # adjust the size
PlotUtilityDiff(sample_utility)
```

PlotUtilityDiffCI Plot utility difference with 95\% confidence interval

Description

See Figure S17 for example.

Usage

PlotUtilityDiffCI(res)

Arguments

res The second data frame (res.mcmc) generated from CalUtilityDiff(include.utility.diff.mcmc $=$ TRUE).

Value

A ggplot.

Examples

```
data(synth)
sample_mcmc = AiEvalmcmc(data = synth, n.mcmc = 10)
synth_dmf = sample(0:1, nrow(synth), replace = TRUE) # random dmf recommendation
sample_utility = CalOptimalDecision(data = synth, mcmc.re = sample_mcmc,
    c0.ls = seq(0,5,1), c1.ls = \operatorname{seq}(0,5,1),
    dmf = synth_dmf, size = 1, # adjust the size
    include.utility.diff.mcmc = TRUE)
PlotUtilityDiffCI(sample_utility$res.mcmc)
```


Description

An interim dataset containing a binary treatment (Z), ordinal decision (D), three PSA variables (FTAScore, NCAScore, and NVCAFlag), DMF recommendation, and two pre-treatment covariates (binary indicator for gender; binary indicator for race). The data used for the paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

Usage

PSAdata

Format

A data frame with 1891 rows and 7 variables:
Z binary treatment
D ordinal decision
FTAScore FTA score
NCAScore NCA score
NVCAFlag NVCA flag
DMF DMF recommendation
Sex male or female
White white or non-white
psa_synth Synthetic PSA data

Description

A synthetic dataset containing a binary treatment (Z), ordinal decision (D), three PSA variables (FTAScore, NCAScore, and NVCAFlag), and DMF recommendation.

Usage

psa_synth

Format

A data frame with 1000 rows and 4 variables:
Z binary treatment
D ordinal decision
FTAScore FTA score
NCAScore NCA score
NVCAFlag NVCA flag
DMF DMF recommendation

SpilloverCRT Conduct conditional randomization test

Description

See S3.1 for more details.

Usage

SpilloverCRT(D, Z, CourtEvent_HearingDate, $\mathrm{n}=100$, seed. number $=12345$)

Arguments

D A numeric vector of judge's decision.
Z A numeric vector of treatment variable.
CourtEvent_HearingDate
The court event hearing date.
$n \quad$ Number of permutations.
seed. number An integer for random number generator.

Value

A list of the observed and permuted test statistics and its p-value.

Examples

```
data(synth)
data(hearingdate_synth)
crt <- SpilloverCRT(D = synth$D, Z = synth$Z, CourtEvent_HearingDate = hearingdate_synth)
```

SpilloverCRTpower Conduct power analysis of conditional randomization test

Description

See S3.2 for more details.

Usage

```
    SpilloverCRTpower(
        D,
        Z,
        CourtEvent_HearingDate,
        n = 4,
        m = 4,
        size = 2,
        cand_omegaZtilde = seq(-1.5, 1.5, by = 0.5)
    )
```


Arguments

D	A numeric vector of judge's decision.
Z	A numeric vector of treatment variable.
CourtEvent_HearingDate	
	The court event hearing date.
n	Number of permutations.
m	Number of permutations.
size The number of parallel computing. The default is 2. cand_omegaZtilde Candidate values	

Value

A data. frame of the result of power analysis.

Examples

```
data(synth)
data(hearingdate_synth)
crt_power <- SpilloverCRTpower(D = synth$D, Z = synth$Z,
    CourtEvent_HearingDate = hearingdate_synth,
    size = 1) # adjust the size
```

synth Synthetic data

Description

A synthetic dataset containing pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y).

Usage

synth

Format

A data frame with 1000 rows and 11 variables:
\mathbf{Z} binary treatment
D ordinal decision
Y outcome
Sex male or female
White white or non-white
Age age
CurrentViolentOffense binary variable for current violent offense
PendingChargeAtTimeOfOffense binary variable for pending charge (felony, misdemeanor, or both) at the time of offense
PriorMisdemeanorConviction binary variable for prior conviction of misdemeanor
PriorFelonyConviction binary variable for prior conviction of felony
PriorViolentConviction four-level ordinal variable for prior violent conviction

TestMonotonicity Test monotonicity

Description

Test monotonicity using frequentist analysis

Usage

TestMonotonicity(data)

Arguments

data A data.frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y" respectively.

Value

Message indicating whether the monotonicity assumption holds.

Examples

```
data(synth)
TestMonotonicity(synth)
```

TestMonotonicityRE Test monotonicity with random effects

Description

Test monotonicity using frequentist analysis with random effects for the hearing date of the case.

Usage

TestMonotonicityRE(data, formula)

Arguments

data A data.frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y" respectively.
formula A formula of the model to fit.

Value

Message indicating whether the monotonicity assumption holds.

Examples

```
data(synth)
data(hearingdate_synth)
synth$CourtEvent_HearingDate = hearingdate_synth
TestMonotonicityRE(synth, formula = "Y ~ Sex + White + Age +
    CurrentViolentOffense + PendingChargeAtTimeOfOffense +
    PriorMisdemeanorConviction + PriorFelonyConviction +
    PriorViolentConviction + (1|CourtEvent_HearingDate) + D")
```


Index

```
* datasets
    FTAdata, 23
    HearingDate, }2
    hearingdate_synth, 25
    NCAdata, 26
    NVCAdata,27
    psa_synth, 39
    PSAdata, 39
    synth,42
* package
    aihuman-package, 3
AiEvalmcmc, 4
aihuman (aihuman-package), 3
aihuman-package, 3
APCEsummary, }
APCEsummaryipw,7
BootstrapAPCEipw, 8
BootstrapAPCEipwRE, }
BootstrapAPCEipwREparallel, 10
CalAPCE, 11
CalAPCEipw, 14
CalAPCEipwRE, 15
CalAPCEparallel,16
CalDelta,18
CalDIM, 19
CalDIMsubgroup, 20
CalFairness,20
CalOptimalDecision,21
CalPS, 23
FTAdata, 23
g_legend,24
HearingDate, 25
hearingdate_synth, }2
NCAdata, 26
```

NVCAdata, 27
PlotAPCE, 28
PlotDIMdecisions, 29
PlotDIMoutcomes, 30
PlotFairness, 31
PlotOptimalDecision, 32
PlotPS, 33
PlotSpilloverCRT, 34
PlotSpilloverCRTpower, 35
PlotStackedBar, 35
PlotStackedBarDMF, 36
PlotUtilityDiff, 37
PlotUtilityDiffCI, 38
psa_synth, 39
PSAdata, 39

SpilloverCRT, 40
SpilloverCRTpower, 41
synth, 42
TestMonotonicity, 42
TestMonotonicityRE, 43

