bayesRecon: Probabilistic Reconciliation via Conditioning
Provides methods for probabilistic reconciliation of hierarchical forecasts of time series. The available methods include analytical Gaussian reconciliation (Corani et al., 2021) <doi:10.1007/978-3-030-67664-3_13>, MCMC reconciliation of count time series (Corani et al., 2022) <doi:10.48550/arXiv.2207.09322>, Bottom-Up Importance Sampling (Zambon et al., 2022) <doi:10.48550/arXiv.2210.02286>.
Version: |
0.1.2 |
Depends: |
R (≥ 4.1.0) |
Imports: |
stats, utils, lpSolve (≥ 5.6.18) |
Suggests: |
knitr, rmarkdown, forecast, glarma, scoringRules, testthat (≥ 3.0.0) |
Published: |
2023-08-24 |
Author: |
Dario Azzimonti
[aut, cre],
Nicolò Rubattu
[aut],
Lorenzo Zambon
[aut],
Giorgio Corani
[aut] |
Maintainer: |
Dario Azzimonti <dario.azzimonti at gmail.com> |
License: |
LGPL (≥ 3) |
NeedsCompilation: |
no |
Materials: |
README NEWS |
In views: |
TimeSeries |
CRAN checks: |
bayesRecon results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=bayesRecon
to link to this page.