
Package ‘ggpp’
January 9, 2024

Type Package

Title Grammar Extensions to 'ggplot2'

Version 0.5.6

Date 2024-01-07

Maintainer Pedro J. Aphalo <pedro.aphalo@helsinki.fi>

Description Extensions to 'ggplot2' respecting the grammar of graphics
paradigm. Geometries: geom_table(), geom_plot() and geom_grob() add insets to
plots using native data coordinates, while geom_table_npc(), geom_plot_npc()
and geom_grob_npc() do the same using ``npc'' coordinates through new
aesthetics ``npcx'' and ``npcy''. Statistics: select observations based on 2D
density. Positions: radial nudging away from a center point and nudging away
from a line or curve; combined stacking and nudging; combined dodging and
nudging.

License GPL (>= 2)

LazyData TRUE

LazyLoad TRUE

ByteCompile TRUE

Depends R (>= 4.0.0), ggplot2 (>= 3.3.6)

Imports stats, grid, grDevices, rlang (>= 1.0.6), magrittr (>= 2.0.1),
glue (>= 1.6.0), gridExtra (>= 2.3), scales (>= 1.2.0), tibble
(>= 3.1.8), dplyr (>= 1.1.0), xts (>= 0.13.0), zoo (>= 1.8-11),
MASS (>= 7.3-58), polynom (>= 1.4-0), lubridate (>= 1.9.0),
stringr (>= 1.4.0)

Suggests knitr (>= 1.40), rmarkdown (>= 2.20), ggrepel (>= 0.9.2),
gginnards(>= 0.1.1), magick (>= 2.7.3), testthat (>= 3.1.5),
vdiffr (>= 1.0.5)

URL https://docs.r4photobiology.info/ggpp/,

https://github.com/aphalo/ggpp

BugReports https://github.com/aphalo/ggpp/issues

Encoding UTF-8

1

https://docs.r4photobiology.info/ggpp/
https://github.com/aphalo/ggpp
https://github.com/aphalo/ggpp/issues

2 R topics documented:

RoxygenNote 7.2.3

VignetteBuilder knitr

NeedsCompilation no

Author Pedro J. Aphalo [aut, cre] (<https://orcid.org/0000-0003-3385-972X>),
Kamil Slowikowski [ctb] (<https://orcid.org/0000-0002-2843-6370>),
Michał Krassowski [ctb] (<https://orcid.org/0000-0002-9638-7785>),
Daniel Sabanés Bové [ctb],
Stella Banjo [ctb]

Repository CRAN

Date/Publication 2024-01-09 07:00:02 UTC

R topics documented:
ggpp-package . 3
annotate . 4
birch.df . 6
compute_npcx . 7
dark_or_light . 8
geom_grob . 9
geom_label_npc . 13
geom_label_pairwise . 17
geom_label_s . 23
geom_plot . 29
geom_point_s . 34
geom_quadrant_lines . 37
geom_table . 40
geom_x_margin_arrow . 45
geom_x_margin_grob . 47
geom_x_margin_point . 49
ggplot . 51
ivy.df . 53
position_dodgenudge . 54
position_jitternudge . 56
position_nudge_center . 59
position_nudge_keep . 64
position_nudge_line . 65
position_nudge_to . 68
position_stacknudge . 71
quadrant_example.df . 74
scale_continuous_npc . 75
stat_apply_group . 75
stat_dens1d_filter . 80
stat_dens1d_labels . 85
stat_dens2d_filter . 90
stat_dens2d_labels . 95
stat_fmt_tb . 100

https://orcid.org/0000-0003-3385-972X
https://orcid.org/0000-0002-2843-6370
https://orcid.org/0000-0002-9638-7785

ggpp-package 3

stat_functions . 102
stat_panel_counts . 105
stat_quadrant_counts . 109
try_data_frame . 114
ttheme_gtdefault . 115
ttheme_set . 119
volcano_example.df . 120
weather_18_june_2019.df . 121

Index 123

ggpp-package ggpp: Grammar Extensions to ’ggplot2’

Description

Extensions to ’ggplot2’ respecting the grammar of graphics paradigm. Geometries: geom_table(),
geom_plot() and geom_grob() add insets to plots using native data coordinates, while geom_table_npc(),
geom_plot_npc() and geom_grob_npc() do the same using "npc" coordinates through new aesthet-
ics "npcx" and "npcy". Statistics: select observations based on 2D density. Positions: radial nudging
away from a center point and nudging away from a line or curve; combined stacking and nudging;
combined dodging and nudging.

Details

Package ’ggpp’ provides functions that extend the grammar of graphics as implemented in ’gg-
plot2’. It attempts to stay true to the original grammar and to respect the naming conventions used
in ’ggplot2’.

Extensions provided:

• Geoms adding support for plot, table and grob insets within the gramamr. Geoms using a
parallel pseudo-scale based on native plot coordinates (npc) to allow annotations consistent
with the grammar and so supporting facets and grouping. Geoms for annotations on the edges
of the plotting area. Geom for easily drawing lines separating the quadrants of a plot.

• Stats for filtering-out/filtering-in observations in regions of a panel or group where the den-
sity of observations is high. Statistics simultaneously computing summaries, optionally using
different functions, along x and y. Stat computing quadrant counts.

• Position functions implementing multi-directional nudging based on the data.
• Scales. Pseudo-scales supporting npc coordinates for x and y.
• Specializations of the ggplot() generic accepting time series objects of classes ts and xts as

data argument.

Acknowledgements

We thank Kamil Slowikowski not only for contributing ideas and code examples to this package but
also for adding new features to his package ’ggrepel’ that allow new use cases for stat_dens2d_labels(),
position_nudge_center(), position_nudge_line() and position_nudge_to() from this pack-
age. This package includes code copied and/or modified from that in package ’ggplot2’.

4 annotate

Author(s)

Maintainer: Pedro J. Aphalo <pedro.aphalo@helsinki.fi> (ORCID)

Other contributors:

• Kamil Slowikowski (ORCID) [contributor]

• Michał Krassowski (ORCID) [contributor]

• Daniel Sabanés Bové [contributor]

• Stella Banjo [contributor]

References

Package ’ggplot2’ documentation is available at https://ggplot2.tidyverse.org/
Package ’ggplot2’ source code at https://github.com/tidyverse/ggplot2

See Also

Useful links:

• https://docs.r4photobiology.info/ggpp/

• https://github.com/aphalo/ggpp

• Report bugs at https://github.com/aphalo/ggpp/issues

annotate Annotations supporting NPC

Description

A revised version of annotate() from package ’ggplot2’ adding support for npcx and npcy position
aesthetics, allowing use of the geometries defined in the current package such as geom_text_npc().
It also has a parameter label that directly accepts data frames, ggplots and grobs as arguments
in addition to objects of atomic classes like character. When package ’ggpmisc’ is loaded this
definition of annotate() overrides that in package ’ggplot2’.

Usage

annotate(
geom,
x = NULL,
y = NULL,
xmin = NULL,
xmax = NULL,
ymin = NULL,
ymax = NULL,
xend = NULL,
yend = NULL,
npcx = NULL,

https://orcid.org/0000-0003-3385-972X
https://orcid.org/0000-0002-2843-6370
https://orcid.org/0000-0002-9638-7785
https://ggplot2.tidyverse.org/
https://github.com/tidyverse/ggplot2
https://docs.r4photobiology.info/ggpp/
https://github.com/aphalo/ggpp
https://github.com/aphalo/ggpp/issues

annotate 5

npcy = NULL,
label = NULL,
...,
na.rm = FALSE

)

Arguments

geom character Name of geom to use for annotation.
x, y, xmin, ymin, xmax, ymax, xend, yend, npcx, npcy

numeric Positioning aesthetics - you must specify at least one of these.

label character, data.frame, ggplot or grob.

... Other named arguments passed on to layer(). These are often aesthetics, used
to set an aesthetic to a fixed value, like color = "red" or size = 3. They may also
be parameters to the paired geom/stat.

na.rm logical If FALSE, the default, missing values are removed with a warning. If
TRUE, missing values are silently removed.

Details

Note that all position aesthetics are scaled (i.e., they will expand the limits of the plot so they are
visible), but all other aesthetics are set. This means that layers created with this function will never
affect the legend.

Value

A plot layer instance.

Note

To use the original definition of annotate() after loading package ’ggpmisc’, use ggplot2::annotate().

Examples

p <- ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()

Works as ggplot2::annotate()
p + annotate("text", x = 5, y = 32, label = "Some text")
p + annotate("label", x = c(2, 5), y = c(15, 32),

label = c("A", "B"))
p + annotate("table", x = 5, y = 30,

label = data.frame(A = 1:2, B = letters[1:2]))
p + annotate("plot", x = 5.5, y = 34,

label = p + theme_bw(9))
p + annotate("rect", xmin = 3, xmax = 4.2, ymin = 12, ymax = 21, alpha = .2)
p + annotate("segment", x = 2.5, xend = 4, y = 15, yend = 25, colour = "blue")
p + annotate("pointrange", x = 3.5, y = 20, ymin = 12, ymax = 28,

colour = "red", size = 1.5)

6 birch.df

But ggpmisc::annotate() also works with npcx and npcy pseudo-aesthetics
p + annotate("label_npc", npcx = c(0.1, 0.9), npcy = c(0.1, 0.9),

label = c("A", "B"))
p + annotate("label_npc", npcx = 0.9, npcy = c(0.1, 0.9),

label = c("A", "B"))

p + annotate("text_npc", npcx = 0.9, npcy = 0.9, label = "Some text")
p + annotate("text_npc", npcx = "right", npcy = "top", label = "Some text")

p + annotate("table_npc", npcx = 0.9, npcy = 0.9,
label = data.frame(A = 1:2, B = letters[1:2]))

p + annotate("plot_npc", npcx = 1, npcy = 1,
label = p + theme_bw(9))

p + annotate("plot_npc", npcx = c(0, 1), npcy = c(0, 1),
label = list(p + theme_bw(9), p + theme_grey(9)),
vp.width = 0.3, vp.height = 0.4)

birch.df Birch seedlings’ size

Description

A dataset containing the measurements on 350 birch seedlings.

Usage

birch.df

birch_dw.df

Format

A data.frame object with 350 rows and 8 variables.

A data.frame object with 700 rows and 5 variables.

Details

The data are for seedlings grown in trays with cells or containers of two different volumes. For each
of these types of trays, all cells, 1/2 of the cells or 1/4 of the cells contained seedlings. Root-collar
diameter (mm), height (cm), dry mass (mg) of stems and roots. Measurements done at the end of
the first growing season, after leaf fall.

References

Aphalo, P. J. and Rikala, R. (2003) Field performance of silver-birch planting-stock grown at
different spacing and in containers of different volume. New Forests, 25:93-108. doi:10.1023/
A:1022618810937.

https://doi.org/10.1023/A%3A1022618810937
https://doi.org/10.1023/A%3A1022618810937

compute_npcx 7

See Also

Other Plant growth and morphology data: ivy.df

Examples

colnames(birch.df)
head(birch.df)

colnames(birch_dw.df)
head(birch_dw.df)

compute_npcx Compute npc coordinates

Description

Convert character-encoded positions to npc units and shift positions to avoid overlaps when group-
ing is active. If numeric, validate npc values.

Usage

compute_npcx(x, group = 1L, h.step = 0.1, margin.npc = 0.05, each.len = 1)

compute_npcy(y, group = 1L, v.step = 0.1, margin.npc = 0.05, each.len = 1)

Arguments

x numeric or if character, one of "right", "left", "centre", "center" or "middle".

group integer vector, ggplot’s group id. Used to shift coordinates to avoid overlaps.

h.step, v.step numeric [0..1] The step size for shifting coordinates in npc units. Usually « 1.

margin.npc numeric [0..1] The margin added towards the nearest plotting area edge when
converting character coordinates into npc. Usually « 1.

each.len integer The number of steps per group.

y numeric or if character, one of "top", "bottom", "centre", "center" or "middle".

Details

These functions use NPC (normalized plot coordinates) instead of data coordinates. They translate
named positions into numeric values in [0..1] and they can also shift the position according to the
group, e.g., for each increase in the group number displace the position inwards or outwards, by a
user-supplied distance. They make it possible to set automatically set default positions for grouped
text labels.

Out of bounds numeric values are constrained to [0..1]. Unrecognized character values are silently
converted into NA_integer_.

8 dark_or_light

Value

A numeric vector with values in the range [0..1] representing npc coordinates.

Note

These functions are used by several layer functions in packages ’ggpp’ and ’ggpmisc’, and can be
useful to developers of other ’ggplot2’ extensions.

Examples

compute_npcx("right")
compute_npcx(c("left", "right"))
compute_npcy("bottom")
compute_npcy("bottom", group = 1L:3L)
compute_npcy("bottom", group = 2L)
compute_npcx(0.5)
compute_npcx(1)

dark_or_light Chose between dark and light color

Description

Chose between a pair of contrasting dark and light colors based on a weighted mean of RGB chan-
nels of a color. This function implements a simple approach to the choice for a color of a plot
element to ensure it is visible against a background color.

Usage

dark_or_light(
colors,
threshold = 0.45,
dark.color = "black",
light.color = "white"

)

Arguments

colors A vector of color definitions or color names in the background.

threshold numeric A value of luminance in [0..1] indicating the switch point between dark
and light background.

dark.color, light.color

A color definition or color name to return as dark and light colors to contrast
light and dark backgrounds respectively.

geom_grob 9

Details

The switch between dark and light color is based on a quick and dirty approximation of the lumi-
nance of colors computed from RGB values. This easily computed approximation seems to work
well enough. The default threshold chosen for a switch between black and white may need to be
adjusted for other pairs of colors. Graphic devices can differ in the color spaces they support, but
this is unlikely to affect the choice between black and white or other pairs of colors with large
differences in luminance.

Note

The current implementation of dark_or_light() ignores alpha, the transparency component, of
all its arguments.

Examples

dark_or_light("yellow")
dark_or_light("darkblue")
dark_or_light(c("darkblue", "yellow", "red"))
dark_or_light("#FFFFFF")
dark_or_light("#FFFFFF", dark.color = "darkblue", light.color = "lightgrey")
dark_or_light("#000000", dark.color = "darkblue", light.color = "lightgrey")

geom_grob Inset graphical objects

Description

geom_grob and geom_grob_npc add Grobs as insets to the ggplot using syntax similar to that of
geom_text, geom_text_s and geom_text_npc. In most respects they behave as any other ggplot
geometry: they add a layer containing one or more grobs and grouping and faceting works as usual.
The most common use of geom_grob is to add data labels that are graphical objects rather than
text. geom_grob_npc is used to add grobs as annotations to plots, but contrary to layer function
annotate(), geom_grob_npc is data driven and respects grouping and facets, thus plot insets can
differ among panels. Of these two geoms only geom_grob supports the plotting of segments, as
geom_grob_npc uses a coordinate system that is unrelated to data units and data.

Usage

geom_grob(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
nudge_x = 0,

10 geom_grob

nudge_y = 0,
default.colour = "black",
default.color = default.colour,
colour.target = "segment",
color.target = colour.target,
default.alpha = 1,
alpha.target = "segment",
add.segments = TRUE,
box.padding = 0.25,
point.padding = 1e-06,
segment.linewidth = 0.5,
min.segment.length = 0,
arrow = NULL,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

geom_grob_npc(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

nudge_x, nudge_y

Horizontal and vertical adjustments to nudge the starting position of each text
label. The units for nudge_x and nudge_y are the same as for the data units on
the x-axis and y-axis.

default.colour, default.color

A colour definition to use for elements not targeted by the colour aesthetic.
colour.target, color.target

A vector of character strings; "all", "text", "box" and "segment" or "none".

geom_grob 11

default.alpha numeric in [0..1] A transparency value to use for elements not targeted by the
alpha aesthetic.

alpha.target A vector of character strings; "all", "text", "segment", "box", "box.line",
and "box.fill" or "none".

add.segments logical Display connecting segments or arrows between original positions and
displaced ones if both are available.

box.padding, point.padding

numeric By how much each end of the segments should shortened in mm.

segment.linewidth

numeric Width of the segments or arrows in mm.

min.segment.length

numeric Segments shorter that the minimum length are not rendered, in mm.

arrow specification for arrow heads, as created by arrow

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

You can modify the size of insets with the vp.width and vp.height aesthetics. These can take
a number between 0 (smallest possible inset) and 1 (whole plotting area width or height). The
default value for for both of these aesthetics is 1/5. Thus, in contrast to geom_text, geom_label,
geom_text_s and geom_label_s the size of the insets remains the same relative to the size of the
plotting area irrespective of the size the plot is rendered at. The aspect ratio of insets is preserved
and size is adjusted until the whole inset fits within the viewport.

By default geom_grob uses position_nudge_center and justification "position", while geom_grob_npc
uses position_nudge and justification "inward". In contrast to position_nudge, position_nudge_center
and all other position functions defined in packages ’ggpp’ keep the original coordinates thus al-
lowing the plotting of connecting segments and arrows.

This geom_grob and geom_grob_npc require the use tibbles as argument for data, as the grobs
should be stored as a list of graphics objects ("grob") to be mapped to the label aesthetic.

The x and y aesthetics determine the position of the whole inset grob, similarly to that of a text
label, justification is interpreted as indicating the position of the grob with respect to its x and y
coordinates in the data, and angle is used to rotate the grob as a whole.

Value

A plot layer instance.

12 geom_grob

Plot boundaries and clipping

The "width" and "height" of an inset as for a text element are 0, so stacking and dodging inset plots
will not work by default, and axis limits are not automatically expanded to include all inset plots.
Obviously, insets do have height and width, but they are physical units, not data units. The amount
of space they occupy on the main plot is not constant in data units of the base plot: when you modify
scale limits, inset plots stay the same size relative to the physical size of the base plot.

Alignment

You can modify text alignment with the vjust and hjust aesthetics. These can either be a number
between 0 (right/bottom) and 1 (top/left) or a character ("left", "middle", "right", "bottom",
"center", "top"). In addition, you can use special alignments for justification including "position",
"inward" and "outward". Inward always aligns text towards the center of the plotting area, and
outward aligns it away from the center of the plotting area. If tagged with _mean or _median (e.g.,
"outward_mean") the mean or median of the data in the panel along the corresponding axis is used
as center. If the characters following the underscore represent a number (e.g., "outward_10.5")
the reference point will be this value in data units. Position justification is computed based on the
direction of the displacement of the position of the label so that each individual text or label is
justified outwards from its original position. The default justification is "position".

If no position displacement is applied, or a position function defined in ’ggplot2’ is used, these
geometries behave similarly to the corresponding ones from package ’ggplot2’ with a default justi-
fication of 0.5 and no segment drawn.

Position functions

Many layer functions from package ’ggpp’ are designed to work seamlessly with position func-
tions that keep, rather than discard, the original x and y positions in data when computing a new
displaced position. See position_nudge_keep, position_dodge_keep, position_jitter_keep,
position_nudge_center, position_nudge_line, position_nudge_to, position_dodgenudge,
position_jitternudge, and position_stacknudge for examples and details of their use.

Note

The insets are stored nested within the main ggplot object and contain their own copy of the data,
and are rendered as grid grobs as normal ggplots at the time the main ggplot is rendered. They can
have different themes.

Use annotate as redefined in ’ggpp’ when adding insets as annotations (automatically available
unless ’ggpp’ is not attached). annotate cannot be used with the npcx and npcy pseudo-aesthetics.

References

The idea of implementing a geom_custom() for grobs has been discussed as an issue at https:
//github.com/tidyverse/ggplot2/issues/1399.

See Also

grid-package, geom_text, and other documentation of package ’ggplot2’.

https://github.com/tidyverse/ggplot2/issues/1399
https://github.com/tidyverse/ggplot2/issues/1399

geom_label_npc 13

Examples

library(tibble)
df <- tibble(x = 2, y = 15, grob = list(grid::circleGrob(r = 0.2)))

without nudging no segments are drawn
ggplot(data = mtcars,

aes(wt, mpg)) +
geom_point(aes(colour = factor(cyl))) +
geom_grob(data = df,

aes(x, y, label = grob))

with nudging segments are drawn
ggplot(data = mtcars,

aes(wt, mpg)) +
geom_point(aes(colour = factor(cyl))) +
geom_grob(data = df,

aes(x, y, label = grob),
nudge_x = 0.5,
colour = "red",
hjust = 0.5,
vjust = 0.5)

ggplot(data = mtcars,
aes(wt, mpg)) +

geom_point(aes(colour = factor(cyl))) +
geom_grob(data = df,

aes(x, y, label = grob),
nudge_x = 0.5,
colour = "red",
colour.target = "none",
hjust = 0.5,
vjust = 0.5)

with nudging plotting of segments can be disabled
ggplot(data = mtcars,

aes(wt, mpg)) +
geom_point(aes(colour = factor(cyl))) +
geom_grob(data = df,

aes(x, y, label = grob),
add.segments = FALSE,
nudge_x = 0.5,
hjust = 0.5,
vjust = 0.5)

geom_label_npc Text with Normalised Parent Coordinates

14 geom_label_npc

Description

geom_text_npc() adds text directly to the plot. geom_label_npc() draws a rectangle behind the
text, making it easier to read. The difference is that x and y mappings are expected to be given in
npc graphic units, using pseudo-aesthetics. Their intended use is to add annotations to a plot.

Usage

geom_label_npc(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
label.padding = grid::unit(0.25, "lines"),
label.r = grid::unit(0.15, "lines"),
label.size = 0.25,
size.unit = "mm",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

geom_text_npc(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific data set - only needed if you want to override the plot defaults.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

geom_label_npc 15

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

parse If TRUE, the labels will be parsed into expressions and displayed as described
in ?plotmath.

nudge_x, nudge_y

Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text
from points, particularly on discrete scales.

label.padding Amount of padding around label. Defaults to 0.25 lines.

label.r Radius of rounded corners. Defaults to 0.15 lines.

label.size Size of label border, in mm.

size.unit How the ‘size‘ aesthetic is interpreted: as millimetres (‘"mm"‘, default), points
(‘"pt"‘), centimetres (‘"cm"‘), inches (‘"in"‘), or picas (‘"pc"‘).

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

check_overlap If ‘TRUE‘, text that overlaps previous text in the same layer will not be plotted.

Details

These geoms are identical to ’ggplot2’ geom_text and geom_label except that they interpret
npcx and npcy positions in npc units. They translate npcx and npcy coordinates using a pseudo-
aesthetic with a fixed scale, the translation is done separately for each plot panel. All aesthetics
other than x and y and grouping work as in normal geoms. These include linetype and angle in
geom_label_npc().

Alignment

With textual positions and groups a shift is added to successive labels to avoid overlaps. The shift is
based on grouping, however unused levels are not dropped. In plots with faceting, if not all groups
appear in each panel, there will be blank spaces in between labels. To solve this pass numeric values
for the npc coordinates of each label instead of character strings.

You can modify text alignment with the vjust and hjust aesthetics. These can either be a number
between 0 (right/bottom) and 1 (top/left) or a character ("left", "middle", "right", "bottom",
"center", "top"). In addition, you can use special alignments for justification including "position",
"inward" and "outward". Inward always aligns text towards the center of the plotting area, and
outward aligns it away from the center of the plotting area. If tagged with _mean or _median (e.g.,
"outward_mean") the mean or median of the data in the panel along the corresponding axis is used
as center. If the characters following the underscore represent a number (e.g., "outward_10.5")
the reference point will be this value in data units. Position justification is computed based on the
direction of the displacement of the position of the label so that each individual text or label is
justified outwards from its original position. The default justification is "position".

16 geom_label_npc

If no position displacement is applied, or a position function defined in ’ggplot2’ is used, these
geometries behave similarly to the corresponding ones from package ’ggplot2’ with a default justi-
fication of 0.5 and no segment drawn.

Plot boundaries and clipping

Note that when you change the scale limits for x and/or y of a plot, text labels stay the same size, as
determined by the size aesthetic, given in millimetres. The actual size as seen in the plotted output
is decided during the rendering of the plot to a graphics device. Limits are expanded only to include
the anchor point of the labels because the "width" and "height" of a text element are 0 (as seen by
ggplot2). Text labels do have height and width, but in grid units, not data units.

See Also

geom_text and geom_label for additional details.

Examples

df <- data.frame(
x = c(0, 0, 1, 1, 0.5),
x.chr = c("left", "left", "right", "right", "center"),
y = c(0, 1, 0, 1, 0.5),
y.chr = c("bottom", "top", "bottom", "top", "middle"),
text = c("bottom-left", "top-left", "bottom-right", "top-right", "center-middle")

)

ggplot(df) +
geom_text_npc(aes(npcx = x, npcy = y, label = text))

ggplot(df) +
geom_text_npc(aes(npcx = x.chr, npcy = y.chr, label = text))

ggplot(df) +
geom_text_npc(aes(npcx = x.chr, npcy = y.chr, label = text),

angle = 90)

ggplot(data = mtcars, mapping = aes(wt, mpg)) +
geom_point() +
geom_text_npc(data = df, aes(npcx = x, npcy = y, label = text))

ggplot(data = mtcars, mapping = aes(wt, mpg)) +
geom_point() +
geom_text_npc(data = df, aes(npcx = x, npcy = y, label = text)) +
expand_limits(y = 40, x = 6)

ggplot(data = mtcars) +
geom_point(mapping = aes(wt, mpg)) +
geom_label_npc(data = df, aes(npcx = x, npcy = y, label = text))

ggplot(data = mtcars) +
geom_point(mapping = aes(wt, mpg)) +

geom_label_pairwise 17

geom_label_npc(data = df, aes(npcx = x.chr, npcy = y.chr, label = text),
angle = 90) # ignored by ggplot2 < 3.5.0

geom_label_pairwise Label pairwise comparisons

Description

Add a plot layer with a text label and a segment connecting two values along the x aesthetic. These
are usually two levels of a factor mapped to the x aesthetic when used to report significance or
highlighting pairwise comparisons.

Usage

geom_label_pairwise(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
default.colour = "black",
default.color = default.colour,
colour.target = "all",
color.target = colour.target,
default.alpha = 1,
alpha.target = "segment",
label.padding = grid::unit(0.25, "lines"),
label.r = grid::unit(0.15, "lines"),
segment.linewidth = 0.5,
arrow = NULL,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

geom_text_pairwise(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,

18 geom_label_pairwise

nudge_y = 0,
default.colour = "black",
default.color = default.colour,
colour.target = "all",
color.target = colour.target,
default.alpha = 1,
alpha.target = "all",
segment.linewidth = 0.5,
arrow = NULL,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = FALSE

)

Arguments

mapping Set of aesthetic mappings created by aes. With inherit.aes = FALSE (the de-
fault) it is not combined with the default mapping at the top level of the plot.
You always need to supply a mapping unless you set inherit.aes = TRUE.

data A data frame. If specified, overrides the default data frame defined at the top
level of the plot.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... other arguments passed on to layer. There are three types of arguments you
can use here:

• Aesthetics: to set an aesthetic to a fixed value, like colour = "red" or size
= 3.

• Other arguments to the layer, for example you override the default stat
associated with the layer.

• Other arguments passed on to the stat.

parse If TRUE, the labels will be parsed into expressions and displayed as described in
?plotmath.

nudge_x, nudge_y

Horizontal and vertical adjustments to nudge the starting position of each text
label. The units for nudge_x and nudge_y are the same as for the data units on
the x-axis and y-axis.

default.colour, default.color

A colour definition to use for elements not targeted by the colour aesthetic.
colour.target, color.target

A vector of character strings; "all", "text", "segment", "box", "box.line",
and "box.fill" or "none".

default.alpha numeric in [0..1] A transparency value to use for elements not targeted by the
alpha aesthetic.

geom_label_pairwise 19

alpha.target A vector of character strings; "all", "text", "segment", "box", "box.line",
and "box.fill" or "none".

label.padding Amount of padding around label. Defaults to 0.25 lines.

label.r Radius of rounded corners. Defaults to 0.15 lines.
segment.linewidth

numeric Width of the segments or arrows in mm.

arrow specification for arrow heads, as created by arrow

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show.legend logical. Should this layer be included in the legends? NA includes a legend if any
aesthetics are mapped. FALSE, the default, never includes it, and TRUE always
includes it.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining them.

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap takes place at draw time and in the order of the data, thus its
action depends of the size at which the plot is drawn.

Details

Geometries geom_text_pairwise() and geom_label_pairwise() have an interface similar to
that of geom_text and geom_label, but add a segment connecting two values along x. In the most
frequent use case they add a segment connecting pairs of levels from a grouping factor mapped to
the x or y aesthetic. They can also be used to label ranges of values.

The segment extends from xmin to xmax, and the text label is located at x with a default that positions
the label at the centre of the bar. The ends of the bar can be terminated with arrow heads given by
parameter arrow, with a default of a plain segment without arrow tips. The text label is located
slightly above the segment by the default value of vjust in geom_text_pairwise() and on top of
the segment in geom_label_pairwise().

Layer functions geom_text_pairwise() and geom_label_pairwise() use by default position_nudge.
Nudging affects both text label and bar, and its default of no displacement will very rarely need to
be changed.

Differently to geom_text_repel() and geom_label_repel(), geom_text_pairwise() and geom_label_pairwise()
do not make use of additional aesthetics for the segments or boxes, but instead allow the choice of
which elements are targeted by the usual ’ggplot2’ aesthetics and which are rendered using a default
constant value. In the grammar of graphics using the same aesthetic with multiple meanings is not
allowed, thus, the approach used in package ’ggpp’ attempts to enforce this.

Value

A plot layer instance.

Under development!

This geometry is still under development and its user interface subject to change.

20 geom_label_pairwise

Plot boundaries and clipping

Note that when you change the scale limits for x and/or y of a plot, text labels stay the same size, as
determined by the size aesthetic, given in millimetres. The actual size as seen in the plotted output
is decided during the rendering of the plot to a graphics device. Limits are expanded only to include
the anchor point of the labels because the "width" and "height" of a text element are 0 (as seen by
ggplot2). Text labels do have height and width, but in grid units, not data units. Either function
expand_limits or the scale expansion can be used to ensure text labels remain within the plotting
area.

Alignment

You can modify text alignment with the vjust and hjust aesthetics. These can either be a number
between 0 (right/bottom) and 1 (top/left) or a character ("left", "middle", "right", "bottom",
"center", "top"). Values outside the range 0..1 displace the text label so that the anchor point
is outside the text label. In addition, you can use special alignments for justification including
"position", "inward" and "outward". Inward always aligns text towards the center of the plot-
ting area, and outward aligns it away from the center of the plotting area. If tagged with _mean
or _median (e.g., "outward_mean") the mean or median of the data in the panel along the corre-
sponding axis is used as center. If the characters following the underscore represent a number (e.g.,
"outward_10.5") the reference point will be this value in data units. Position justification is com-
puted based on the direction of the displacement of the position of the label so that each individual
text or label is justified outwards from its original position. The default justification is "identity".

Aesthetics

Layer functions geom_text_pairwise() and geom_label_pairwise() require aesthetics xmin,
xmax, x, y and label and support aesthetics: alpha, colour, group, size (of text), family,
fontface, linewidth, linetype, hjust and vjust. In addition, geom_text_pairwise supports
angle and geom_label_pairwise supports fill. See aes_colour_fill_alpha, aes_linetype_size_shape,
aes_position, and aes_group_order.

In ’ggplot2’ linewidth when applied to the border of the box drawn by geom_label() is given
in points rather than in mm because of a historical error in the code. In other geometries such as
geom_segment() linewidth is given in mm. As in geom_label_pairwise() it is important to
remain consistent among different linewidth specifications, mm are used both for the box border
and linking segment. To imitate the behaviour of geom_label() a correction factor of 0.75 (more
exactly 1 pt = 0.7528 mm) can be used for the line width of the border of the box.

See Also

geom_text_s, geom_label_s, geom_text, geom_label and other documentation of package ’gg-
plot2’.

Examples

my.cars <- mtcars
my.cars$name <- rownames(my.cars)
p1 <- ggplot(my.cars, aes(factor(cyl), mpg)) +

geom_boxplot(width = 0.33)

geom_label_pairwise 21

With a factor mapped to x, highlight pairs

my.pairs <-
data.frame(A = 1:2, B = 2:3, bar.height = c(12, 30),

p.value = c(0.01, 0.05678))
p1 +

geom_text_pairwise(data = my.pairs,
aes(xmin = A, xmax = B,

y = bar.height,
label = p.value),

parse = TRUE)

p1 +
geom_text_pairwise(data = my.pairs,

aes(xmin = A, xmax = B,
y = bar.height,
label = sprintf("italic(P)~`=`~%.2f", p.value)),

arrow = grid::arrow(angle = 90,
length = unit(1, "mm"),
ends = "both"),

parse = TRUE)

p1 +
geom_text_pairwise(data = my.pairs,

aes(xmin = A, xmax = B,
y = bar.height,
label = sprintf("italic(P)~`=`~%.2f", p.value)),

colour = "red",
arrow = grid::arrow(angle = 90,

length = unit(1, "mm"),
ends = "both"),

parse = TRUE)

p1 +
geom_label_pairwise(data = my.pairs,

aes(xmin = A, xmax = B,
y = bar.height,
label = sprintf("italic(P)~`=`~%.2f", p.value)),

colour = "red", size = 2.75,
arrow = grid::arrow(angle = 30,

length = unit(1.5, "mm"),
ends = "both"),

parse = TRUE)

p1 +
geom_text_pairwise(data = my.pairs,

aes(xmin = A, xmax = B,
y = bar.height,
label = sprintf("italic(P)~`=`~%.2f", p.value)),

colour = "red", colour.target = "segment",
arrow = grid::arrow(angle = 90,

length = unit(1, "mm"),

22 geom_label_pairwise

ends = "both"),
parse = TRUE)

p1 +
geom_text_pairwise(data = my.pairs,

aes(xmin = A, xmax = B,
y = bar.height,
label = sprintf("italic(P)~`=`~%.2f", p.value)),

colour = "red", colour.target = "text",
arrow = grid::arrow(angle = 90,

length = unit(1, "mm"),
ends = "both"),

parse = TRUE)

with a numeric vector mapped to x, indicate range

p2 <-
ggplot(my.cars, aes(disp, mpg)) +
geom_point()

my.ranges <-
data.frame(A = c(50, 400),

B = c(200, 500),
bar.height = 5,
text = c("small", "large"))

p2 +
geom_text_pairwise(data = my.ranges,

aes(xmin = A, xmax = B,
y = bar.height, label = text))

p2 +
geom_text_pairwise(data = my.ranges,

aes(xmin = A, xmax = B,
y = bar.height, label = text),

angle = 90, hjust = -0.1)

p2 +
geom_label_pairwise(data = my.ranges,

aes(xmin = A, xmax = B,
y = bar.height, label = text),

angle = 90, hjust = -0.1)

p2 +
geom_label_pairwise(data = my.ranges,

aes(xmin = A, xmax = B,
y = bar.height, label = text))

p2 +
geom_text_pairwise(data = my.ranges,

aes(xmin = A, xmax = B,
y = bar.height, label = text),

arrow = grid::arrow(ends = "both", length = unit(2, "mm")))

geom_label_s 23

geom_label_s Linked Text

Description

Linked text geometries are most useful for adding data labels to plots. ‘geom_text_s()‘ and ‘geom_label_s()‘
add text to the plot and for nudged positions link the original location to the nudged text with a seg-
ment or arrow.

Usage

geom_label_s(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
default.colour = "black",
default.color = default.colour,
colour.target = c("text", "box"),
color.target = colour.target,
default.alpha = 1,
alpha.target = "all",
label.padding = grid::unit(0.25, "lines"),
label.r = grid::unit(0.15, "lines"),
segment.linewidth = 0.5,
add.segments = TRUE,
box.padding = 1e-06,
point.padding = 1e-06,
min.segment.length = 0,
arrow = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_text_s(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,

24 geom_label_s

parse = FALSE,
nudge_x = 0,
nudge_y = 0,
default.colour = "black",
default.color = default.colour,
colour.target = "text",
color.target = colour.target,
default.alpha = 1,
alpha.target = "all",
add.segments = TRUE,
box.padding = 0.25,
point.padding = 1e-06,
segment.linewidth = 0.5,
min.segment.length = 0,
arrow = NULL,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes. If specified and with inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You only need to supply mapping if there isn’t a mapping defined for
the plot.

data A data frame. If specified, overrides the default data frame defined at the top
level of the plot.

stat The statistical transformation to use on the data for this layer, as a string.
position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.
... other arguments passed on to layer. There are three types of arguments you

can use here:

• Aesthetics: to set an aesthetic to a fixed value, like colour = "red" or size
= 3.

• Other arguments to the layer, for example you override the default stat
associated with the layer.

• Other arguments passed on to the stat.

parse If TRUE, the labels will be parsed into expressions and displayed as described in
?plotmath.

nudge_x, nudge_y

Horizontal and vertical adjustments to nudge the starting position of each text
label. The units for nudge_x and nudge_y are the same as for the data units on
the x-axis and y-axis.

default.colour, default.color

A colour definition to use for elements not targeted by the colour aesthetic.

geom_label_s 25

colour.target, color.target

A vector of character strings; "all", "text", "segment", "box", "box.line",
and "box.fill" or "none".

default.alpha numeric in [0..1] A transparency value to use for elements not targeted by the
alpha aesthetic.

alpha.target A vector of character strings; "all", "text", "segment", "box", "box.line",
and "box.fill" or "none".

label.padding Amount of padding around label. Defaults to 0.25 lines.

label.r Radius of rounded corners. Defaults to 0.15 lines.
segment.linewidth

numeric Width of the segments or arrows in mm.

add.segments logical Display connecting segments or arrows between original positions and
displaced ones if both are available.

box.padding, point.padding

numeric By how much each end of the segments should shortened in mm.
min.segment.length

numeric Segments shorter that the minimum length are not rendered, in mm.

arrow specification for arrow heads, as created by arrow

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show.legend logical. Should this layer be included in the legends? NA, the default, includes a
legend if any aesthetics are mapped. FALSE never includes it, and TRUE always
includes it.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining them. This
is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g., borders.

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap takes place at draw time and in the order of the data, thus its
action depends of the size at which the plot is drawn.

Details

Geometries geom_text_s() and geom_label_s() have an interface similar to that of geom_text
and geom_label, but support additional features. Similarly to geom_text_repel() and geom_label_repel()
when used together with position functions defined in package ’ggpp’ they draw a segment linking
the label at a displaced position to the original position, usually a point corresponding to an obser-
vation to which the label refers. Another difference is that they allow control of to which graphical
elements the mappings to colour and alpha aesthetics are applied. Differently to geom_label(),
geom_label_s() obeys aesthetic mappings to linewidth and linetype applied to the line at the
edge of the label box.

Layer functions geom_text_s() and geom_label_s() use by default position_nudge_keep which
is backwards compatible with position_nudge. In contrast to position_nudge, position_nudge_keep
and all other position functions defined in packages ’ggpp’ and ’ggrepel’ keep the original coordi-
nates, thus allowing the plotting of connecting segments and arrows.

26 geom_label_s

Differently to geom_text_repel() and geom_label_repel(), geom_text_s() and geom_label_s()
do not make use of additional aesthetics for the segments or boxes, but instead allow the choice of
which elements are targeted by the aesthetics and which are rendered in a default colour. In the
grammar of graphics using the same aesthetic with multiple meanings is not allowed, thus, the
approach used in our geoms attempts to enforce this.

Value

A plot layer instance.

Under development!

These two geometries are still under development and their user interface subject to change. In
’ggpp’ (== 0.5.0) support for aesthetics related to segments was removed, and replaced with pa-
rameters and a new mechanism for targeting a the usual aesthetics to text, border, and segment was
added.

Plot boundaries and clipping

Note that when you change the scale limits for x and/or y of a plot, text labels stay the same size, as
determined by the size aesthetic, given in millimetres. The actual size as seen in the plotted output
is decided during the rendering of the plot to a graphics device. Limits are expanded only to include
the anchor point of the labels because the "width" and "height" of a text element are 0 (as seen by
ggplot2). Text labels do have height and width, but in grid units, not data units.

Alignment

You can modify text alignment with the vjust and hjust aesthetics. These can either be a number
between 0 (right/bottom) and 1 (top/left) or a character ("left", "middle", "right", "bottom",
"center", "top"). In addition, you can use special alignments for justification including "position",
"inward" and "outward". Inward always aligns text towards the center of the plotting area, and
outward aligns it away from the center of the plotting area. If tagged with _mean or _median (e.g.,
"outward_mean") the mean or median of the data in the panel along the corresponding axis is used
as center. If the characters following the underscore represent a number (e.g., "outward_10.5")
the reference point will be this value in data units. Position justification is computed based on the
direction of the displacement of the position of the label so that each individual text or label is
justified outwards from its original position. The default justification is "position".

If no position displacement is applied, or a position function defined in ’ggplot2’ is used, these
geometries behave similarly to the corresponding ones from package ’ggplot2’ with a default justi-
fication of 0.5 and no segment drawn.

Aesthetics

Layer functions geom_text_s() and geom_label_s() require aesthetics x, y and label and sup-
port aesthetics: alpha, colour, group, size (of text), family, fontface, lineheight, hjust and
vjust. In addition, geom_text_s supports angle and geom_label_s supports fill, linewidth
and linetype. See aes_colour_fill_alpha, aes_linetype_size_shape, aes_position, and
aes_group_order.

geom_label_s 27

In ’ggplot2’ linewidth when applied to the border of the box drawn by geom_label() is given
in points rather than in mm because of a historical error in the code. In other geometries such as
geom_segment() linewidth is given in mm. As in geom_label_s() it is important to remain
consistent among different linewidth specifications, mm are used both for the box border and
linking segment. To imitate the behaviour of geom_label() a correction factor of 0.75 (more
exactly 1 pt = 0.7528 mm) can be used for the line width of the border of the box.

Position functions

Many layer functions from package ’ggpp’ are designed to work seamlessly with position func-
tions that keep, rather than discard, the original x and y positions in data when computing a new
displaced position. See position_nudge_keep, position_dodge_keep, position_jitter_keep,
position_nudge_center, position_nudge_line, position_nudge_to, position_dodgenudge,
position_jitternudge, and position_stacknudge for examples and details of their use.

See Also

geom_text, geom_label and other documentation of package ’ggplot2’.

Examples

my.cars <- mtcars[c(TRUE, FALSE, FALSE, FALSE),]
my.cars$name <- rownames(my.cars)
p <- ggplot(my.cars, aes(wt, mpg, label = name)) +

geom_point(color = "red")

Use nudging
p +

geom_text_s(nudge_x = 0.12) +
expand_limits(x = 6.2)

p +
geom_text_s(nudge_x = -0.12) +
expand_limits(x = 1.5)

p +
geom_text_s(nudge_x = 0.12,

arrow = arrow(length = grid::unit(1.5, "mm"))) +
expand_limits(x = 6.2)

p +
geom_text_s(nudge_x = 0.12,

arrow = arrow(length = grid::unit(1.5, "mm")),
point.padding = 0.4) +

expand_limits(x = 6.2)
p +

geom_text_s(hjust = "left", nudge_x = 0.12) +
expand_limits(x = 6.2)

p +
geom_text_s(nudge_y = 0.1, nudge_x = 0.07) +
expand_limits(x = 6.2)

p +
geom_text_s(nudge_y = 1, angle = 90) +
expand_limits(y = 30)

28 geom_label_s

p +
geom_text_s(angle = 90, nudge_y = 1,

arrow = arrow(length = grid::unit(1.5, "mm")),
colour.target = "segment", colour = "red") +

expand_limits(y = 30)
p +

geom_text_s(angle = 90, nudge_y = 1,
arrow = arrow(length = grid::unit(1.5, "mm")),
alpha.target = "segment", alpha = 0.3) +

expand_limits(y = 30)

p +
geom_label_s(nudge_x = 0.12) +
expand_limits(x = 6.2)

p +
geom_label_s(nudge_x = 0.12, linetype = "dotted", linewidth = 0.4) +
expand_limits(x = 6.2)

p +
geom_label_s(nudge_x = 0.12, linewidth = 0.5, label.r = unit(0, "lines")) +
expand_limits(x = 6.2)

p +
geom_label_s(nudge_x = 0.12, linewidth = 0) +
expand_limits(x = 6.2)

Nudging away from arbitrary point
p +

geom_label_s(hjust = "outward_1", nudge_x = 0.12) +
expand_limits(x = 6.2)

p +
geom_label_s(hjust = "inward_3", nudge_y = 0.4)

p +
geom_label_s(nudge_y = 1, angle = 90) +
expand_limits(y = 30)

Add aesthetic mappings and adjust arrows
p +

geom_text_s(aes(colour = factor(cyl)),
angle = 90,
nudge_y = 1,
arrow = arrow(angle = 20,

length = grid::unit(1.5, "mm"),
ends = "first",
type = "closed"),

show.legend = FALSE) +
scale_colour_discrete(l = 40) + # luminance, make colours darker
expand_limits(y = 27)

p +
geom_text_s(aes(colour = factor(cyl)),

colour.target = "text",
angle = 90,
nudge_y = 1,

geom_plot 29

arrow = arrow(angle = 20,
length = grid::unit(1.5, "mm"),
ends = "first",
type = "closed"),

show.legend = FALSE) +
scale_colour_discrete(l = 40) + # luminance, make colours darker
expand_limits(y = 27)

p +
geom_label_s(aes(colour = factor(cyl)),

nudge_x = 0.3,
arrow = arrow(angle = 20,

length = grid::unit(1/3, "lines"))) +
scale_colour_discrete(l = 40) + # luminance, make colours darker
expand_limits(x = 7)

p +
geom_label_s(aes(colour = factor(cyl)),

nudge_x = 0.3,
colour.target = c("box", "segment"),
linewidth = 0.6,
arrow = arrow(angle = 20,

length = grid::unit(1/3, "lines"))) +
scale_colour_discrete(l = 40) + # luminance, make colours darker
expand_limits(x = 7)

p +
geom_label_s(aes(colour = factor(cyl), fill = factor(cyl)),

nudge_x = 0.3,
alpha.target = "box",
alpha = 0.1,
linewidth = 0.5,
arrow = arrow(angle = 20,

length = grid::unit(1/3, "lines"))) +
scale_colour_discrete(l = 40) + # luminance, make colours darker
expand_limits(x = 7)#' # Scale height of text, rather than sqrt(height)

p +
geom_text_s(aes(size = wt), nudge_x = -0.1) +
scale_radius(range = c(3,6)) + # override scale_area()
expand_limits(x = c(1.8, 5.5))

geom_plot Inset plots

Description

geom_plot and geom_plot_npc add ggplot objects as insets to the base ggplot, using syntax sim-
ilar to that of geom_label and geom_text_s. In most respects they behave as any other ggplot

30 geom_plot

geometry: they add a layer containing one or more grobs and grouping and faceting works as usual.
The most common use of geom_plot is to add data labels that are themselves ggplots rather than
text. geom_plot_npc is used to add ggplots as annotations to plots, but contrary to layer function
annotate(), geom_plot_npc is data driven and respects grouping and facets, thus plot insets can
differ among panels.

Usage

geom_plot(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
nudge_x = 0,
nudge_y = 0,
default.colour = "black",
default.color = default.colour,
colour.target = "box",
color.target = colour.target,
default.alpha = 1,
alpha.target = "all",
add.segments = TRUE,
box.padding = 0.25,
point.padding = 1e-06,
segment.linewidth = 0.5,
min.segment.length = 0,
arrow = NULL,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

geom_plot_npc(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific data set - only needed if you want to override the plot defaults.

geom_plot 31

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

nudge_x, nudge_y

Horizontal and vertical adjustments to nudge the starting position of each text
label. The units for nudge_x and nudge_y are the same as for the data units on
the x-axis and y-axis.

default.colour, default.color

A colour definition to use for elements not targeted by the colour aesthetic.
colour.target, color.target

A vector of character strings; "all", "text", "box" and "segment".

default.alpha numeric in [0..1] A transparency value to use for elements not targeted by the
alpha aesthetic.

alpha.target A vector of character strings; "all", "text", "segment", "box", "box.line",
and "box.fill".

add.segments logical Display connecting segments or arrows between original positions and
displaced ones if both are available.

box.padding, point.padding

numeric By how much each end of the segments should shortened in mm.
segment.linewidth

numeric Width of the segments or arrows in mm.
min.segment.length

numeric Segments shorter that the minimum length are not rendered, in mm.

arrow specification for arrow heads, as created by arrow

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

You can modify the size of inset plots with the vp.width and vp.height aesthetics. These can take
a number between 0 (smallest possible inset) and 1 (whole plotting area width or height). The de-
fault value for for both of these aesthetics is 1/5. Thus, in contrast to geom_text and geom_text_s
the size of the insets remains the same relative to the size of the plotting area irrespective of how
the plot is rendered. The aspect ratio of insets is preserved and size is adjusted until the whole inset
fits within the viewport.

By default this geom uses position_nudge_center which is backwards compatible with position_nudge
but provides additional control on the direction of the nudging. In contrast to position_nudge,

32 geom_plot

position_nudge_center and all other position functions defined in packages ’ggpp’ and ’ggre-
pel’ keep the original coordinates thus allowing the plotting of connecting segments and arrows.

This geom works only with tibbles as data, as its expects a list of ggplot objects ("gg" class) to be
mapped to the label aesthetic.

The x and y aesthetics determine the position of the whole inset plot, similarly to that of a text label,
justification is interpreted as indicating the position of the plot with respect to its x and y coordinates
in the data, and angle is used to rotate the plot as a whole.

Of these two geoms only geom_plot supports the plotting of segments, as geom_plot_npc uses a
coordinate system that is unrelated to data units and data.In the case of geom_plot_npc(), npcx
and npcy aesthetics determine the position of the inset plot.

Value

A plot layer instance.

Alignment

You can modify text alignment with the vjust and hjust aesthetics. These can either be a number
between 0 (right/bottom) and 1 (top/left) or a character ("left", "middle", "right", "bottom",
"center", "top"). In addition, you can use special alignments for justification including "position",
"inward" and "outward". Inward always aligns text towards the center of the plotting area, and
outward aligns it away from the center of the plotting area. If tagged with _mean or _median (e.g.,
"outward_mean") the mean or median of the data in the panel along the corresponding axis is used
as center. If the characters following the underscore represent a number (e.g., "outward_10.5")
the reference point will be this value in data units. Position justification is computed based on the
direction of the displacement of the position of the label so that each individual text or label is
justified outwards from its original position. The default justification is "position".

If no position displacement is applied, or a position function defined in ’ggplot2’ is used, these
geometries behave similarly to the corresponding ones from package ’ggplot2’ with a default justi-
fication of 0.5 and no segment drawn.

Position functions

Many layer functions from package ’ggpp’ are designed to work seamlessly with position func-
tions that keep, rather than discard, the original x and y positions in data when computing a new
displaced position. See position_nudge_keep, position_dodge_keep, position_jitter_keep,
position_nudge_center, position_nudge_line, position_nudge_to, position_dodgenudge,
position_jitternudge, and position_stacknudge for examples and details of their use.

Plot boundaries and clipping

The "width" and "height" of an inset as for a text element are 0, so stacking and dodging inset plots
will not work by default, and axis limits are not automatically expanded to include all inset plots.
Obviously, insets do have height and width, but they are physical units, not data units. The amount
of space they occupy on the main plot is not constant in data units of the base plot: when you modify
scale limits, inset plots stay the same size relative to the physical size of the base plot.

geom_plot 33

Note

The insets are stored nested within the main ggplot object and contain their own copy of the data,
and are rendered as grid grobs as normal ggplots at the time the main ggplot is rendered. They can
have different themes.

Use annotate as redefined in ’ggpp’ when adding insets as annotations (automatically available
unless ’ggpp’ is not attached). annotate cannot be used with the npcx and npcy pseudo-aesthetics.

References

The idea of implementing a geom_custom() for grobs has been discussed as an issue at https:
//github.com/tidyverse/ggplot2/issues/1399.

See Also

Other geometries adding layers with insets: geom_table()

Examples

inset plot with enlarged detail from a region of the main plot
library(tibble)
p <-

ggplot(data = mtcars, mapping = aes(wt, mpg)) +
geom_point()

df <- tibble(x = 0.01,
y = 0.01,
plot = list(p +

coord_cartesian(xlim = c(3, 4),
ylim = c(13, 16)) +

labs(x = NULL, y = NULL) +
theme_bw(10)))

p +
expand_limits(x = 0, y = 0) +
geom_plot_npc(data = df,

aes(npcx = x, npcy = y, label = plot))

p +
expand_limits(x = 0, y = 0) +
geom_plot_npc(data = df,

aes(npcx = x, npcy = y, label = plot,
vp.width = 1/2, vp.height = 1/4))

p +
expand_limits(x = 0, y = 0) +
geom_plot_npc(data = df,

aes(npcx = x, npcy = y, label = plot),
vp.width = 1/4, vp.height = 1/4)

p +
geom_plot(data = df,

aes(x = x + 3, y = y + 20, label = plot),

https://github.com/tidyverse/ggplot2/issues/1399
https://github.com/tidyverse/ggplot2/issues/1399

34 geom_point_s

nudge_x = -1, nudge_y = - 7,
hjust = 0.5, vjust = 0.5,
arrow = arrow(length = unit(0.5, "lines")),
colour = "red",
vp.width = 1/5, vp.height = 1/5)

geom_point_s Points linked by a segment

Description

The geometry "geom_point_s" provides a super set of the capabilities of geom geom_point from
package ’ggplot2’ by allowing plotting of arrows or segments joining the original position of dis-
placed observations to their current position rendered as points or graphic symbols. The most com-
mon use is to demonstrate the action of different position functions. It can be also used to highlight
observations.

Usage

geom_point_s(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
nudge_x = 0,
nudge_y = 0,
arrow = grid::arrow(length = unit(1/3, "lines")),
default.colour = "black",
default.color = default.colour,
colour.target = "point",
color.target = colour.target,
default.alpha = 1,
alpha.target = "all",
add.segments = TRUE,
box.padding = 0.25,
point.padding = 1e-06,
segment.linewidth = 0.5,
min.segment.length = 0,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_point_s 35

Arguments

mapping Set of aesthetic mappings created by aes. If specified and inherit.aes = TRUE
(the default), is combined with the default mapping at the top level of the plot.
You only need to supply mapping if there isn’t a mapping defined for the plot.

data A data frame. If specified, overrides the default data frame defined at the top
level of the plot.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... other arguments passed on to layer. There are three types of arguments you
can use here:

• Aesthetics: to set an aesthetic to a fixed value, like colour = "red" or size
= 3.

• Other arguments to the layer, for example you override the default stat
associated with the layer.

• Other arguments passed on to the stat.
nudge_x, nudge_y

Horizontal and vertical adjustments to nudge the starting position of each text
label. The units for nudge_x and nudge_y are the same as for the data units on
the x-axis and y-axis.

arrow specification for arrow heads, as created by arrow

default.colour, default.color

A colour definition to use for elements not targeted by the colour aesthetic.
colour.target, color.target

A character string, one of "all", "point" and "segment" or "none".

default.alpha numeric in [0..1] A transparency value to use for elements not targeted by the
alpha aesthetic.

alpha.target A character string, one of "all", "segment", "point", or "none".

add.segments logical Display connecting segments or arrows between original positions and
displaced ones if both are available.

box.padding, point.padding

numeric By how much each end of the segments should shortened in mm.
segment.linewidth

numeric Width of the segments or arrows in mm.
min.segment.length

numeric Segments shorter that the minimum length are not rendered, in mm.

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

36 geom_point_s

Details

The plotting of segments is similar in idea to that implemented in geom_text_repel and relies on
position functions that rename instead of only replacing the original x and y coordinates from the
data object.

By default this geom uses position_nudge_center which is backwards compatible with position_nudge
but provides additional control on the direction of the nudging.

Value

A plot layer instance.

Position functions

Many layer functions from package ’ggpp’ are designed to work seamlessly with position func-
tions that keep, rather than discard, the original x and y positions in data when computing a new
displaced position. See position_nudge_keep, position_dodge_keep, position_jitter_keep,
position_nudge_center, position_nudge_line, position_nudge_to, position_dodgenudge,
position_jitternudge, and position_stacknudge for examples and details of their use.

Note

The insets are stored nested within the main ggplot object and contain their own copy of the data,
and are rendered as grid grobs as normal ggplots at the time the main ggplot is rendered. They can
have different themes.

Use annotate as redefined in ’ggpp’ when adding insets as annotations (automatically available
unless ’ggpp’ is not attached). annotate cannot be used with the npcx and npcy pseudo-aesthetics.

See Also

geom_point.

Examples

Same output as with geom_point()
ggplot(mpg[1:20,],

aes(cyl, hwy)) +
geom_point_s(colour = "blue")

with segment drawn after nudging
ggplot(mpg[1:20,],

aes(cyl, hwy, label = drv)) +
geom_point_s(position = position_nudge_keep(x = 0.2),

colour = "red") +
geom_point_s(colour = "blue")

with segment drawn after nudging
ggplot(mpg[1:20,],

aes(cyl, hwy, label = drv)) +
geom_point_s(position = position_nudge_keep(x = 0.2),

geom_quadrant_lines 37

colour = "red",
colour.target = "all") +

geom_point_s(colour = "blue")

ggplot(mpg[1:20,],
aes(cyl, hwy, label = drv)) +

geom_point_s(position = position_nudge_keep(x = 0.2),
colour = "red",
colour.target = "segment") +

geom_point_s(colour = "blue")

ggplot(mpg[1:20,],
aes(cyl, hwy, label = drv)) +

geom_point_s(position = position_nudge_keep(x = 0.2),
colour = "red",
colour.target = "point") +

geom_point_s(colour = "blue")

ggplot(mpg[1:50,],
aes(cyl, hwy, label = drv)) +

geom_point_s(position = position_jitternudge(width = 0.66, height = 2,
seed = 456,
nudge.from = "jittered",
kept.origin = "original"),

colour = "red",
arrow = grid::arrow(length = grid::unit(0.4, "lines"))) +

geom_point_s(colour = "blue")

geom_quadrant_lines Reference lines: horizontal plus vertical, and quadrants

Description

geom_vhlines() adds in a single layer both vertical and horizontal guide lines. Can be thought
of as a convenience function that helps with producing consistent vertical and horizontal guide
lines. It behaves like geom_vline() and geom_hline(). geom_quadrant_lines() displays the
boundaries of four quadrants with an arbitrary origin. The quadrants are specified in the same way
as in stat_quadrant_counts() and is intended to be used to add guide lines consistent with the
counts by quadrant computed by this stat.

Usage

geom_quadrant_lines(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
pool.along = c("none", "x", "y", "xy"),

38 geom_quadrant_lines

xintercept = 0,
yintercept = 0,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE,
...

)

geom_vhlines(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
xintercept = NULL,
yintercept = NULL,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific data set - only needed if you want to override the plot defaults.

stat The statistic object to use display the data

position The position adjustment to use for overlapping points on this layer

pool.along character, one of "none", "x", "y", or "xy" indicating whether to plot or not
lines separating quadrants.

xintercept, yintercept

numeric vectors the coordinates of the origin of the quadrants.

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This
is most useful for helper functions that define both data and aesthetics and should
not inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

While geom_vhlines() does not provide defaults for the intercepts and accepts vectors of length >
1, geom_quadrant_lines() sets by default the intercepts to zero producing the natural quadrants

geom_quadrant_lines 39

and only accepts vectors of length one per panel. That is geom_vhlines() can be used to plot
a grid while geom_quadrant_lines() plots at most one vertical and one horizontal line. In the
case of geom_quadrant_lines() the pooling along axes can be specified in the same way as in
stat_quadrant_counts().

Value

A plot layer instance.

See Also

geom_abline, the topic where geom_vline() and geom_hline() are described.

Other Functions for quadrant and volcano plots: stat_panel_counts(), stat_quadrant_counts()

Examples

generate artificial data
set.seed(4321)
x <- 1:100
y <- rnorm(length(x), mean = 10)
my.data <- data.frame(x, y)

ggplot(my.data, aes(x, y)) +
geom_quadrant_lines() +
geom_point()

ggplot(my.data, aes(x, y)) +
geom_quadrant_lines(linetype = "dotted") +
geom_point()

ggplot(my.data, aes(x, y)) +
geom_quadrant_lines(xintercept = 50,

yintercept = 10,
colour = "blue") +

geom_point()

ggplot(my.data, aes(x, y)) +
geom_quadrant_lines(xintercept = 50,

pool.along = "y",
colour = "blue") +

geom_point()

ggplot(my.data, aes(x, y)) +
geom_vhlines(xintercept = c(25, 50, 75),

yintercept = 10 ,
linetype = "dotted",
colour = "red") +

geom_point() +
theme_bw()

ggplot(my.data, aes(x, y)) +
geom_vhlines(xintercept = c(25, 50, 75),

40 geom_table

yintercept = c(10, 8),
linetype = "dotted",
colour = "red") +

geom_point() +
theme_bw()

geom_table Inset tables

Description

geom_table and geom_table_npc add data frames as table insets to the base ggplot, using syntax
similar to that of geom_text and geom_text_s. In most respects they behave as any other ggplot
geometry: they add a layer containing one or more grobs and grouping and faceting works as
usual. The most common use of geom_table is to add data labels that are whole tables rather than
text. geom_table_npc is used to add tables as annotations to plots, but contrary to layer function
annotate, geom_table_npc is data driven and respects grouping and facets, thus plot insets can
differ among panels.

Usage

geom_table(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
nudge_x = 0,
nudge_y = 0,
default.colour = "black",
default.color = default.colour,
colour.target = "box",
color.target = colour.target,
default.alpha = 1,
alpha.target = "all",
add.segments = TRUE,
box.padding = 0.25,
point.padding = 1e-06,
segment.linewidth = 0.5,
min.segment.length = 0,
arrow = NULL,
table.theme = NULL,
table.rownames = FALSE,
table.colnames = TRUE,
table.hjust = 0.5,
parse = FALSE,

geom_table 41

na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

geom_table_npc(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
table.theme = NULL,
table.rownames = FALSE,
table.colnames = TRUE,
table.hjust = 0.5,
parse = FALSE,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific data set - only needed if you want to override the plot defaults.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

nudge_x, nudge_y

Horizontal and vertical adjustments to nudge the starting position of each text
label. The units for nudge_x and nudge_y are the same as for the data units on
the x-axis and y-axis.

default.colour, default.color

A colour definition to use for elements not targeted by the colour aesthetic.
colour.target, color.target

A vector of character strings; "all", "box" and "segment" or "none".

default.alpha numeric in [0..1] A transparency value to use for elements not targeted by the
alpha aesthetic.

alpha.target A vector of character strings; "all", "segment", "box", "box.line", and
"box.fill" or "none".

add.segments logical Display connecting segments or arrows between original positions and
displaced ones if both are available.

box.padding, point.padding

numeric By how much each end of the segments should shortened in mm.

42 geom_table

segment.linewidth

numeric Width of the segments or arrows in mm.
min.segment.length

numeric Segments shorter that the minimum length are not rendered, in mm.
arrow specification for arrow heads, as created by arrow

table.theme NULL, list or function A gridExtra ttheme defintion, or a constructor for a
ttheme or NULL for default.

table.rownames, table.colnames

logical flag to enable or disable printing of row names and column names.
table.hjust numeric Horizontal justification for the core and column headings of the table.
parse If TRUE, the labels will be parsed into expressions and displayed as described

in ?plotmath.
na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently

removes missing values.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes.
inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.

This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

By default geom_table() uses position_nudge_center which is backwards compatible with
position_nudge but provides additional control on the direction of the nudging. In contrast to
position_nudge, position_nudge_center and all other position functions defined in packages
’ggpp’ and ’ggrepel’ keep the original coordinates thus allowing the plotting of connecting segments
and arrows.

This geom works only with tibbles as data, as its expects a list of data frames (or tibbles) to be
mapped to the label aesthetic. A table is built with function gridExtra::gtable for each data
frame in the list, and formatted according to a table theme or ttheme. The character strings in the
data frame can be parsed into R expressions so the inset tables can include maths.

If the argument passed to table.theme is a constructor function (passing its name without paren-
thesis), the values mapped to size, colour, fill, alpha, and family aesthetics will the passed to
this theme constructor for each individual table. In contrast, if a ready constructed ttheme stored as
a list object is passed as argument (e.g., by calling the constructor, using constructor name followed
by parenthesis), it will be used as is, i.e., mappings to aesthetics such as colour are ignored if
present. By default the constructor ttheme_gtdefault is used and colour and fill, are mapped
to NA. Mapping these aesthetics to NA triggers the use of the default base_colour of the ttheme.
As the table is built with function gridExtra::gtable(), for formatting details, please, consult
tableGrob.

The x and y aesthetics determine the position of the whole inset table, similarly to that of a text label,
justification is interpreted as indicating the position of the inset table with respect to its horizontal
and vertical axes (rows and columns in the data frame), and angle is used to rotate the inset table
as a whole.

Of these two geoms only geom_grob supports the plotting of segments, as geom_grob_npc uses a
coordinate system that is unrelated to data units and data.In the case of geom_table_npc, npcx and
npcy aesthetics determine the position of the inset table. Justification as described above for .

geom_table 43

Value

A plot layer instance.

Alignment

You can modify text alignment with the vjust and hjust aesthetics. These can either be a number
between 0 (right/bottom) and 1 (top/left) or a character ("left", "middle", "right", "bottom",
"center", "top"). In addition, you can use special alignments for justification including "position",
"inward" and "outward". Inward always aligns text towards the center of the plotting area, and
outward aligns it away from the center of the plotting area. If tagged with _mean or _median (e.g.,
"outward_mean") the mean or median of the data in the panel along the corresponding axis is used
as center. If the characters following the underscore represent a number (e.g., "outward_10.5")
the reference point will be this value in data units. Position justification is computed based on the
direction of the displacement of the position of the label so that each individual text or label is
justified outwards from its original position. The default justification is "position".

If no position displacement is applied, or a position function defined in ’ggplot2’ is used, these
geometries behave similarly to the corresponding ones from package ’ggplot2’ with a default justi-
fication of 0.5 and no segment drawn.

Position functions

Many layer functions from package ’ggpp’ are designed to work seamlessly with position func-
tions that keep, rather than discard, the original x and y positions in data when computing a new
displaced position. See position_nudge_keep, position_dodge_keep, position_jitter_keep,
position_nudge_center, position_nudge_line, position_nudge_to, position_dodgenudge,
position_jitternudge, and position_stacknudge for examples and details of their use.

Plot boundaries and clipping

The "width" and "height" of an inset as for a text element are 0, so stacking and dodging inset plots
will not work by default, and axis limits are not automatically expanded to include all inset plots.
Obviously, insets do have height and width, but they are physical units, not data units. The amount
of space they occupy on the main plot is not constant in data units of the base plot: when you modify
scale limits, inset plots stay the same size relative to the physical size of the base plot.

Note

Complex tables with annotations or different colouring of rows or cells can be constructed with
functions in package ’gridExtra’ or in any other way as long as they can be saved as grid graphical
objects and then added to a ggplot as a new layer with geom_grob.

References

This geometry is inspired on answers to two questions in Stackoverflow. In contrast to these earlier
examples, the current geom obeys the grammar of graphics, and attempts to be consistent with
the behaviour of ’ggplot2’ geometries. https://stackoverflow.com/questions/12318120/
adding-table-within-the-plotting-region-of-a-ggplot-in-r https://stackoverflow.
com/questions/25554548/adding-sub-tables-on-each-panel-of-a-facet-ggplot-in-r?

https://stackoverflow.com/questions/12318120/adding-table-within-the-plotting-region-of-a-ggplot-in-r
https://stackoverflow.com/questions/12318120/adding-table-within-the-plotting-region-of-a-ggplot-in-r
https://stackoverflow.com/questions/25554548/adding-sub-tables-on-each-panel-of-a-facet-ggplot-in-r?
https://stackoverflow.com/questions/25554548/adding-sub-tables-on-each-panel-of-a-facet-ggplot-in-r?

44 geom_table

See Also

Formatting of tables stat_fmt_table, ttheme_gtdefault, ttheme_set, tableGrob.

Other geometries adding layers with insets: geom_plot()

Examples

library(dplyr)
library(tibble)

mtcars %>%
group_by(cyl) %>%
summarize(wt = mean(wt), mpg = mean(mpg)) %>%
ungroup() %>%
mutate(wt = sprintf("%.2f", wt),

mpg = sprintf("%.1f", mpg)) -> tb

df <- tibble(x = 5.45, y = 34, tb = list(tb))

using defaults
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df,

aes(x = x, y = y, label = tb))

ggplot(mtcars,
aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df,

aes(x = x, y = y, label = tb),
table.rownames = TRUE,
table.theme = ttheme_gtstripes)

settings aesthetics to constants
ggplot(mtcars,

aes(wt, mpg, colour = factor(cyl))) +
geom_point() +
geom_table(data = df,

aes(x = x, y = y, label = tb),
color = "red", fill = "#FFCCCC",
family = "serif", size = 5,
angle = 90, vjust = 0)

passing a theme constructor as argument
ggplot(mtcars,

aes(wt, mpg, colour = factor(cyl))) +
geom_point() +
geom_table(data = df,

aes(x = x, y = y, label = tb),
table.theme = ttheme_gtminimal) +

theme_classic()

df2 <- tibble(x = 5.45,

geom_x_margin_arrow 45

y = c(34, 29, 24),
x1 = c(2.29, 3.12, 4.00),
y1 = c(26.6, 19.7, 15.1),
cyl = c(4, 6, 8),
tb = list(tb[1, 1:3], tb[2, 1:3], tb[3, 1:3]))

mapped aesthetics
ggplot(mtcars,

aes(wt, mpg, color = factor(cyl))) +
geom_point() +
geom_table(data = df2,

inherit.aes = TRUE,
mapping = aes(x = x, y = y, label = tb))

nudging and segments
ggplot(mtcars,

aes(wt, mpg, color = factor(cyl))) +
geom_point(show.legend = FALSE) +
geom_table(data = df2,

inherit.aes = TRUE,
mapping = aes(x = x1, y = y1, label = tb),
nudge_x = 0.7, nudge_y = 3,
vjust = 0.5, hjust = 0.5,
arrow = arrow(length = unit(0.5, "lines"))) +

theme_classic()

Using native plot coordinates instead of data coordinates
dfnpc <- tibble(x = 0.95, y = 0.95, tb = list(tb))

ggplot(mtcars,
aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table_npc(data = dfnpc,

aes(npcx = x, npcy = y, label = tb))

geom_x_margin_arrow Reference arrows on the margins

Description

Small arrows on plot margins can supplement a 2d display with annotations. Arrows can be
used to highlight specific values along a margin. The geometries geom_x_margin_arrow() and
geom_y_margin_arrow() behave similarly geom_vline() and geom_hline() and share their "dou-
ble personality" as both annotations and geometries.

Usage

geom_x_margin_arrow(
mapping = NULL,

46 geom_x_margin_arrow

data = NULL,
stat = "identity",
position = "identity",
...,
xintercept,
sides = "b",
arrow.length = 0.03,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

geom_y_margin_arrow(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
yintercept,
sides = "l",
arrow.length = 0.03,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.
stat The statistical transformation to use on the data for this layer, as a string.
position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.
... other arguments passed on to layer. This can include aesthetics whose values

you want to set, not map. See layer for more details.
xintercept, yintercept

numeric Parameters that control the position of the marginal points. If these are
set, data, mapping and show.legend are overridden.

sides A string that controls which sides of the plot the rugs appear on. It can be set to
a string containing any combination of "trbl", for top, right, bottom, and left.

arrow.length numeric value expressed in npc units for the length of the arows inwards from
the edge of the plotting area.

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

geom_x_margin_grob 47

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g., borders.

Value

A plot layer instance.

See Also

Other Geometries for marginal annotations in ggplots: geom_x_margin_grob(), geom_x_margin_point()

Examples

p <- ggplot(mtcars, aes(wt, mpg)) +
geom_point()

p
p + geom_x_margin_arrow(xintercept = 3.5)
p + geom_y_margin_arrow(yintercept = c(18, 28, 15))
p + geom_x_margin_arrow(data = data.frame(x = c(2.5, 4.5)),

mapping = aes(xintercept = x))
p + geom_x_margin_arrow(data = data.frame(x = c(2.5, 4.5)),

mapping = aes(xintercept = x),
sides="tb")

geom_x_margin_grob Add Grobs on the margins

Description

Margin grobs can supplement a 2d display with annotations. Margin grobs such as icons or sym-
bols can highlight individual values along a margin. The geometries geom_x_margin_grob() and
geom_y_margin_grob() behave similarly geom_vline() and geom_hline() and share their "dou-
ble personality" as both annotations and geometries.

Usage

geom_x_margin_grob(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
xintercept,
sides = "b",
grob.shift = 0,
na.rm = FALSE,

48 geom_x_margin_grob

show.legend = FALSE,
inherit.aes = FALSE

)

geom_y_margin_grob(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
yintercept,
sides = "l",
grob.shift = 0,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.
stat The statistical transformation to use on the data for this layer, as a string.
position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.
... other arguments passed on to layer. This can include aesthetics whose values

you want to set, not map. See layer for more details.
xintercept, yintercept

numeric Parameters that control the position of the marginal points. If these are
set, data, mapping and show.legend are overridden.

sides A character string of length one that controls on which side of the plot the grob
annotations appear on. It can be set to a string containing one of "t", "r", "b"
or "l", for top, right, bottom, and left.

grob.shift numeric value expressed in npc units for the shift of the marginal grob inwards
from the edge of the plotting area.

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Value

A plot layer instance.

geom_x_margin_point 49

Alignment

You can modify text alignment with the vjust and hjust aesthetics. These can either be a number
between 0 (right/bottom) and 1 (top/left) or a character ("left", "middle", "right", "bottom",
"center", "top"). In addition, you can use special alignments for justification including "position",
"inward" and "outward". Inward always aligns text towards the center of the plotting area, and
outward aligns it away from the center of the plotting area. If tagged with _mean or _median (e.g.,
"outward_mean") the mean or median of the data in the panel along the corresponding axis is used
as center. If the characters following the underscore represent a number (e.g., "outward_10.5")
the reference point will be this value in data units. Position justification is computed based on the
direction of the displacement of the position of the label so that each individual text or label is
justified outwards from its original position. The default justification is "position".

If no position displacement is applied, or a position function defined in ’ggplot2’ is used, these
geometries behave similarly to the corresponding ones from package ’ggplot2’ with a default justi-
fication of 0.5 and no segment drawn.

Position functions

Many layer functions from package ’ggpp’ are designed to work seamlessly with position func-
tions that keep, rather than discard, the original x and y positions in data when computing a new
displaced position. See position_nudge_keep, position_dodge_keep, position_jitter_keep,
position_nudge_center, position_nudge_line, position_nudge_to, position_dodgenudge,
position_jitternudge, and position_stacknudge for examples and details of their use.

See Also

grid-package, geom_rug, and other documentation of package ’ggplot2’.

Other Geometries for marginal annotations in ggplots: geom_x_margin_arrow(), geom_x_margin_point()

Examples

We can add icons to the margin of a plot to signal events

geom_x_margin_point Reference points on the margins

Description

Margin points can supplement a 2d display with annotations. Margin points can highlight individual
values along a margin. The geometries geom_x_margin_point() and geom_y_margin_point()
behave similarly geom_vline() and geom_hline() and share their "double personality" as both
annotations and geometries.

50 geom_x_margin_point

Usage

geom_x_margin_point(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
xintercept,
sides = "b",
point.shift = 0.017,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

geom_y_margin_point(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
yintercept,
sides = "l",
point.shift = 0.017,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

xintercept, yintercept

numeric Parameters that control the position of the marginal points. If these are
set, data, mapping and show.legend are overridden.

sides A string that controls which sides of the plot the rugs appear on. It can be set to
a string containing any combination of "trbl", for top, right, bottom, and left.

point.shift numeric value expressed in npc units for the shift of the rug points inwards from
the edge of the plotting area.

ggplot 51

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Value

A plot layer instance.

See Also

Other Geometries for marginal annotations in ggplots: geom_x_margin_arrow(), geom_x_margin_grob()

Examples

p <- ggplot(mtcars, aes(wt, mpg)) +
geom_point()

p
p + geom_x_margin_point(xintercept = 3.5)
p + geom_y_margin_point(yintercept = c(18, 28, 15))
p + geom_x_margin_point(data = data.frame(x = c(2.5, 4.5)),

mapping = aes(xintercept = x))
p + geom_x_margin_point(data = data.frame(x = c(2.5, 4.5)),

mapping = aes(xintercept = x),
sides = "tb")

ggplot Create a new ggplot plot from time series data

Description

ggplot() initializes a ggplot object. It can be used to declare the input spectral object for a graphic
and to optionally specify the set of plot aesthetics intended to be common throughout all subsequent
layers unless specifically overridden.

Usage

S3 method for class 'ts'
ggplot(
data,
mapping = NULL,
...,
time.resolution = "day",
as.numeric = TRUE,

52 ggplot

environment = parent.frame()
)

S3 method for class 'xts'
ggplot(
data,
mapping = NULL,
...,
time.resolution = "day",
as.numeric = TRUE,
environment = parent.frame()

)

Arguments

data Default spectrum dataset to use for plot. If not a spectrum, the methods used
will be those defined in package ggplot2. See ggplot. If not specified, must be
suppled in each layer added to the plot.

mapping Default list of aesthetic mappings to use for plot. If not specified, in the case of
spectral objects, a default mapping will be used.

... Other arguments passed on to methods. Not currently used.
time.resolution

character The time unit to which the returned time values will be rounded.

as.numeric logical If TRUE convert time to numeric, expressed as fractional calendar years.

environment If an variable defined in the aesthetic mapping is not found in the data, ggplot
will look for it in this environment. It defaults to using the environment in which
ggplot() is called.

Details

ggplot() is typically used to construct a plot incrementally, using the + operator to add layers to the
existing ggplot object. This is advantageous in that the code is explicit about which layers are added
and the order in which they are added. For complex graphics with multiple layers, initialization with
ggplot is recommended.

There are three common ways to invoke ggplot:

• ggplot(ts, aes(x, y, <other aesthetics>))

• ggplot(ts)

The first method is recommended if all layers use the same data and the same set of aesthetics,
although this method can also be used to add a layer using data from another data frame. See the
first example below. The second method specifies the default spectrum object to use for the plot,
and the units to be used for y in the plot, but no aesthetics are defined up front. This is useful when
one data frame is used predominantly as layers are added, but the aesthetics may vary from one
layer to another. The third method specifies the default spectrum object to use for the plot, but no
aesthetics are defined up front. This is useful when one spectrum is used predominantly as layers
are added, but the aesthetics may vary from one layer to another.

ivy.df 53

Value

A "ggplot" object.

Note

Current implementation does not merge default mapping with user supplied mapping. If user sup-
plies a mapping, it is used as is. To add to the default mapping, aes() can be used by itself to
compose the ggplot.

Examples

ggplot(lynx) + geom_line()

ivy.df Ivy photosynthesis light response

Description

A dataset containing photosynthesis measurements on four ivy plants.

Usage

ivy.df

Format

A data.frame object with 36 rows and 6 variables.

Details

For each plant a light response curve of photosynthesis was measured using a custom-built system
and software that allowed controlling the concentrations of water vapour and carbon dioxide at the
surface of the leaves, i.e., inside the air boundary layer.

References

Aphalo, P. J. (1991) Interactions in Stomatal Function. PhD thesis, University of Edinburgh. http:
//hdl.handle.net/1842/14758.

See Also

Other Plant growth and morphology data: birch.df

Examples

colnames(ivy.df)
head(ivy.df)

http://hdl.handle.net/1842/14758
http://hdl.handle.net/1842/14758

54 position_dodgenudge

position_dodgenudge Combined positions dodge and nudge

Description

position_dodgenudge() combines into one function the action of position_dodge and position_nudge
and position_dodge2nudge() combines into one function the action of position_dodge2 and
position_nudge. They are useful when labelling plots such as grouped bars, columns, etc. and
when adding dodged to text labels linked to observations plotted without dodge. It can replace
other position functions as it is backwards compatible. Like all other position functions in ’ggpp’
and ’ggrepel’ it preserves the initial position to allow drawing of segments or arrow linking the
original position to the displaced one.

Usage

position_dodgenudge(
width = 1,
preserve = c("total", "single"),
x = 0,
y = 0,
direction = c("none", "split", "split.x", "split.y", "center"),
kept.origin = c("dodged", "original", "none")

)

position_dodge_keep(
width = 1,
preserve = c("total", "single"),
kept.origin = "original"

)

position_dodge2_keep(
width = 1,
preserve = c("total", "single"),
kept.origin = "original"

)

position_dodge2nudge(
width = 1,
preserve = c("total", "single"),
padding = 0.1,
reverse = FALSE,
x = 0,
y = 0,
direction = c("none", "split", "split.x", "split.y", "center"),
kept.origin = c("dodged", "original", "none")

)

position_dodgenudge 55

Arguments

width Dodging width, when different to the width of the individual elements. This
is useful when you want to align narrow geoms with wider geoms. See the
examples.

preserve Should dodging preserve the total width of all elements at a position, or the
width of a single element?.

x, y Amount of vertical and horizontal distance to move. A numeric vector of length
1, or of the same length as rows there are in ‘data‘, with nudge values in data
rows order.

direction One of "none", "split", "split.x" or "split.y". A value of "none" repli-
cates the behavior of position_nudge. At the moment "split" changes the
sign of the nudge at zero, which is suitable for column plots with negative slices.

kept.origin One of "original" or "none".

padding Padding between elements at the same position. Elements are shrunk by this
proportion to allow space between them. Defaults to 0.1.

reverse If TRUE, will reverse the default stacking order. This is useful if you’re rotating
both the plot and legend.

Details

The applied dodge is identical to that by position_dodge or position_dodge2 while nudging is
similar to that by position_nudge.

There are two posible uses for these functions. First they can be used to label dodged bars or box-
plots. In this case, it is mandatory to use the same argument to width when passing position_dodge()
to geom_col() and position_dodgenudge() to geom_text() or geom_label() or their repulsive
equivalents. Otherwise the arrows or segments will fail to connect to the labels. In other words jitter-
ing is computed twice. Jitter should be identical with the same arguments as position_dodgenudge()
as this last function simply call the same code from package ’ggplot2’.

The second use is to dodge labels to be connected to elements that have not been jittered. The
return of original positions instead of the dodged ones is achieved by passing origin = "original"
instead of the default of origin = "dodged".

Value

A "Position" object.

Author(s)

Michał Krassowski, edited by Pedro J. Aphalo.

Source

https://github.com/slowkow/ggrepel/issues/161.

https://github.com/slowkow/ggrepel/issues/161

56 position_jitternudge

See Also

position_nudge, position_nudge_repel.

Other position adjustments: position_jitternudge(), position_nudge_center(), position_nudge_keep(),
position_nudge_line(), position_nudge_to(), position_stacknudge()

Examples

df <- data.frame(x1 = c(1, 2, 1, 3, -1),
x2 = c("a", "a", "b", "b", "b"),
grp = c("some long name", "other name", "some name",

"another name", "some long name"))

Add labels to a horizontal column plot (stacked by default)
ggplot(data = df, aes(x1, x2, group = grp)) +

geom_col(aes(fill = grp), width = 0.8,
position = position_dodge()) +

geom_vline(xintercept = 0) +
geom_text(
aes(label = grp),
position = position_dodgenudge(x = 0.09, direction = "split", width = 0.8),
angle = 90, size = 3) +

theme(legend.position = "none")

ggplot(data = df, aes(x2, x1, group = grp)) +
geom_col(aes(fill = grp), width = 0.75,

position = position_dodge(width = 0.75)) +
geom_vline(xintercept = 0) +
geom_text(aes(label = grp),

position = position_dodgenudge(y = 0.1,
direction = "split",
width = 0.75),

size = 3) +
theme(legend.position = "none")

position_jitternudge Combined positions jitter and nudge

Description

position_jitternudge() combines into one function the action of position_jitter and position_nudge.
It is useful when labels to jittered plots and when adding jitter to text labels linked to points plot-
ted without jitter. It can replace other position functions as it is backwards compatible. Like all
other position functions in ’ggpp’ and ’ggrepel’ it preserves the initial position to allow drawing of
segments or arrow linking the original position to the displaced one.

position_jitternudge 57

Usage

position_jitternudge(
width = NULL,
height = NULL,
seed = NA,
x = 0,
y = 0,
direction = c("as.is", "alternate", "split"),
nudge.from = c("original", "original.x", "original.y", "jittered", "jittered.y",

"jittered.x"),
kept.origin = c("jittered", "original", "none")

)

position_jitter_keep(
width = NULL,
height = NULL,
seed = NA,
kept.origin = "original"

)

Arguments

width, height Amount of vertical and horizontal jitter. The jitter is added in both positive
and negative directions, so the total spread is twice the value specified here. If
omitted, defaults to 40 resolution of the data: this means the jitter values will
occupy 80 implied bins. Categorical data is aligned on the integers, so a width
or height of 0.5 will spread the data so it’s not possible to see the distinction
between the categories.

seed A random seed to make the jitter reproducible. Useful if you need to apply the
same jitter twice, e.g., for a point and a corresponding label. The random seed is
reset after jittering. If NA (the default value), the seed is initialised with a random
value; this makes sure that two subsequent calls start with a different seed. Use
NULL to use the current random seed and also avoid resetting (the behaviour of
ggplot 2.2.1 and earlier).

x, y Amount of vertical and horizontal distance to move. A numeric vector of length
1, or of the same length as rows there are in data, with nudge values in data
rows order.

direction One of "as.is", "alternate", "split", "split.x" or "split.y". A value
of "none" replicates the behavior of position_nudge. "split" changes the
sign of the nudge depending on the direction of the random jitter applied to
each individual observation, which is suitable for nudging labels outward of the
jittered data.

nudge.from One of "original", "jittered", "original.y" (or "jittered.x"), "original.x"
(or "jittered.y"). A value of "original" applies the nudge before jittering
the observations, while "jittered" applies the nudging after jittering.

kept.origin One of "original", "jittered" or "none".

58 position_jitternudge

Details

Jitter with position_jitternudge() is identical to that with position_jitter while nudging is
enhanced compared to position_nudge by taking into use cases specific to the combination of
jitter and nudge.

There are two posible uses for this function. First it can be used to label jittered points in a plot.
In this case, it is mandatory to use the same arguments to width, height and seed when pass-
ing position_jitter() to geom_point() and position_jitternudge() to geom_text() or to
geom_label() or their repulsive equivalents. Otherwise the arrows or segments will fail to connect
to the labels. In other words jittering is computed twice. Jitter should be identical with the same
arguments as position_jitternudge() as this last function calls the same code imported from
package ’ggplot2’.

The second use is to jitter labels to be connected to points that have not been jittered. The return
of original positions instead of the jittered ones is achieved by passing origin = "original" to
override the default origin = "jittered".

Value

A "Position" object. The layer function within it returns a data frame, with the jittered + nudged
values in columns x and y and by default the jittered values with no nudging as x_orig and y_orig.
With nudge.from = "original" the original values with no jitter and no nudge applied are returned
as x_orig and y_orig.

Note

When direction = "split" is used together with no jitter, the split to left and right, or up and
down is done at random.

Author(s)

Michał Krassowski, edited by Pedro J. Aphalo.

Source

https://github.com/slowkow/ggrepel/issues/161.

See Also

position_jitter, position_nudge, position_nudge_repel.

Other position adjustments: position_dodgenudge(), position_nudge_center(), position_nudge_keep(),
position_nudge_line(), position_nudge_to(), position_stacknudge()

Examples

jitter <- position_jitter(width = 0.2, height = 2, seed = 123)

jitter_nudge <- position_jitternudge(width = 0.2, height = 2,
seed = 123, x = 0.1,
direction = "split",

https://github.com/slowkow/ggrepel/issues/161

position_nudge_center 59

nudge.from = "jittered")
ggplot(mpg[1:20,],

aes(cyl, hwy, label = drv)) +
geom_point(position = jitter) +
geom_text_s(position = jitter_nudge)

jitter_nudge <- position_jitternudge(width = 0.2, height = 2,
seed = 123, x = 0.35,
direction = "split",
nudge.from = "original.x")

ggplot(mpg[1:20,],
aes(cyl, hwy, label = drv)) +

geom_point(position = jitter) +
geom_text_s(position = jitter_nudge)

jitter <- position_jitter(width = 0, height = 2, seed = 123)

jitter_nudge <- position_jitternudge(width = 0, height = 2,
seed = 123, x = 0.4,
direction = "split",
nudge.from = "original.x")

ggplot(mpg[1:20,],
aes(cyl, hwy, label = drv)) +

geom_point(position = jitter) +
geom_text_s(position = jitter_nudge)

jitter_nudge <- position_jitternudge(width = 0, height = 2,
seed = 123, x = 0.4,
direction = "alternate",
nudge.from = "original.x")

ggplot(mpg[1:20,],
aes(cyl, hwy, label = drv)) +

geom_point(position = jitter) +
geom_text_s(position = jitter_nudge)

No nudge, show how points have moved with jitter

ggplot(mpg[1:20,],
aes(cyl, hwy, label = drv)) +

geom_point() +
geom_point_s(position =

position_jitter_keep(width = 0.3, height = 2, seed = 123),
color = "red",
arrow = grid::arrow(length = unit(0.4, "lines")))

position_nudge_center Nudge labels away from a central point

60 position_nudge_center

Description

position_nudge_center() is generally useful for adjusting the position of labels or text, both on a
discrete or continuous scale. In contrast to position_nudge, position_nudge_center() returns
in data both the original coordinates and the nudged coordinates.

Usage

position_nudge_center(
x = 0,
y = 0,
center_x = NULL,
center_y = NULL,
direction = NULL,
obey_grouping = NULL,
kept.origin = c("original", "none")

)

position_nudge_centre(
x = 0,
y = 0,
center_x = NULL,
center_y = NULL,
direction = NULL,
obey_grouping = NULL,
kept.origin = c("original", "none")

)

Arguments

x, y Amount of vertical and horizontal distance to move. A numeric vector, that is
recycled if shorter than the number of rows in data.

center_x, center_y

The coordinates of the virtual origin out from which nudging radiates or splits
in opposite directions. A numeric vector of length 1 or of the same length as
rows there are in data, or a function returning either of these vectors computed
from the variables in data mapped to x or y, respectively.

direction One of "none", "radial", or "split". A value of "none" replicates the behav-
ior of position_nudge. Which of these three values is the default depends on
the values passed to the other parameters.

obey_grouping A logical flag indicating whether to obey or not groupings of the observations.
By default, grouping is obeyed when both of the variables mapped to x and y are
continuous numeric and ignored otherwise.

kept.origin One of "original" or "none".

Details

This position function is backwards compatible with position_nudge but extends it by adding
support for nudging that varies across the plotting region, either in opposite directions or radially

position_nudge_center 61

from a virtual center point.

Positive values as arguments to x and y are added to the original position along either axis. If no
arguments are passed to center_x, center_y or direction, the nudging is applied as is, as is the
case if direction = "none". If non-NULL arguments are passed to both center_x and center_y,
direction = "radial" is assumed. In this case, if x and/or y positive nudging is applied radially
outwards from the center, while if negative, inwards towards the center. When a non-NULL argument
is passed only to one of center_x or center_y, direction = "split" is assumed. In this case
when the initial location of the point is to the left of center_x, -x is used instead of x for nudging,
and when the initial location of the point is to the below of center_y, -y is used instead of y
for nudging. If non-NULL arguments are passed to both center_x and center_y, and direction
is passed "split" as argument, then the split as described above is applied to both to x and y
coordinates.

Value

A "Position" object.

Note

Some situations are handled as special cases. When direction = "split" or direction = "radial",
observations at exactly the _center_ are nudged using x and y unchanged. Whendirection =
"split", and both center_x and center_y have been supplied, segments are drawn at eight dif-
ferent possible angles. When segments are exactly horizontal or vertical they would be shorter than
when drawn at the other four angles, in which case x or y are adjusted to ensure these segments are
of the same lengths as those at other angles.

This position is most useful when labelling points forming a cloud or grouped along vertical or
horizontal lines or "divides".

See Also

[ggplot2::position_nudge()], [ggrepel::position_nudge_repel()].

Other position adjustments: position_dodgenudge(), position_jitternudge(), position_nudge_keep(),
position_nudge_line(), position_nudge_to(), position_stacknudge()

Examples

df <- data.frame(
x = c(1,3,2,5,4,2.5),
y = c("abc","cd","d","c","bcd","a")

)

Plain nudging, same as with ggplot2::position_nudge()

ggplot(df, aes(x, y, label = y)) +
geom_point() +
geom_text_s(hjust = "left", vjust = "bottom",

position = position_nudge(x = 0.2, y = 0.2))

ggplot(df, aes(x, y, label = y)) +
geom_point() +

62 position_nudge_center

geom_text_s(add.segments = FALSE,
position = position_nudge_center(x = 0.2, y = 0.2)

)

"split" nudging

ggplot(df, aes(x, y)) +
geom_point() +
geom_text_s(aes(label = y),

add.segments = FALSE,
position = position_nudge_center(x = 0.2,

y = 0.2,
direction = "split"))

ggplot(df, aes(x, y)) +
geom_point() +
geom_text_s(aes(label = y),

position = position_nudge_center(x = 0.4,
direction = "split"))

ggplot(df, aes(x, y)) +
geom_point() +
geom_text_s(aes(label = y),

position = position_nudge_center(y = 0.2,
direction = "split"))

ggplot(df, aes(x, y)) +
geom_point() +
geom_text_s(aes(label = y),

position = position_nudge_center(x = 0.2,
y = 0.3,
center_y = 2,
center_x = 1.5,
direction = "split"))

ggplot(df, aes(x, y)) +
geom_point() +
geom_text_s(aes(label = y),

position = position_nudge_center(x = 0.06,
y = 0.08,
center_y = 2))

ggplot(df, aes(x, y)) +
geom_point() +
geom_text_s(aes(label = y),

position = position_nudge_center(x = 0.1,
center_x = 2.51))

ggplot(df, aes(x, y)) +
geom_point() +
geom_text_s(aes(label = y),

position = position_nudge_center(x = 0.06,
y = 0.08,

position_nudge_center 63

center_x = median,
center_y = median,
direction = "split"))

"Radial" nudging

ggplot(df, aes(x, y)) +
geom_point() +
geom_text_s(aes(label = y),

position = position_nudge_center(x = 0.1,
y = 0.2,
direction = "radial"))

ggplot(df, aes(x, y)) +
geom_point() +
geom_text_s(aes(label = y),

position = position_nudge_center(x = -0.1,
y = -0.1,
direction = "radial"))

df <- data.frame(
x = -10:10,
z = (-10:10)^2,
y = letters[1:21],
group = rep(c("a", "b"), rep(c(11, 10)))

)

ggplot(df, aes(x, z)) +
geom_point() +
geom_line() +
geom_text_s(aes(label = y),

position = position_nudge_center(x = 0.9,
y = 2.7,
center_x = mean,
center_y = max))

ggplot(df, aes(x, z, color = group)) +
geom_point() +
geom_line(color = "black", linetype = "dotted") +
geom_text_s(aes(label = y),

position = position_nudge_center(x = -1.2,
y = -3,
center_x = 0,
center_y = "above_max"))

ggplot(df, aes(x, z, color = group)) +
geom_point() +
geom_line(color = "black", linetype = "dotted") +
geom_text(aes(label = y),

vjust = "inward", hjust = "inward",
position = position_nudge_center(x = -0.9,

y = -2.7,
center_x = mean,

64 position_nudge_keep

center_y = max,
obey_grouping = FALSE))

position_nudge_keep Nudge points a fixed distance

Description

The function position_nudge_keep() has an additional parameters compared to position_nudge,
obey_grouping and by default the same behaviour when the values passed as arguments to x and y
have length one.

Usage

position_nudge_keep(
x = 0,
y = 0,
obey_grouping = NULL,
kept.origin = c("original", "none")

)

Arguments

x, y Amount of vertical and horizontal distance to move. A numeric vector of length
1, or of the same length as rows there are in data, with nudge values in data
rows order.

obey_grouping A logical flag indicating whether to obey or not groupings of the observations.
By default, grouping is obeyed when both of the variables mapped to x and y are
continuous numeric and ignored otherwise.

kept.origin One of "original" or "none".

Details

When x or y have length > 1, they are treated specially. If the lengths is the same as there are rows in
data, the nudges are applied in the order of the rows in data. When they are shorter, they are recycled
and applied to the data values after ordering. This makes it possible to have alternating mudging
right and left or up and down. If obey_grouping = TRUE is passed in the call, the alternation will
take place within groups.

As other position functions from package ’ggpp’, position_nudge_keep() by default renames
and keeps the original positions of the observations in data making it possible to draw connecting
segments or conencting arrows.

Value

A "Position" object.

position_nudge_line 65

Note

Irrespective of the action, the ordering of rows in data is preserved.

See Also

Other position adjustments: position_dodgenudge(), position_jitternudge(), position_nudge_center(),
position_nudge_line(), position_nudge_to(), position_stacknudge()

Examples

df <- data.frame(
x = c(1,3,2,5,4,2.5),
y = c("abc","cd","d","c","bcd","a")

)

Plain nudging, same as with ggplot2::position_nudge()

ggplot(df, aes(x, y, label = y)) +
geom_point() +
geom_text_s(hjust = "left", vjust = "bottom",

position = position_nudge_keep(x = 0.2, y = 0.2))

alternating nudging
ggplot(df, aes(x, y, label = y)) +

geom_point() +
geom_text_s(position = position_nudge_keep(x = c(0.2, -0.2)))

direct nudging
ggplot(df, aes(x, y, label = y)) +

geom_point() +
geom_text_s(position = position_nudge_keep(x = rep_len(c(0.2, -0.2), 6)))

position_nudge_line Nudge labels away from a line

Description

position_nudge_line() is generally useful for adjusting the starting position of labels or text to
be repelled while preserving the original position as the start of the segments. The difference com-
pared to position_nudge_center is that the nudging is away from from a line or curve fitted to
the data points or supplied as coefficients. While position_nudge_center() is most useful for
"round-shaped", vertically- or horizontally elongated clouds of points, position_nudge_line()
is most suitable when observations follow a linear or curvilinear relationship between x and y val-
ues. In contrast to position_nudge, position_nudge_line() returns in ‘data‘ both the original
coordinates and the nudged coordinates.

66 position_nudge_line

Usage

position_nudge_line(
x = NA_real_,
y = NA_real_,
xy_relative = c(0.03, 0.03),
abline = NULL,
method = NULL,
formula = y ~ x,
direction = c("automatic", "none", "split"),
line_nudge = 1,
kept.origin = c("original", "none")

)

Arguments

x, y Amount of vertical and horizontal distance to move. A numeric vector of length
1 or longer.

xy_relative Nudge relative to x and y data expanse, ignored unless x and y are both NAs.

abline a vector of length two giving the intercept and slope.

method One of "spline", "lm" or "auto".

formula A model formula for lm when method = "lm". Ignored otherwise.

direction One of "automatic", "none", or "split".

line_nudge A positive multiplier >= 1, increasing nudging away from the curve or line com-
pared to nudging from points.

kept.origin One of "original" or "none".

Details

The default amount of nudging is 3 x and y axes, which in most cases is good. In most cases it is best
to apply nudging along a direction perpendicular to the line or curve, if this is the aim, passing an
argument to only one of x, y or xy_relative will be enough. When direction = "split" nudging
is away from an implicit line or curve on either side with positive nudging. The line or curve can be
smooth spline or linear regression fitted on-the-fly to the data points, or a straight line defined by its
coefficients passed to abline. The fitting is well defined only if the observations fall roughly on a
curve or straight line that is monotonic in y. By means of line_nudge one can increment nudging
away from the line or curve compared to away from the points, which is useful for example to keep
labels outside of a confidence band. Direction defaults to "split" when line_nudge > 1, and
otherwise to "none".

Value

A "Position" object.

Note

For method = "lm" only model formulas corresponding to polynomials with no missing terms are
supported. If usingpoly in the model formula, raw = TRUE is required.

position_nudge_line 67

In practice, x and y should have the same sign for nudging to work correctly.

This position is most useful when labeling points conforming a cloud along an arbitrary curve or
line.

See Also

position_nudge, position_nudge_repel.

Other position adjustments: position_dodgenudge(), position_jitternudge(), position_nudge_center(),
position_nudge_keep(), position_nudge_to(), position_stacknudge()

Examples

set.seed(16532)
df <- data.frame(

x = -10:10,
y = (-10:10)^2,
yy = (-10:10)^2 + rnorm(21, 0, 4),
yyy = (-10:10) + rnorm(21, 0, 4),
l = letters[1:21]

)

Setting the nudging distance

ggplot(df, aes(x, y, label = l)) +
geom_line(linetype = "dotted") +
geom_point() +
geom_text(position = position_nudge_line())

ggplot(df, aes(x, y, label = l)) +
geom_line(linetype = "dotted") +
geom_point() +
geom_text_s(position = position_nudge_line())

ggplot(df, aes(x, y, label = l)) +
geom_line(linetype = "dotted") +
geom_point() +
geom_text(position = position_nudge_line(xy_relative = -0.03))

ggplot(df, aes(x, y, label = l)) +
geom_line(linetype = "dotted") +
geom_point() +
geom_text(position = position_nudge_line(x = 0.6, y = 3.2))

ggplot(df, aes(x, y, label = l)) +
geom_line(linetype = "dotted") +
geom_point() +
geom_text(position = position_nudge_line(x = -0.6, y = -4))

Other curves, using defaults

ggplot(df, aes(x, -y, label = l)) +

68 position_nudge_to

geom_line(linetype = "dotted") +
geom_point() +
geom_text(position = position_nudge_line())

ggplot(subset(df, x >= 0), aes(y, sqrt(y), label = l)) +
geom_line(linetype = "dotted") +
geom_point() +
geom_text(position = position_nudge_line())

Points scattered near a curve or line, we use 'direction = "split"'

ggplot(df, aes(x)) +
geom_line(aes(y = y), linetype = "dotted") +
geom_point(aes(y = yy)) +
geom_text(aes(y = yy, label = l),

position = position_nudge_line(direction = "split"))

ggplot(subset(df, x >= 0), aes(y, yy)) +
stat_smooth(method = "lm", formula = y ~ x) +
geom_point() +
geom_text(aes(label = l),

position = position_nudge_line(direction = "split"))

increasing the nudging for labels near the line

ggplot(subset(df, x >= 0), aes(y, yy)) +
stat_smooth(method = "lm", formula = y ~ x) +
geom_point() +
geom_text(aes(label = l),

position = position_nudge_line(line_nudge = 2,
direction = "split"))

fitting a linear model instead of the default spline

ggplot(subset(df, x >= 0), aes(y, yy)) +
stat_smooth(method = "lm", formula = y ~ x) +
geom_point() +
geom_text(aes(label = l),

position = position_nudge_line(method = "lm",
direction = "split"))

ggplot(subset(df, x >= 0), aes(x, x^2)) +
stat_smooth(method = "lm", formula = y ~ poly(x, 2, raw = TRUE)) +
geom_point() +
geom_text(aes(label = l),

position = position_nudge_line(method = "lm",
formula = y ~ poly(x, 2, raw = TRUE)))

position_nudge_to Nudge labels to new positions

position_nudge_to 69

Description

position_nudge_to() is generally useful for adjusting the position of labels or text, both on a
discrete or continuous scale. position_nudge_to() differs from position_nudge in that the co-
ordinates of the new position are given directly, rather than as a displacement from the original
location. It optionally sets an even distance among positions. As other position functions in this
package, it preserves the original position to allow the text to be linked back to its original position
with a segment or arrow.

Usage

position_nudge_to(
x = NULL,
y = NULL,
x.action = c("none", "spread"),
y.action = c("none", "spread"),
kept.origin = c("original", "none")

)

Arguments

x, y Coordinates of the destination position. A vector of mode numeric, that is ex-
tended if needed, to the same length as rows there are in data. The default,
NULL, leaves the original coordinates unchanged.

x.action, y.action

character string, one of "none", or "spread". With "spread" evenly distribut-
ing the positions within the range of argument x or y, if non-null, or the range
the variable mapped to x or y, otherwise.

kept.origin One of "original" or "none".

Details

The nudged to x and/or y values replace the original ones in data, while the original coordinates
are returned in x_orig and y_orig. Values supported are those of mode numeric, thus including
dates and times.

If the length of x and/or y is more than one but less than rows are present in the data, the vector is
both recycled and reordered so that the nudges are applied sequentially based on the data values. If
their length matches the number of rows in data, they are assumed to be already in data order.

Value

A "Position" object.

Note

Irrespective of the action, the ordering of rows in data is preserved.

70 position_nudge_to

See Also

position_nudge, position_nudge_repel.

Other position adjustments: position_dodgenudge(), position_jitternudge(), position_nudge_center(),
position_nudge_keep(), position_nudge_line(), position_stacknudge()

Examples

df <- data.frame(
x = c(1,3,2,5,4,2.5),
y = c(2, 1, 2.5, 1.8, 2.8, 1.5),
label = c("abc","cd","d","c","bcd","a")

)

default does nothing
ggplot(df, aes(x, y, label = label)) +

geom_point() +
geom_text(position = position_nudge_to())

a single y (or x) value nudges all observations to this data value
ggplot(df, aes(x, y, label = label)) +

geom_point() +
geom_text(position = position_nudge_to(y = 3))

with a suitable geom, segments or arrows can be added
ggplot(df, aes(x, y, label = label)) +

geom_point() +
geom_text_s(position = position_nudge_to(y = 3))

alternating in y value order because y has fewer values than rows in data
ggplot(df, aes(x, y, label = label)) +

geom_point() +
geom_text_s(position = position_nudge_to(y = c(3, 0)))

ggplot(df, aes(x, y, label = label)) +
geom_point() +
geom_text_s(position = position_nudge_to(y = c(0, 3)))

in data row order because y has as many values as rows in data
ggplot(df, aes(x, y, label = label)) +

geom_point() +
geom_text_s(position = position_nudge_to(y = rep_len(c(0, 3), 6)))

spread the values at equal distance within the available space
ggplot(df, aes(x, y, label = label)) +

geom_point() +
geom_text_s(position =
position_nudge_to(y = 3, x.action = "spread"))

spread the values at equal distance within the range given by x
ggplot(df, aes(x, y, label = label)) +

geom_point() +
geom_text_s(position =

position_stacknudge 71

position_nudge_to(y = 3, x = c(2,4), x.action = "spread"),
hjust = "center")

ggplot(df, aes(x, y, label = label)) +
geom_point() +
geom_text_s(position =
position_nudge_to(y = 3, x = c(0,6), x.action = "spread"),
hjust = "center")

position_stacknudge Combined positions stack and nudge

Description

position_stacknudge() is useful when labelling plots such as stacked bars, stacked columns,
stacked lines, etc. In contrast to position_nudge, position_stacknudge() returns in data both
the original coordinates and the nudged coordinates.

Usage

position_stacknudge(
vjust = 1,
reverse = FALSE,
x = 0,
y = 0,
direction = c("none", "split", "split.x", "split.y"),
kept.origin = c("stacked", "original", "none")

)

position_fillnudge(
vjust = 1,
reverse = FALSE,
x = 0,
y = 0,
direction = c("none", "split", "split.x", "split.y"),
kept.origin = c("stacked", "original", "none")

)

position_stack_keep(vjust = 1, reverse = FALSE, kept.origin = "original")

position_fill_keep(vjust = 1, reverse = FALSE, kept.origin = "original")

position_stack_minmax(
vjust = 1,
reverse = FALSE,
x = 0,
y = 0,

72 position_stacknudge

direction = c("none", "split", "split.x", "split.y"),
kept.origin = c("stacked", "original", "none")

)

Arguments

vjust Vertical adjustment for geoms that have a position (like points or lines), not a
dimension (like bars or areas). Set to 0 to align with the bottom, 0.5 for the
middle, and 1 (the default) for the top.

reverse If TRUE, will reverse the default stacking order. This is useful if you’re rotating
both the plot and legend.

x, y Amount of vertical and horizontal distance to move. A numeric vector of length
1, or of the same length as rows there are in data, with nudge values in data
rows order.

direction One of "none", "split", "split.x" or "split.y". A value of "none" repli-
cates the behavior of position_nudge. At the moment "split" changes the
sign of the nudge at zero, which is suitable for column plots with negative slices.

kept.origin One of "original", "stacked" or "none".

Details

position_fillnudge() is useful when labelling plots such as filled bars, filled columns, filled
lines, etc. In contrast to position_nudge, position_fillnudge() returns in data both the origi-
nal coordinates and the nudged coordinates.

The wrapper position_nudge_keep() has the same signature and behaviour as position_nudge
nad provides an easier to remember name when the need is only to have access to both the original
and nudged coordinates.

These position functions are backwards compatible with position_nudge but extends it by adding
support for stacking and for geometries that make use of the original position to draw connecting
segments or arrows.

The wrapper position_stack_keep() has the same signature and behaviour as position_stack
and provides an easier to remember name when the need is only to have access to both the original
and nudged coordinates.

The wrapper position_fill_keep() has the same signature and behaviour as position_fill
and provides an easier to remember name when the need is only to have access to both the original
and nudged coordinates.

The wrapper position_stack_minmax() has the same signature and behaviour as position_stacknudge
but stacks y, ymin and ymax in parallel, making it possible to stack summaries with error bars, works
correctly with geom_pointrange(), geom_linerange() and geom_errorbar().

Value

A "Position" object.

Author(s)

Michał Krassowski, edited by Pedro J. Aphalo.

position_stacknudge 73

Source

https://github.com/slowkow/ggrepel/issues/161.

See Also

position_nudge, position_stack, position_nudge_repel.

Other position adjustments: position_dodgenudge(), position_jitternudge(), position_nudge_center(),
position_nudge_keep(), position_nudge_line(), position_nudge_to()

Examples

df <- data.frame(x1 = c("a", "a", "b", "b", "b"),
x2 = c(1, 2, 1, 3, -1),
grp = c("some long name", "other name", "some name",

"another name", "some long name"))

Add labels to a horizontal column plot (stacked by default)
ggplot(data = df, aes(x1, x2, group = grp)) +

geom_col(aes(fill = grp), width=0.5) +
geom_vline(xintercept = 0) +
geom_text(
aes(label = grp),
position = position_stacknudge(vjust = 0.5, y = 0.3)) +

theme(legend.position = "none")

Add labels to a vertical column plot (stacked by default)
ggplot(data = df, aes(x2, x1, group = grp)) +

geom_col(aes(fill = grp), width=0.5) +
geom_vline(xintercept = 0) +
geom_text(

aes(label = grp),
position = position_stacknudge(vjust = 0.5, x = -0.3),
angle = 90) +

theme(legend.position = "none")

Add labels to a vertical column plot (stacked by default)
ggplot(data = subset(df, x1 >= 0), aes(x1, x2, group = grp)) +

geom_col(aes(fill = grp), width=0.5, position = position_fill()) +
geom_vline(xintercept = 0) +
geom_text(

aes(label = grp),
position = position_fillnudge(vjust = 0.5, x = -0.3),
angle = 90) +

theme(legend.position = "none")

Add label at a fixed distance from the top of each column slice
ggplot(data = df, aes(x1, x2, group = grp)) +

geom_col(aes(fill = grp), width=0.5) +
geom_vline(xintercept = 0) +
geom_text(

https://github.com/slowkow/ggrepel/issues/161

74 quadrant_example.df

aes(label = grp),
position = position_stacknudge(vjust = 1, y = -0.2)) +

theme(legend.position = "none")

Use geom_text_s(), geom_text_repel() or geom_label_repel() to link
label to labelled segment or object with an arrow
ggplot(data = df, aes(x2, x1, group = grp)) +

geom_col(aes(fill = grp), width=0.5) +
geom_vline(xintercept = 0) +
geom_text_s(

aes(label = grp),
position = position_stacknudge(vjust = 0.5, y = 0.35),
vjust = "bottom") +

theme(legend.position = "none")

ggplot(birch_dw.df,
aes(y = dry.weight * 1e-3, x = Density, fill = Part)) +

stat_summary(geom = "col", fun = mean,
position = "stack", alpha = 0.7, width = 0.67) +

stat_summary(geom = "linerange", fun.data = mean_cl_normal,
position = position_stack_minmax()) +

labs(y = "Seedling dry mass (g)") +
scale_fill_grey(start = 0.7, end = 0.3) +
facet_wrap(facets = vars(Container))

quadrant_example.df Gene expression data

Description

A dataset containing reshaped and simplified output from an analysis of data from RNAseq done
with package edgeR. Original data from gene expression in the plant species Arabidopsis thaliana.

Usage

quadrant_example.df

Format

A data.frame object with 6088 rows and 6 variables

References

Rai, Neha; O’Hara, Andrew; Farkas, Daniel; Safronov, Omid; Ratanasopa, Khuanpiroon; Wang,
Fang; Lindfors, Anders V.; Jenkins, Gareth I.; Lehto, Tarja; Salojärvi, Jarkko; Brosché, Mikael;
Strid. Åke; Aphalo, Pedro José; Morales, Luis Orlando (2020) The photoreceptor UVR8 mediates
the perception of both UV-B and UV-A wavelengths up to 350 nm of sunlight with responsivity
moderated by cryptochromes. Plant, Cell & Environment, 43:1513-1527.

scale_continuous_npc 75

See Also

Other Transcriptomics data: volcano_example.df

Examples

colnames(quadrant_example.df)
head(quadrant_example.df)

scale_continuous_npc Position scales for continuous data (npcx & npcy)

Description

scale_npcx_continuous() and scale_npcy_continuous() are scales for continuous npcx and
npcy aesthetics expressed in "npc" units. There are no variants. Obviously limits are always the full
range of "npc" units and transformations meaningless. These scales are used by the newly defined
aesthetics npcx and npcy.

Usage

scale_npcx_continuous(...)

scale_npcy_continuous(...)

Arguments

... Other arguments passed on to continuous_scale()

Value

A "Scale" object.

stat_apply_group Apply a function to x or y values

Description

stat_summary_xy() and stat_centroid() are similar to ggplot2::stat_summary() but sum-
marize both x and y values in the same plot layer. Differently to stat_summary() no grouping based
on data values is done; the grouping respected is that already present based on mappings to aes-
thetics. This makes it possible to highlight the actual location of the centroid with geom_point(),
geom_text(), and similar geometries. Instead, if we use geom_rug() they are only a convenience
avoiding the need to add two separate layers and flipping one of them using orientation = "y".

76 stat_apply_group

Usage

stat_apply_group(
mapping = NULL,
data = NULL,
geom = "line",
.fun.x = NULL,
.fun.x.args = list(),
.fun.y = NULL,
.fun.y.args = list(),
position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

stat_summary_xy(
mapping = NULL,
data = NULL,
geom = "point",
.fun.x = NULL,
.fun.x.args = list(),
.fun.y = NULL,
.fun.y.args = list(),
position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

stat_centroid(
mapping = NULL,
data = NULL,
geom = "point",
.fun = NULL,
.fun.args = list(),
position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

stat_apply_group 77

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data
.fun.x, .fun.y, .fun

function to be applied or the name of the function to be applied as a character
string.

.fun.x.args, .fun.y.args, .fun.args

additional arguments to be passed to the function as a named list.

position The position adjustment to use for overlapping points on this layer

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

stat_apply_group applies functions to data. When possible it is preferable to use transformations
through scales or summary functions such as ggplot2::stat_summary(), stat_summary_xy()
or stat_centroid(). There are some computations that are not scale transformations but are not
usual summaries either, as the number of data values does not decrease all the way to one row
per group. A typical case for a summary is the computation of quantiles. For transformations are
cumulative ones, e.g., using cumsum(), runmed() and similar functions. Obviously, it is always
possible to apply such functions to the data before plotting and passing them to a single layer
function. However, it can be useful to apply such functions on-the-fly to ensure that grouping is
consistent between computations and aesthetics. One particularity of these statistics is that they can
apply simultaneously different functions to x values and to y values when needed. In contrast to
these statistics, geom_smooth applies a function that takes both x and y values as arguments.

These four statistics are similar. They differ on whether they return a single or multiple rows of data
per group.

Value

A data frame with the same variables as the data input, with either a single or multiple rows, with
the values of x and y variables replaced by the values returned by the applied functions, or possibly
filled with NA if no function was supplied or available by default. If the applied function returns
a named vector, the names are copied into columns x.names and/or y.names. If the summary
function applied returns a one row data frame, it will be column bound keeping the column names,
but overwritting columns x and/or y with y from the summary data frame. In the names returned
by .fun.x the letter "y" is replaced by "x". These allows the use of the same functions as in
ggplot2::stat_summary().

x x-value as returned by .fun.x, with names removed

78 stat_apply_group

y y-value as returned by .fun.y, with names removed

x.names if the x-value returned by .fun.x is named, these names

y.names if the y-value returned by .fun.y is named, these names

xmin, xmax values returned by .fun.x under these names, if present

ymin, ymax values returned by .fun.y under these names, if present

<other> additional values as returned by .fun.y under other names

Note

The applied function(s) must accept as first argument a vector that matches the variables mapped
to x or y aesthetics. For stat_summary_xy() and stat_centroid() the function(s) to be applied
is(are) expected to return a vector of length 1 or a data frame with only one row, as mean_se(),
mean_cl_normal() mean_cl_boot(), mean_sdl() and median_hilow() from ’ggplot2’ do.

For stat_apply_group the vectors returned by the the functions applied to x and y must be of
exactly the same length. When only one of .fun.x or .fun.y are passed a function as argument,
the other variable in the returned data is filled with NA_real_. If other values are desired, they can
be set by means of a user-defined function.

References

Answers to question "R ggplot on-the-fly calculation by grouping variable" at https://stackoverflow.
com/questions/51412522.

Examples

set.seed(123456)
my.df <- data.frame(X = rep(1:20,2),

Y = runif(40),
category = rep(c("A","B"), each = 20))

make sure rows are ordered for X as we will use functions that rely on this
my.df <- my.df[order(my.df[["X"]]),]

Centroid
ggplot(my.df, aes(x = X, y = Y, colour = category)) +

stat_centroid(shape = "cross", size = 6) +
geom_point()

ggplot(my.df, aes(x = X, y = Y, colour = category)) +
stat_centroid(geom = "rug", linewidth = 1.5, .fun = median) +
geom_point()

ggplot(my.df, aes(x = X, y = Y, colour = category)) +
stat_centroid(geom = "text", aes(label = category)) +
geom_point()

ggplot(my.df, aes(x = X, y = Y, colour = category)) +
stat_summary_xy(geom = "pointrange",

.fun.x = mean, .fun.y = mean_se) +

https://stackoverflow.com/questions/51412522
https://stackoverflow.com/questions/51412522

stat_apply_group 79

geom_point()

quantiles
ggplot(my.df, aes(x = X, y = Y, colour = category)) +

geom_point() +
stat_apply_group(geom = "rug", .fun.y = quantile, .fun.x = quantile)

ggplot(my.df, aes(x = X, y = Y)) +
geom_point() +
stat_apply_group(geom = "rug", sides = "lr", color = "darkred",

.fun.y = quantile) +
stat_apply_group(geom = "text", hjust = "right", color = "darkred",

.fun.y = quantile,

.fun.x = function(x) {rep(22, 5)}, # set x to 22
mapping = aes(label = after_stat(y.names))) +
expand_limits(x = 21)

my.probs <- c(0.25, 0.5, 0.75)
ggplot(my.df, aes(x = X, y = Y, colour = category)) +

geom_point() +
stat_apply_group(geom = "hline",

aes(yintercept = after_stat(y)),
.fun.y = quantile,
.fun.y.args = list(probs = my.probs))

cummulative summaries
ggplot(my.df, aes(x = X, y = Y, colour = category)) +

stat_apply_group(.fun.x = function(x) {x},
.fun.y = cummax)

ggplot(my.df, aes(x = X, y = Y, colour = category)) +
stat_apply_group(.fun.x = cumsum, .fun.y = cumsum)

diff returns a shorter vector by 1 for each group
ggplot(my.df, aes(x = X, y = Y, colour = category)) +

stat_apply_group(.fun.x = function(x) {x[-1L]},
.fun.y = diff, na.rm = TRUE)

Running summaries
ggplot(my.df, aes(x = X, y = Y, colour = category)) +

geom_point() +
stat_apply_group(.fun.x = function(x) {x},

.fun.y = runmed, .fun.y.args = list(k = 5))

Rescaling per group
ggplot(my.df, aes(x = X, y = Y, colour = category)) +

stat_apply_group(.fun.x = function(x) {x},
.fun.y = function(x) {(x - min(x)) / (max(x) - min(x))})

inspecting the returned data
if (requireNamespace("gginnards", quietly = TRUE)) {

library(gginnards)

80 stat_dens1d_filter

ggplot(my.df, aes(x = X, y = Y, colour = category)) +
stat_centroid(.fun = mean_se, geom = "debug")

ggplot(my.df, aes(x = X, y = Y, colour = category)) +
stat_summary_xy(.fun.y = mean_se, geom = "debug")

ggplot(my.df, aes(x = X, y = Y, colour = category)) +
stat_apply_group(.fun.y = cumsum, geom = "debug")

ggplot(my.df, aes(x = X, y = Y, colour = category)) +
geom_point() +
stat_apply_group(geom = "debug",

.fun.x = quantile,

.fun.x.args = list(probs = my.probs),

.fun.y = quantile,
.fun.y.args = list(probs = my.probs))

}

stat_dens1d_filter Filter observations by local 1D density

Description

stat_dens1d_filter Filters-out/filters-in observations in regions of a plot panel with high density
of observations, based on the values mapped to one of x and y aesthetics. stat_dens1d_filter_g
does the same filtering by group instead of by panel. This second stat is useful for highlighting
observations, while the first one tends to be most useful when the aim is to prevent clashes among
text labels. By default the data are handled all together, but it is also possible to control labeling
separately in each tail.

Usage

stat_dens1d_filter(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
...,
keep.fraction = 0.1,
keep.number = Inf,
keep.sparse = TRUE,
keep.these = FALSE,
exclude.these = FALSE,
these.target = "label",
pool.along = c("x", "none"),
xintercept = 0,
invert.selection = FALSE,

stat_dens1d_filter 81

bw = "SJ",
kernel = "gaussian",
adjust = 1,
n = 512,
return.density = FALSE,
orientation = c("x", "y"),
na.rm = TRUE,
show.legend = FALSE,
inherit.aes = TRUE

)

stat_dens1d_filter_g(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
keep.fraction = 0.1,
keep.number = Inf,
keep.sparse = TRUE,
keep.these = FALSE,
exclude.these = FALSE,
these.target = "label",
pool.along = c("x", "none"),
xintercept = 0,
invert.selection = FALSE,
na.rm = TRUE,
show.legend = FALSE,
inherit.aes = TRUE,
bw = "SJ",
adjust = 1,
kernel = "gaussian",
n = 512,
return.density = FALSE,
orientation = c("x", "y"),
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.
geom The geometric object to use display the data.
position The position adjustment to use for overlapping points on this layer
... other arguments passed on to layer. This can include aesthetics whose values

you want to set, not map. See layer for more details.
keep.fraction numeric vector of length 1 or 2 [0..1]. The fraction of the observations (or rows)

in data to be retained.

82 stat_dens1d_filter

keep.number integer vector of length 1 or 2. Set the maximum number of observations to
retain, effective only if obeying keep.fraction would result in a larger number.

keep.sparse logical If TRUE, the default, observations from the more sparse regions are re-
tained, if FALSE those from the densest regions.

keep.these, exclude.these

character vector, integer vector, logical vector or function that takes one or more
variables in data selected by these.target. Negative integers behave as in
R’s extraction methods. The rows from data indicated by keep.these and
exclude.these are kept or excluded irrespective of the local density.

these.target character, numeric or logical selecting one or more column(s) of data. If TRUE
the whole data object is passed.

pool.along character, one of "none" or "x", indicating if selection should be done pooling
the observations along the x aesthetic, or separately on either side of xintercept.

xintercept numeric The split point for the data filtering. If NA the data are not split.
invert.selection

logical If TRUE, the complement of the selected rows are returned.

bw numeric or character The smoothing bandwidth to be used. If numeric, the
standard deviation of the smoothing kernel. If character, a rule to choose the
bandwidth, as listed in bw.nrd.

kernel character See density for details.

adjust numeric A multiplicative bandwidth adjustment. This makes it possible to adjust
the bandwidth while still using the a bandwidth estimator through an argument
passed to bw. The larger the value passed to adjust the stronger the smoothing,
hence decreasing sensitivity to local changes in density.

n numeric Number of equally spaced points at which the density is to be estimated
for applying the cut point. See density for details.

return.density logical vector of lenght 1. If TRUE add columns "density" and "keep.obs" to
the returned data frame.

orientation character The aesthetic along which density is computed. Given explicitly by
setting orientation to either "x" or "y".

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

The 1D density of observations of x or y is computed with function density and used to select
observations, passing to the geom a subset of the rows in its data input. The default is to select
observations in sparse regions of the plot, but the selection can be inverted so that only observations
in the densest regions are returned. Specific observations can be protected from being deselected and

stat_dens1d_filter 83

"kept" by passing a suitable argument to keep.these. Logical and integer vectors work as indexes
to rows in data, while a values in a character vector are compared to the character values mapped
to the label aesthetic. A function passed as argument to keep.these will receive as argument the
values in the variable mapped to label and should return a character, logical or numeric vector as
described above. If no variable has been mapped to label, row names are used in its place.

How many rows are retained in addition to those in keep.these is controlled with arguments passed
to keep.number and keep.fraction. keep.number sets the maximum number of observations se-
lected, whenever keep.fraction results in fewer observations selected, it is obeyed. If ‘xintercept‘
is a finite value within the x range of the data and pool.along is passed "none" the data as are split
into two groups and keep.number and keep.fraction are applied separately to each tail with den-
sity still computed jointly from all observations. If the length of keep.number and keep.fraction
is one, this value is used for both tails, if their length is two, the first value is use for the left tail and
the second value for the right tail.

Computation of density and of the default bandwidth require at least two observations with different
values. If data do not fulfill this condition, they are kept only if keep.fraction = 1. This is correct
behavior for a single observation, but can be surprising in the case of multiple observations.

Parameters keep.these and exclude.these make it possible to force inclusion or exclusion of ob-
servations after the density is computed. In case of conflict, exclude.these overrides keep.these.

Value

A plot layer instance. Using as output data a subset of the rows in input data retained based on a
1D filtering criterion.

Note

Which points are kept and which not depends on how dense and flexible is the density curve esti-
mate. This depends on the values passed as arguments to parameters n, bw and kernel. It is also
important to be aware that both geom_text() and geom_text_repel() can avoid over plotting by
discarding labels at the plot rendering stage, i.e., what is plotted may differ from what is returned
by this statistic.

See Also

density used internally.

Other statistics returning a subset of data: stat_dens1d_labels(), stat_dens2d_filter(), stat_dens2d_labels()

Examples

random_string <-
function(len = 6) {
paste(sample(letters, len, replace = TRUE), collapse = "")

}

Make random data.
set.seed(1001)
d <- tibble::tibble(

x = rnorm(100),

84 stat_dens1d_filter

y = rnorm(100),
group = rep(c("A", "B"), c(50, 50)),
lab = replicate(100, { random_string() })

)
d$xg <- d$x
d$xg[51:100] <- d$xg[51:100] + 1

highlight the 1/10 of observations in sparsest regions of the plot
ggplot(data = d, aes(x, y)) +

geom_point() +
geom_rug(sides = "b") +
stat_dens1d_filter(colour = "red") +
stat_dens1d_filter(geom = "rug", colour = "red", sides = "b")

highlight the 1/4 of observations in densest regions of the plot
ggplot(data = d, aes(x, y)) +

geom_point() +
geom_rug(sides = "b") +
stat_dens1d_filter(colour = "blue",

keep.fraction = 1/4, keep.sparse = FALSE) +
stat_dens1d_filter(geom = "rug", colour = "blue",

keep.fraction = 1/4, keep.sparse = FALSE,
sides = "b")

switching axes
ggplot(data = d, aes(x, y)) +

geom_point() +
geom_rug(sides = "l") +
stat_dens1d_filter(colour = "red", orientation = "y") +
stat_dens1d_filter(geom = "rug", colour = "red", orientation = "y",

sides = "l")

highlight 1/10 plus 1/10 observations in high and low density regions
ggplot(data = d, aes(x, y)) +

geom_point() +
geom_rug(sides = "b") +
stat_dens1d_filter(colour = "red") +
stat_dens1d_filter(geom = "rug", colour = "red", sides = "b") +
stat_dens1d_filter(colour = "blue", keep.sparse = FALSE) +
stat_dens1d_filter(geom = "rug",

colour = "blue", keep.sparse = FALSE, sides = "b")

selecting the 1/10 observations in sparsest regions and their complement
ggplot(data = d, aes(x, y)) +

stat_dens1d_filter(colour = "red") +
stat_dens1d_filter(geom = "rug", colour = "red", sides = "b") +
stat_dens1d_filter(colour = "blue", invert.selection = TRUE) +
stat_dens1d_filter(geom = "rug",

colour = "blue", invert.selection = TRUE, sides = "b")

density filtering done jointly across groups
ggplot(data = d, aes(xg, y, colour = group)) +

geom_point() +

stat_dens1d_labels 85

geom_rug(sides = "b", colour = "black") +
stat_dens1d_filter(shape = 1, size = 3, keep.fraction = 1/4, adjust = 2)

density filtering done independently for each group
ggplot(data = d, aes(xg, y, colour = group)) +

geom_point() +
geom_rug(sides = "b") +
stat_dens1d_filter_g(shape = 1, size = 3, keep.fraction = 1/4, adjust = 2)

density filtering done jointly across groups by overriding grouping
ggplot(data = d, aes(xg, y, colour = group)) +

geom_point() +
geom_rug(sides = "b") +
stat_dens1d_filter_g(colour = "black",

shape = 1, size = 3, keep.fraction = 1/4, adjust = 2)

label observations
ggplot(data = d, aes(x, y, label = lab, colour = group)) +

geom_point() +
stat_dens1d_filter(geom = "text", hjust = "outward")

looking under the hood with gginnards::geom_debug()
gginnards.installed <- requireNamespace("ggrepel", quietly = TRUE)
if (gginnards.installed) {

library(gginnards)

ggplot(data = d, aes(x, y, label = lab, colour = group)) +
stat_dens1d_filter(geom = "debug")

ggplot(data = d, aes(x, y, label = lab, colour = group)) +
stat_dens1d_filter(geom = "debug", return.density = TRUE)

}

stat_dens1d_labels Replace labels in data based on 1D density

Description

stat_dens1d_labels() Sets values mapped to the label aesthetic to "" or a user provided char-
acter string based on the local density in regions of a plot panel. Its main use is together with
repulsive geoms from package ggrepel to restrict labeling to the low density tails of a distribution.
By default the data are handled all together, but it is also possible to control labeling separately in
each tail.

If there is no mapping to label in data, the mapping is set to rownames(data), with a message.

86 stat_dens1d_labels

Usage

stat_dens1d_labels(
mapping = NULL,
data = NULL,
geom = "text",
position = "identity",
...,
keep.fraction = 0.1,
keep.number = Inf,
keep.sparse = TRUE,
keep.these = FALSE,
exclude.these = FALSE,
these.target = "label",
pool.along = c("x", "none"),
xintercept = 0,
invert.selection = FALSE,
bw = "SJ",
kernel = "gaussian",
adjust = 1,
n = 512,
orientation = c("x", "y"),
label.fill = "",
return.density = FALSE,
na.rm = TRUE,
show.legend = FALSE,
inherit.aes = TRUE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data.

position The position adjustment to use for overlapping points on this layer

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

keep.fraction numeric vector of length 1 or 2 [0..1]. The fraction of the observations (or rows)
in data to be retained.

keep.number integer vector of length 1 or 2. Set the maximum number of observations to
retain, effective only if obeying keep.fraction would result in a larger number.

keep.sparse logical If TRUE, the default, observations from the more sparse regions are re-
tained, if FALSE those from the densest regions.

keep.these, exclude.these

character vector, integer vector, logical vector or function that takes one or more
variables in data selected by these.target. Negative integers behave as in

stat_dens1d_labels 87

R’s extraction methods. The rows from data indicated by keep.these and
exclude.these are kept or excluded irrespective of the local density.

these.target character, numeric or logical selecting one or more column(s) of data. If TRUE
the whole data object is passed.

pool.along character, one of "none" or "x", indicating if selection should be done pooling
the observations along the x aesthetic, or separately on either side of xintercept.

xintercept numeric The split point for the data filtering.
invert.selection

logical If TRUE, the complement of the selected rows are returned.

bw numeric or character The smoothing bandwidth to be used. If numeric, the
standard deviation of the smoothing kernel. If character, a rule to choose the
bandwidth, as listed in bw.nrd.

kernel character See density for details.

adjust numeric A multiplicative bandwidth adjustment. This makes it possible to adjust
the bandwidth while still using the a bandwidth estimator through an argument
passed to bw. The larger the value passed to adjust the stronger the smoothing,
hence decreasing sensitivity to local changes in density.

n numeric Number of equally spaced points at which the density is to be estimated
for applying the cut point. See density for details.

orientation character The aesthetic along which density is computed. Given explicitly by
setting orientation to either "x" or "y".

label.fill character vector of length 1 or a function.

return.density logical vector of lenght 1. If TRUE add columns "density" and "keep.obs" to
the returned data frame.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

stat_dens1d_labels() is designed to work together with geometries from package ’ggrepel’. To
avoid text labels being plotted over unlabelled points the corresponding rows in data need to be
retained but labels replaced with the empty character string, "". Function stat_dens1d_filter
cannot be used with the repulsive geoms from ’ggrepel’ because it drops the observations.

stat_dens1d_labels() can be useful also in other situations, as the substitution character string
can be set by the user by passing an argument to label.fill. If this argument is NULL the unse-
lected rows are filtered out.

The local density of observations along x or y is computed with function density and used to select
observations, passing to the geom all the rows in its data input but with with the text of labels
replaced in those "not kept". The default is to select observations in sparse regions of the plot, but

88 stat_dens1d_labels

the selection can be inverted so that only observations in the densest regions are returned. Specific
observations can be protected from having the label replaced by passing a suitable argument to
keep.these. Logical and integer vectors function as indexes to rows in data, while a character
vector is compared to values in the variable mapped to the label aesthetic. A function passed as
argument to keep.these will receive as argument the values in the variable mapped to label and
should return a character, logical or numeric vector as described above.

How many labels are retained intact in addition to those in keep.these is controlled with arguments
passed to keep.number and keep.fraction. keep.number sets the maximum number of obser-
vations selected, whenever keep.fraction results in fewer observations selected, it is obeyed. If
xintercept is a finite value within the x range of the data and pool.along is passed "none" the
data are split into two groups and keep.number and keep.fraction are applied separately to each
tail with density still computed jointly from all observations. If the length of keep.number and
keep.fraction is one, half this value is used each tail, if their length is two, the first value is use
for the left tail and the second value for the right tail (or if using orientation = "y" the lower and
upper tails, respectively).

Computation of density and of the default bandwidth require at least two observations with different
values. If data do not fulfill this condition, they are kept only if keep.fraction = 1. This is correct
behavior for a single observation, but can be surprising in the case of multiple observations.

Parameters keep.these and exclude.these make it possible to force inclusion or exclusion of
labels after the density is computed. In case of conflict, exclude.these overrides keep.these.

Value

A plot layer instance. Using as output data the input data after value substitution based on a 1D
the filtering criterion.

Note

Which points are kept and which not depends on how dense and flexible is the density curve esti-
mate. This depends on the values passed as arguments to parameters n, bw and kernel. It is also
important to be aware that both geom_text() and geom_text_repel() can avoid overplotting by
discarding labels at the plot rendering stage, i.e., what is plotted may differ from what is returned
by this statistic.

See Also

density used internally.

Other statistics returning a subset of data: stat_dens1d_filter(), stat_dens2d_filter(), stat_dens2d_labels()

Examples

random_string <-
function(len = 6) {
paste(sample(letters, len, replace = TRUE), collapse = "")

}

Make random data.
set.seed(1005)

stat_dens1d_labels 89

d <- tibble::tibble(
x = rnorm(100),
y = rnorm(100),
group = rep(c("A", "B"), c(50, 50)),
lab = replicate(100, { random_string() })

)

using defaults
ggplot(data = d, aes(x, y, label = lab)) +

geom_point() +
stat_dens1d_labels()

ggrepel.installed <- requireNamespace("ggrepel", quietly = TRUE)
if (ggrepel.installed) {

library(ggrepel)

using defaults
ggplot(data = d, aes(x, y, label = lab)) +
geom_point() +
stat_dens1d_labels(geom = "text_repel")

if no mapping to label is found, it is set row names
ggplot(data = d, aes(x, y)) +
geom_point() +
stat_dens1d_labels(geom = "text_repel")

ggplot(data = d, aes(x, y)) +
geom_point() +
stat_dens1d_labels(geom = "text_repel", pool.along = "none")

ggplot(data = d, aes(x, y)) +
geom_point() +
stat_dens1d_labels(geom = "text_repel",

keep.number = c(0, 10), pool.along = "none")

ggplot(data = d, aes(x, y)) +
geom_point() +
stat_dens1d_labels(geom = "text_repel",

keep.fraction = c(0, 0.2), pool.along = "none")

using defaults, along y-axis
ggplot(data = d, aes(x, y, label = lab)) +
geom_point() +
stat_dens1d_labels(orientation = "y", geom = "text_repel")

example labelling with coordiantes
ggplot(data = d, aes(x, y, label = sprintf("x = %.2f\ny = %.2f", x, y))) +
geom_point() +
stat_dens1d_filter(colour = "red") +
stat_dens1d_labels(geom = "text_repel", colour = "red", size = 3)

ggplot(data = d, aes(x, y, label = lab, colour = group)) +
geom_point() +

90 stat_dens2d_filter

stat_dens1d_labels(geom = "text_repel")

ggplot(data = d, aes(x, y, label = lab, colour = group)) +
geom_point() +
stat_dens1d_labels(geom = "text_repel", label.fill = NA)

we keep labels starting with "a" across the whole plot, but all in sparse
regions. To achieve this we pass as argument to label.fill a fucntion
instead of a character string.

label.fun <- function(x) {ifelse(grepl("^a", x), x, "")}
ggplot(data = d, aes(x, y, label = lab, colour = group)) +
geom_point() +
stat_dens1d_labels(geom = "text_repel", label.fill = label.fun)

}

Using geom_debug() we can see that all 100 rows in \code{d} are
returned. But only those labelled in the previous example still contain
the original labels.

gginnards.installed <- requireNamespace("gginnards", quietly = TRUE)
if (gginnards.installed) {

library(gginnards)

ggplot(data = d, aes(x, y, label = lab)) +
geom_point() +
stat_dens1d_labels(geom = "debug")

ggplot(data = d, aes(x, y, label = lab)) +
geom_point() +
stat_dens1d_labels(geom = "debug", return.density = TRUE)

ggplot(data = d, aes(x, y, label = lab)) +
geom_point() +
stat_dens1d_labels(geom = "debug", label.fill = NULL, return.density = TRUE)

ggplot(data = d, aes(x, y, label = lab)) +
geom_point() +
stat_dens1d_labels(geom = "debug", label.fill = NA, return.density = TRUE)

ggplot(data = d, aes(x, y, label = lab)) +
geom_point() +
stat_dens1d_labels(geom = "debug", label.fill = FALSE, return.density = TRUE)

}

stat_dens2d_filter Filter observations by local 2D density

Description

stat_dens2d_filter Filters-out/filters-in observations in regions of a plot panel with high density

stat_dens2d_filter 91

of observations, based on the values mapped to both x and y aesthetics. stat_dens2d_filter_g
does the filtering by group instead of by panel. This second stat is useful for highlighting obser-
vations, while the first one tends to be most useful when the aim is to prevent clashes among text
labels. If there is no mapping to label in data, the mapping is silently set to rownames(data).

Usage

stat_dens2d_filter(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
...,
keep.fraction = 0.1,
keep.number = Inf,
keep.sparse = TRUE,
keep.these = FALSE,
exclude.these = FALSE,
these.target = "label",
pool.along = c("xy", "x", "y", "none"),
xintercept = 0,
yintercept = 0,
invert.selection = FALSE,
na.rm = TRUE,
show.legend = FALSE,
inherit.aes = TRUE,
h = NULL,
n = NULL,
return.density = FALSE

)

stat_dens2d_filter_g(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
...,
keep.fraction = 0.1,
keep.number = Inf,
keep.sparse = TRUE,
keep.these = FALSE,
exclude.these = FALSE,
these.target = "label",
pool.along = c("xy", "x", "y", "none"),
xintercept = 0,
yintercept = 0,
invert.selection = FALSE,
na.rm = TRUE,
show.legend = FALSE,

92 stat_dens2d_filter

inherit.aes = TRUE,
h = NULL,
n = NULL,
return.density = FALSE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data.

position The position adjustment to use for overlapping points on this layer

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

keep.fraction numeric [0..1]. The fraction of the observations (or rows) in data to be retained.

keep.number integer Set the maximum number of observations to retain, effective only if
obeying keep.fraction would result in a larger number.

keep.sparse logical If TRUE, the default, observations from the more sparse regions are re-
tained, if FALSE those from the densest regions.

keep.these, exclude.these

character vector, integer vector, logical vector or function that takes one or more
variables in data selected by these.target. Negative integers behave as in
R’s extraction methods. The rows from data indicated by keep.these and
exclude.these are kept or excluded irrespective of the local density.

these.target character, numeric or logical selecting one or more column(s) of data. If TRUE
the whole data object is passed.

pool.along character, one of "none", "x", "y", or "xy" indicating if selection should be
done pooling the observations along the x, y, both axes or none based on quad-
rants given by xintercept and yintercept.

xintercept, yintercept

numeric The center point of the quadrants.
invert.selection

logical If TRUE, the complement of the selected rows are returned.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

h vector of bandwidths for x and y directions. Defaults to normal reference band-
width (see bandwidth.nrd). A scalar value will be taken to apply to both direc-
tions.

stat_dens2d_filter 93

n Number of grid points in each direction. Can be scalar or a length-2 integer
vector

return.density logical vector of lenght 1. If TRUE add columns "density" and "keep.obs" to
the returned data frame.

Details

The local density of observations in 2D (x and y) is computed with function kde2d and used to
select observations, passing to the geom a subset of the rows in its data input. The default is
to select observations in sparse regions of the plot, but the selection can be inverted so that only
observations in the densest regions are returned. Specific observations can be protected from being
deselected and "kept" by passing a suitable argument to keep.these. Logical and integer vectors
work as indexes to rows in data, while a character vector values are compared to the character
values mapped to the label aesthetic. A function passed as argument to keep.these will receive
as argument the values in the variable mapped to label and should return a character, logical or
numeric vector as described above. If no variable has been mapped to label, row names are used
in its place.

How many rows are retained in addition to those in keep.these is controlled with arguments passed
to keep.number and keep.fraction. keep.number sets the maximum number of observations
selected, whenever keep.fraction results in fewer observations selected, it is obeyed.

Computation of density and of the default bandwidth require at least two observations with different
values. If data do not fulfill this condition, they are kept only if keep.fraction = 1. This is correct
behavior for a single observation, but can be surprising in the case of multiple observations.

Parameters keep.these and exclude.these make it possible to force inclusion or exclusion of ob-
servations after the density is computed. In case of conflict, exclude.these overrides keep.these.

Value

A plot layer instance. Using as output data a subset of the rows in input data retained based on a
2D-density-based filtering criterion.

Note

Which points are kept and which not depends on how dense a grid is used and how flexible the
density surface estimate is. This depends on the values passed as arguments to parameters n, bw
and kernel. It is also important to be aware that both geom_text() and geom_text_repel() can
avoid overplotting by discarding labels at the plot rendering stage, i.e., what is plotted may differ
from what is returned by this statistic.

See Also

stat_dens2d_labels and kde2d used internally. Parameters n, h in these statistics correspond to
the parameters with the same name in this imported function. Limits are set to the limits of the plot
scales.

Other statistics returning a subset of data: stat_dens1d_filter(), stat_dens1d_labels(), stat_dens2d_labels()

94 stat_dens2d_filter

Examples

random_string <-
function(len = 6) {
paste(sample(letters, len, replace = TRUE), collapse = "")

}

Make random data.
set.seed(1001)
d <- tibble::tibble(

x = rnorm(100),
y = rnorm(100),
group = rep(c("A", "B"), c(50, 50)),
lab = replicate(100, { random_string() })

)

filter (and here highlight) 1/10 observations in sparsest regions
ggplot(data = d, aes(x, y)) +

geom_point() +
stat_dens2d_filter(colour = "red")

filter observations not in the sparsest regions
ggplot(data = d, aes(x, y)) +

geom_point() +
stat_dens2d_filter(colour = "blue", invert.selection = TRUE)

filter observations in dense regions of the plot
ggplot(data = d, aes(x, y)) +

geom_point() +
stat_dens2d_filter(colour = "blue", keep.sparse = FALSE)

filter 1/2 the observations
ggplot(data = d, aes(x, y)) +

geom_point() +
stat_dens2d_filter(colour = "red", keep.fraction = 0.5)

filter 1/2 the observations but cap their number to maximum 12 observations
ggplot(data = d, aes(x, y)) +

geom_point() +
stat_dens2d_filter(colour = "red",

keep.fraction = 0.5,
keep.number = 12)

density filtering done jointly across groups
ggplot(data = d, aes(x, y, colour = group)) +

geom_point() +
stat_dens2d_filter(shape = 1, size = 3, keep.fraction = 1/4)

density filtering done independently for each group
ggplot(data = d, aes(x, y, colour = group)) +

geom_point() +
stat_dens2d_filter_g(shape = 1, size = 3, keep.fraction = 1/4)

stat_dens2d_labels 95

density filtering done jointly across groups by overriding grouping
ggplot(data = d, aes(x, y, colour = group)) +

geom_point() +
stat_dens2d_filter_g(colour = "black",

shape = 1, size = 3, keep.fraction = 1/4)

label observations
ggplot(data = d, aes(x, y, label = lab, colour = group)) +

geom_point() +
stat_dens2d_filter(geom = "text")

ggplot(data = d, aes(x, y, label = lab, colour = group)) +
geom_point() +
stat_dens2d_filter(geom = "text",

keep.these = function(x) {grepl("^u", x)})

ggplot(data = d, aes(x, y, label = lab, colour = group)) +
geom_point() +
stat_dens2d_filter(geom = "text",

keep.these = function(x) {grepl("^u", x)})

ggplot(data = d, aes(x, y, label = lab, colour = group)) +
geom_point() +
stat_dens2d_filter(geom = "text",

keep.these = 1:30)

looking under the hood with gginnards::geom_debug()
gginnards.installed <- requireNamespace("ggrepel", quietly = TRUE)
if (gginnards.installed) {

library(gginnards)

ggplot(data = d, aes(x, y, label = lab, colour = group)) +
stat_dens2d_filter(geom = "debug")

ggplot(data = d, aes(x, y, label = lab, colour = group)) +
geom_point() +
stat_dens2d_filter(geom = "debug", return.density = TRUE)

}

stat_dens2d_labels Replace labels in data based on 2D density

Description

stat_dens2d_labels() Sets values mapped to the label aesthetic to "" or a user provided char-
acter string based on the local density in regions of a plot panel. Its main use is together with
repulsive geoms from package ggrepel. If there is no mapping to label in data, the mapping is
set to rownames(data), with a message.

96 stat_dens2d_labels

Usage

stat_dens2d_labels(
mapping = NULL,
data = NULL,
geom = "text",
position = "identity",
...,
keep.fraction = 0.1,
keep.number = Inf,
keep.sparse = TRUE,
keep.these = FALSE,
exclude.these = FALSE,
these.target = "label",
pool.along = c("xy", "x", "y", "none"),
xintercept = 0,
yintercept = 0,
invert.selection = FALSE,
h = NULL,
n = NULL,
label.fill = "",
return.density = FALSE,
na.rm = TRUE,
show.legend = FALSE,
inherit.aes = TRUE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data.

position The position adjustment to use for overlapping points on this layer

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

keep.fraction numeric [0..1]. The fraction of the observations (or rows) in data to be retained.

keep.number integer Set the maximum number of observations to retain, effective only if
obeying keep.fraction would result in a larger number.

keep.sparse logical If TRUE, the default, observations from the more sparse regions are re-
tained, if FALSE those from the densest regions.

keep.these, exclude.these

character vector, integer vector, logical vector or function that takes one or more
variables in data selected by these.target. Negative integers behave as in
R’s extraction methods. The rows from data indicated by keep.these and
exclude.these are kept or excluded irrespective of the local density.

stat_dens2d_labels 97

these.target character, numeric or logical selecting one or more column(s) of data. If TRUE
the whole data object is passed.

pool.along character, one of "none" or "x", indicating if selection should be done pooling
the observations along the x aesthetic, or separately on either side of xintercept.

xintercept, yintercept

numeric The split points for the data filtering.
invert.selection

logical If TRUE, the complement of the selected rows are returned.

h vector of bandwidths for x and y directions. Defaults to normal reference band-
width (see bandwidth.nrd). A scalar value will be taken to apply to both direc-
tions.

n Number of grid points in each direction. Can be scalar or a length-2 integer
vector

label.fill character vector of length 1, a function or NULL.

return.density logical vector of lenght 1. If TRUE add columns "density" and "keep.obs" to
the returned data frame.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

stat_dens2d_labels() is designed to work together with geometries from package ’ggrepel’. To
avoid text labels being plotted over unlabelled points all the rows in data need to be retained but
labels replaced with the empty character string, "". Function stat_dens2d_filter cannot be used
with the repulsive geoms from ’ggrepel’ because it drops observations.

stat_dens2d_labels() can be useful also in other situations, as the substitution character string
can be set by the user by passing an argument to label.fill. If this argument is NULL the unse-
lected rows are filtered out identically as by stat_dens2d_filter.

The local density of observations in 2D (x and y) is computed with function kde2d and used to
select observations, passing to the geom all the rows in its data input but with with the text of
labels replaced in those "not kept". The default is to select observations in sparse regions of the
plot, but the selection can be inverted so that only observations in the densest regions are returned.
Specific observations can be protected from having the label replaced by passing a suitable argument
to keep.these. Logical and integer vectors function as indexes to rows in data, while a character
vector is compared to values in the variable mapped to the label aesthetic. A function passed
as argument to keep.these will receive as its first argument the values in the variable mapped to
label and should return a character, logical or numeric vector as described above.

How many labels are retained intact in addition to those in keep.these is controlled with arguments
passed to keep.number and keep.fraction. keep.number sets the maximum number of observa-
tions selected, whenever keep.fraction results in fewer observations selected, it is obeyed.

98 stat_dens2d_labels

Computation of density and of the default bandwidth require at least two observations with different
values. If data do not fulfill this condition, they are kept only if keep.fraction = 1. This is correct
behavior for a single observation, but can be surprising in the case of multiple observations.

Parameters keep.these and exclude.these make it possible to force inclusion or exclusion of ob-
servations after the density is computed. In case of conflict, exclude.these overrides keep.these.

Value

A plot layer instance. Using as output data the input data after value substitution based on a 2D
the filtering criterion.

Note

Which points are kept and which not depends on how dense a grid is used and how flexible the
density surface estimate is. This depends on the values passed as arguments to parameters n, bw
and kernel. It is also important to be aware that both geom_text() and geom_text_repel() can
avoid overplotting by discarding labels at the plot rendering stage, i.e., what is plotted may differ
from what is returned by this statistic.

See Also

stat_dens2d_filter and kde2d used internally. Parameters n, h in this statistic correspond to the
parameters with the same name in this imported function. Limits are set to the limits of the plot
scales.

Other statistics returning a subset of data: stat_dens1d_filter(), stat_dens1d_labels(), stat_dens2d_filter()

Examples

random_string <-
function(len = 6) {
paste(sample(letters, len, replace = TRUE), collapse = "")

}

Make random data.
set.seed(1001)
d <- tibble::tibble(

x = rnorm(100),
y = rnorm(100),
group = rep(c("A", "B"), c(50, 50)),
lab = replicate(100, { random_string() })

)

using defaults
ggplot(data = d, aes(x, y, label = lab)) +

geom_point() +
stat_dens2d_labels()

ggplot(data = d, aes(x, y, label = lab)) +
geom_point() +
stat_dens2d_labels(keep.these = "zoujdg")

stat_dens2d_labels 99

ggplot(data = d, aes(x, y, label = lab)) +
geom_point() +
stat_dens2d_labels(keep.these = function(x) {grepl("^z", x)})

ggplot(data = d, aes(x, y, label = lab)) +
geom_point() +
stat_dens2d_labels(geom = "text_s",

position = position_nudge_center(x = 0.1, y = 0.1,
center_x = mean,
center_y = mean),

vjust = "outward_mean", hjust = "outward_mean") +
expand_limits(x = c(-4, 4.5))

ggrepel.installed <- requireNamespace("ggrepel", quietly = TRUE)
if (ggrepel.installed) {

library(ggrepel)

ggplot(data = d, aes(x, y, label = lab, colour = group)) +
geom_point() +
stat_dens2d_labels(geom = "text_repel")

ggplot(data = d, aes(x, y, label = lab, colour = group)) +
geom_point() +
stat_dens2d_labels(geom = "text_repel", label.fill = NA)

we keep labels starting with "a" across the whole plot, but all in sparse
regions. To achieve this we pass as argument to label.fill a fucntion
instead of a character string.

label.fun <- function(x) {ifelse(grepl("^a", x), x, "")}
ggplot(data = d, aes(x, y, label = lab, colour = group)) +
geom_point() +
stat_dens2d_labels(geom = "text_repel", label.fill = label.fun)

}
Using geom_debug() we can see that all 100 rows in \code{d} are
returned. But only those labelled in the previous example still contain
the original labels.

gginnards.installed <- requireNamespace("gginnards", quietly = TRUE)
if (gginnards.installed) {

library(gginnards)

ggplot(data = d, aes(x, y, label = lab)) +
geom_point() +
stat_dens2d_labels(geom = "debug")

ggplot(data = d, aes(x, y, label = lab)) +
geom_point() +
stat_dens2d_labels(geom = "debug", return.density = TRUE)

ggplot(data = d, aes(x, y, label = lab)) +
geom_point() +
stat_dens2d_labels(geom = "debug", label.fill = NULL)

100 stat_fmt_tb

ggplot(data = d, aes(x, y, label = lab)) +
geom_point() +
stat_dens2d_labels(geom = "debug", label.fill = FALSE, return.density = TRUE)

ggplot(data = d, aes(x, y, label = lab)) +
geom_point() +
stat_dens2d_labels(geom = "debug", label.fill = NULL, return.density = TRUE)

ggplot(data = d, aes(x, y)) +
geom_point() +
stat_dens2d_labels(geom = "debug")

}

stat_fmt_tb Select and slice a tibble nested in data

Description

stat_fmt_tb selects, reorders and/or renames columns and or rows of a tibble nested in data. This
stat is intended to be used to pre-process tibble objects mapped to the label aesthetic before
adding them to a plot with geom_table.

Usage

stat_fmt_tb(
mapping = NULL,
data = NULL,
geom = "table",
tb.vars = NULL,
tb.rows = NULL,
digits = 3,
position = "identity",
table.theme = NULL,
table.rownames = FALSE,
table.colnames = TRUE,
table.hjust = 0.5,
parse = FALSE,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

stat_fmt_tb 101

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data
tb.vars, tb.rows

character or numeric vectors, optionally named, used to select and/or rename
the columns or rows in the table returned.

digits integer indicating the number of significant digits to be retained in data.

position The position adjustment to use for overlapping points on this layer

table.theme NULL, list or function A ’gridExtra’ ttheme definition, or a constructor for a
ttheme or NULL for default.

table.rownames, table.colnames

logical flag to enable or disabling printing of row names and column names.

table.hjust numeric Horizontal justification for the core and column headings of the table.

parse If TRUE, the labels will be parsed into expressions and displayed as described in
?plotmath.

na.rm a logical indicating whether NA values should be stripped before the computation
proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Value

A plot layer instance. Using as output data a copy of the input data in which the data frames
mapped to label have been modified.

Computed variables

The output of sequentially applying slice with tb.rows as argument and select with tb.vars to
a list variable list mapped to label and containing a single tibble per row in data.

See Also

See geom_table for details on how tables respond to mapped aesthetics and table themes. For
details on predefined table themes see ttheme_gtdefault.

Examples

my.df <-
tibble::tibble(
x = c(1, 2),
y = c(0, 4),
group = c("A", "B"),

102 stat_functions

tbs = list(a = tibble::tibble(Xa = 1:6, Y = rep(c("x", "y"), 3)),
b = tibble::tibble(Xb = 1:3, Y = "x"))

)

ggplot(my.df, aes(x, y, label = tbs)) +
stat_fmt_tb() +
expand_limits(x = c(0,3), y = c(-2, 6))

Hide column names, diplay row names
ggplot(my.df, aes(x, y, label = tbs)) +

stat_fmt_tb(table.colnames = FALSE,
table.rownames = TRUE) +

expand_limits(x = c(0,3), y = c(-2, 6))

Use a theme for the table
ggplot(my.df, aes(x, y, label = tbs)) +

stat_fmt_tb(table.theme = ttheme_gtlight) +
expand_limits(x = c(0,3), y = c(-2, 6))

selection and renaming by column position
ggplot(my.df, aes(x, y, label = tbs)) +

stat_fmt_tb(tb.vars = c(value = 1, group = 2),
tb.rows = 1:3) +

expand_limits(x = c(0,3), y = c(-2, 6))

selection, reordering and renaming by column position
ggplot(my.df, aes(x, y, label = tbs)) +

stat_fmt_tb(tb.vars = c(group = 2, value = 1),
tb.rows = 1:3) +

expand_limits(x = c(0,3), y = c(-2, 6))

selection and renaming, using partial matching to column name
ggplot(my.df, aes(x, y, label = tbs)) +

stat_fmt_tb(tb.vars = c(value = "X", group = "Y"),
tb.rows = 1:3) +

expand_limits(x = c(0,3), y = c(-2, 6))

stat_functions Draw functions as curves

Description

stat_functions() computes values from functions and returns new data containing numeric vec-
tors for x and y. As function definitions are passed through data this statistic follows the grammar
of graphics in its behaviour.

Usage

stat_functions(

stat_functions 103

mapping = NULL,
data = NULL,
n = 101,
geom = "line",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset. Useful if the function curve is to be overlaid on other
layers.

n integer Number of points to interpolate along the x axis.

geom The geometric object to use display the data

position The position adjustment to use on this layer

na.rm a logical indicating whether NA values should be stripped before the computation
proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes it
if any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

This statistic can be used to plot values computed by functions. As it follows the grammar of
graphics, grouping and facets are supported. In this it differs from geom_function which behaves
like a plot annotation.

Aesthetics xmin and xmax should be mapped to numeric values defining the range of the vector to
be created and passed as argument to the function to compute the y values, and returned as x in data.
n is the length of this x vector.

Value

A plot layer instance.

Computed variables

Data frame with n rows or a multiple of this, one for each row in data.

x numeric vector

y numeric vactor

104 stat_functions

idx integer vector, with values corresponding to rows in the input data, i.e., for each function

As shown in one example below geom_debug can be used to print the computed values returned by
any statistic. The output shown includes also values mapped to aesthetics.

Examples

one function

df1 <- data.frame(min = 0, max = pi, fun = I(list(sin)))

ggplot(df1, aes(xmin = min, xmax = max, y = fun)) +
stat_functions()

ggplot(df1, aes(xmin = min, xmax = max, y = fun)) +
stat_functions(geom = "point", n = 20)

two functions

df2 <- data.frame(min = -pi, max = pi,
fun = I(list(sin, cos)), name = c("sin", "cos"))

each function must be in a separate group for correct plotting of lines

ggplot(df2, aes(xmin = min, xmax = max, y = fun, group = after_stat(idx))) +
stat_functions()

ggplot(df2, aes(xmin = min, xmax = max, y = fun, colour = name)) +
stat_functions()

ggplot(df2, aes(xmin = min, xmax = max, y = fun)) +
stat_functions() +
facet_grid(~ name)

two curves with same function

df3 <- data.frame(min = c(-pi, 0),
max = c(0,pi),
fun = I(list(sin, sin)),
name = c("negative", "positive"))

ggplot(df3, aes(xmin = min, xmax = max, y = fun, colour = name)) +
stat_functions()

We use geom_debug() to see the computed values

gginnards.installed <- requireNamespace("gginnards", quietly = TRUE)
if (gginnards.installed) {

library(gginnards)

ggplot(df1, aes(xmin = min, xmax = max, y = fun)) +
stat_functions(geom = "debug")

stat_panel_counts 105

}

stat_panel_counts Number of observations in a plot panel

Description

stat_panel_counts() counts the number of observations in each panel. stat_group_counts()
counts the number of observations in each group. By default they add one or more text labels to
the top right corner of each panel. Grouping is ignored by stat_panel_counts(). If no grouping
exists, the two statistics behave similarly.

Usage

stat_panel_counts(
mapping = NULL,
data = NULL,
geom = "text_npc",
position = "identity",
label.x = "right",
label.y = "top",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

stat_group_counts(
mapping = NULL,
data = NULL,
geom = "text_npc",
position = "identity",
label.x = "right",
label.y = "top",
hstep = 0,
vstep = NULL,
digits = 2,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

106 stat_panel_counts

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset. Rarely used, as you will not want to override the plot
defaults.

geom The geometric object to use display the data

position The position adjustment to use on this layer
label.x, label.y

numeric Coordinates (in npc units) to be used for absolute positioning of the
labels.

na.rm a logical indicating whether NA values should be stripped before the computation
proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes it
if any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This
is most useful for helper functions that define both data and aesthetics and should
not inherit behaviour from the default plot specification, e.g., borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

hstep, vstep numeric in npc units, the horizontal and vertical step used between labels for
different groups.

digits integer Number of digits for fraction and percent labels.

Details

These statistics can be used to automatically count observations in each panel of a plot, and by
default add these counts as text labels. These statistics, unlike stat_quadrant_counts() requires
only one of x or y aesthetics and can be used together with statistics that have the same requirement,
like stat_density().

The default position of the label is in the top right corner. When using facets even with free limits
for x and y axes, the location of the labels is consistent across panels. This is achieved by use of
geom = "text_npc" or geom = "label_npc". To pass the positions in native data units to label.x
and label.y, pass also explicitly geom = "text", geom = "label" or some other geometry that use
the x and/or y aesthetics. A vector with the same length as the number of panels in the figure can be
used if needed.

Value

A plot layer instance. Using as output data the counts of observations in each plot panel or per
group in each plot panel.

Computed variables

Data frame with one or more rows, one for each group of observations for which counts are counted
in data.

stat_panel_counts 107

x,npcx x value of label position in data- or npc units, respectively

y,npcy y value of label position in data- or npc units, respectively

count number of observations as an integer

count.label number of observations as character

As shown in one example below geom_debug can be used to print the computed values returned
by any statistic. The output shown includes also values mapped to aesthetics, like label in the
example. x and y are included in the output only if mapped.

Note

If a factor is mapped to x or to y aesthetics each level of the factor constitutes a group, in this case
the default positioning and geom using NPC pseudo aesthetics will have to be overriden by passing
geom = "text" and data coordinates used. The default for factors may change in the future.

See Also

Other Functions for quadrant and volcano plots: geom_quadrant_lines(), stat_quadrant_counts()

Examples

generate artificial data with numeric x and y
set.seed(67821)
x <- 1:100
y <- rnorm(length(x), mean = 10)
group <- factor(rep(c("A", "B"), times = 50))
my.data <- data.frame(x, y, group)

using automatically generated text labels

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_panel_counts()

ggplot(my.data, aes(x, y, colour = group)) +
geom_point() +
stat_panel_counts()

ggplot(my.data, aes(x, y, colour = group)) +
geom_point() +
stat_group_counts()

ggplot(my.data, aes(x, y, colour = group)) +
geom_point() +
stat_group_counts(label.x = "left", hstep = 0.06, vstep = 0)

ggplot(my.data, aes(x, y, colour = group)) +
geom_point() +
stat_group_counts(aes(label = after_stat(pc.label)))

108 stat_panel_counts

ggplot(my.data, aes(x, y, colour = group)) +
geom_point() +
stat_group_counts(aes(label = after_stat(pc.label)), digits = 3)

ggplot(my.data, aes(x, y, colour = group)) +
geom_point() +
stat_group_counts(aes(label = after_stat(fr.label)))

ggplot(my.data, aes(x, y, colour = group)) +
geom_point() +
stat_group_counts(aes(label = after_stat(dec.label)))

one of x or y can be a factor
label.x or label.y along the factor can be set to "factor" together
with the use of geom_text()

ggplot(mpg,
aes(factor(cyl), hwy)) +

stat_boxplot() +
stat_group_counts(geom = "text",

label.y = 10,
label.x = "factor") +

stat_panel_counts()

Numeric values can be used to build labels with alternative formats
Here with sprintf(), but paste() and format() also work.

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_panel_counts(aes(label = sprintf("%i observations",

after_stat(count)))) +
scale_y_continuous(expand = expansion(mult = c(0.05, 0.12)))

ggplot(mpg,
aes(factor(cyl), hwy)) +

stat_boxplot() +
stat_group_counts(geom = "text",

aes(label = sprintf("(%i)", after_stat(count))),
label.y = 10,
label.x = "factor")

ggplot(mpg,
aes(factor(cyl), hwy)) +

stat_boxplot() +
stat_group_counts(aes(label = sprintf("n[%i]~`=`~%i",

after_stat(x), after_stat(count))),
parse = TRUE,
geom = "text",
label.y = 10,
label.x = "factor") +

stat_panel_counts(aes(label = sprintf("sum(n[i])~`=`~%i",
after_stat(count))),

parse = TRUE)

stat_quadrant_counts 109

label position

ggplot(my.data, aes(y)) +
stat_panel_counts(label.x = "left") +
stat_density(alpha = 0.5)

ggplot(my.data, aes(y, colour = group)) +
stat_group_counts(label.y = "top") +
stat_density(aes(fill = group), alpha = 0.3)

The numeric value can be used as a label as is

ggplot(mpg,
aes(factor(cyl), hwy)) +

stat_boxplot() +
stat_group_counts(geom = "text",

aes(label = after_stat(count)),
label.x = "factor",
label.y = 10) +

annotate(geom = "text", x = 0.55, y = 10, label = "n[i]~`=`", parse = TRUE)

We use geom_debug() to see the computed values

gginnards.installed <- requireNamespace("gginnards", quietly = TRUE)
if (gginnards.installed) {

library(gginnards)

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_panel_counts(geom = "debug")

}

if (gginnards.installed) {
ggplot(my.data, aes(x, y, colour = group)) +
geom_point() +
stat_group_counts(geom = "debug")

}

stat_quadrant_counts Number of observations in quadrants

Description

stat_quadrant_counts() counts the number of observations in each quadrant of a plot panel. By
default it adds a text label to the far corner of each quadrant. It can also be used to obtain the
total number of observations in each of two pairs of quadrants or in the whole panel. Grouping is
ignored, so en every case a single count is computed for each quadrant in a plot panel.

110 stat_quadrant_counts

Usage

stat_quadrant_counts(
mapping = NULL,
data = NULL,
geom = "text_npc",
position = "identity",
quadrants = NULL,
pool.along = c("none", "x", "y", "xy"),
xintercept = 0,
yintercept = 0,
label.x = NULL,
label.y = NULL,
digits = 2,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data

position The position adjustment to use on this layer

quadrants integer vector indicating which quadrants are of interest, with a OL indicating
the whole plot.

pool.along character, one of "none", "x" or "y", indicating which quadrants to pool to
calculate counts by pair of quadrants.

xintercept, yintercept

numeric the coordinates of the origin of the quadrants.
label.x, label.y

numeric Coordinates (in npc units) to be used for absolute positioning of the
labels.

digits integer Number of digits for fraction and percent labels.

na.rm a logical indicating whether NA values should be stripped before the computation
proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This
is most useful for helper functions that define both data and aesthetics and should
not inherit behaviour from the default plot specification, e.g., borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

stat_quadrant_counts 111

Details

This statistic can be used to automatically count observations in each of the four quadrants of a plot,
and by default add these counts as text labels. Values exactly equal to xintercept or yintercept
are counted together with those larger than the intercepts. An argument value of zero, passed to
formal parameter quadrants is interpreted as a request for the count of all observations in each plot
panel.

The default origin of quadrants is at xintercept = 0, yintercept = 0. Also by default, counts
are computed for all quadrants within the x and y scale limits, but ignoring any marginal scale
expansion. The default positions of the labels is in the farthest corner or edge of each quadrant
using npc coordinates. Consequently, when using facets even with free limits for x and y axes, the
location of the labels is consistent across panels. This is achieved by use of geom = "text_npc" or
geom = "label_npc". To pass the positions in native data units, pass geom = "text" explicitly as
argument.

Value

A plot layer instance. Using as output data the counts of observations per plot quadrant.

Computed variables

Data frame with one to four rows, one for each quadrant for which counts are counted in data.

quadrant integer, one of 0:4

x x value of label position in data units

y y value of label position in data units

npcx x value of label position in npc units

npcy y value of label position in npc units

count number of observations in the quadrant(s)

total number of onservations in data

count.label number of observations as character

pc.label percent of observations as character

fr.label fraction of observations as character

.

As shown in one example below geom_debug can be used to print the computed values returned
by any statistic. The output shown includes also values mapped to aesthetics, like label in the
example.

See Also

Other Functions for quadrant and volcano plots: geom_quadrant_lines(), stat_panel_counts()

112 stat_quadrant_counts

Examples

generate artificial data
set.seed(4321)
x <- -50:50
y <- rnorm(length(x), mean = 0)
my.data <- data.frame(x, y)

using automatically generated text labels, default origin at (0, 0)

ggplot(my.data, aes(x, y)) +
geom_point() +
geom_quadrant_lines() +
stat_quadrant_counts()

ggplot(my.data, aes(x, y)) +
geom_point() +
geom_quadrant_lines() +
stat_quadrant_counts(aes(label = after_stat(pc.label)))

ggplot(my.data, aes(x, y)) +
geom_point() +
geom_quadrant_lines() +
stat_quadrant_counts(aes(label = after_stat(fr.label)))

ggplot(my.data, aes(x, y)) +
geom_point() +
geom_quadrant_lines() +
stat_quadrant_counts(aes(label = after_stat(dec.label)))

ggplot(my.data, aes(x, y)) +
geom_point() +
geom_quadrant_lines() +
stat_quadrant_counts(aes(label = sprintf("%i observations", after_stat(count)))) +
scale_y_continuous(expand = expansion(c(0.05, 0.15))) # reserve space

user specified origin

ggplot(my.data, aes(x, y)) +
geom_quadrant_lines(colour = "blue", xintercept = 10, yintercept = -1) +
stat_quadrant_counts(colour = "blue", xintercept = 10, yintercept = -1) +
geom_point() +
scale_y_continuous(expand = expansion(mult = 0.15))

ggplot(my.data, aes(x, y)) +
geom_quadrant_lines(colour = "blue", xintercept = 10, yintercept = -1) +
stat_quadrant_counts(aes(label = after_stat(pc.label)),

colour = "blue", xintercept = 10, yintercept = -1) +
geom_point() +
scale_y_continuous(expand = expansion(mult = 0.15))

more digits in labels

stat_quadrant_counts 113

ggplot(my.data, aes(x, y)) +
geom_quadrant_lines(colour = "blue", xintercept = 10, yintercept = -1) +
stat_quadrant_counts(aes(label = after_stat(pc.label)), digits = 3,

colour = "blue", xintercept = 10, yintercept = -1) +
geom_point() +
scale_y_continuous(expand = expansion(mult = 0.15))

ggplot(my.data, aes(x, y)) +
geom_quadrant_lines(colour = "blue", xintercept = 10, yintercept = -1) +
stat_quadrant_counts(aes(label = after_stat(fr.label)),

colour = "blue", xintercept = 10, yintercept = -1) +
geom_point() +
scale_y_continuous(expand = expansion(mult = 0.15))

grouped quadrants

ggplot(my.data, aes(x, y)) +
geom_quadrant_lines(colour = "blue",

pool.along = "x") +
stat_quadrant_counts(colour = "blue", label.x = "right",

pool.along = "x") +
geom_point() +
scale_y_continuous(expand = expansion(mult = 0.15))

whole panel

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quadrant_counts(quadrants = 0, label.x = "left", label.y = "bottom") +
scale_y_continuous(expand = expansion(mult = c(0.15, 0.05)))

use a different geometry

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quadrant_counts(geom = "text") # use geom_text()

Numeric values can be used to build labels with alternative formats
Here with sprintf(), but paste() and format() also work.

ggplot(my.data, aes(x, y)) +
geom_quadrant_lines(colour = "blue") +
stat_quadrant_counts(aes(label = sprintf("%i of %i genes",

after_stat(count), after_stat(total))),
colour = "blue") +

geom_point() +
scale_y_continuous(expand = expansion(mult = 0.15))

We use geom_debug() to see the computed values

gginnards.installed <- requireNamespace("gginnards", quietly = TRUE)
if (gginnards.installed) {

114 try_data_frame

library(gginnards)

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quadrant_counts(geom = "debug")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quadrant_counts(geom = "debug", xintercept = 50)

}

try_data_frame Convert an R object into a tibble

Description

This functions tries to convert any R object into a data.frame object. If x is already a data.frame,
it is returned as is. If it is a list or a vector it is converted by means of as.data.frame(). If of
any other type, a conversion into an object of class xts is attempted by means of try.xts() and
if successful the xts object is converted into a data frame with a variable time containing times as
POSIXct and the remaining data columns with the time series data. In this conversion row names
are stripped.

Usage

try_data_frame(
x,
time.resolution = "month",
as.numeric = FALSE,
col.names = NULL

)

try_tibble(x, time.resolution = "month", as.numeric = FALSE, col.names = NULL)

Arguments

x An R object
time.resolution

character The time unit to which the returned time values will be rounded.

as.numeric logical If TRUE convert time to numeric, expressed as fractional calendar years.

col.names character vector

Value

A tibble::tibble object, derived from data.frame.

ttheme_gtdefault 115

Warning!

The time zone was set to "UTC" by try.xts() in the test cases I used. Setting TZ to "UTC" can
cause some trouble as several frequently used functions have as default the local or system TZ and
will apply a conversion before printing or plotting time data, which in addition is affected by sum-
mer/winter time transitions. This should be taken into account as even for yearly data when conver-
sion is to POSIXct a day (1st of January) will be set, but then shifted some hours if printed on a TZ
different from "UTC". I recommend reading the documentation of package lubridate-package
where the irregularities of time data and the difficulties they cause are very well described. In many
cases when working with time series with yearly observations it is best to work with numeric values
for years.

Note

This function can be used to easily convert time series data into a format that can be easily plot-
ted with package ggplot2. try_tibble is another name for try_data_frame which tracks the
separation and re-naming of data_frame into tibble::tibble in the imported packages.

Examples

class(lynx)
try_tibble(lynx)
try_tibble(lynx, as.numeric = TRUE)
try_tibble(lynx, "year")
class(austres)
try_tibble(austres)
try_tibble(austres, as.numeric = TRUE)
try_tibble(austres, "quarter")
class(cars)
try_tibble(cars)

ttheme_gtdefault Table themes

Description

Additional theme constructors for use with geom_table.

Usage

ttheme_gtdefault(
base_size = 10,
base_colour = "black",
base_family = "",
parse = FALSE,
padding = unit(c(0.8, 0.6), "char"),
...

)

116 ttheme_gtdefault

ttheme_gtminimal(
base_size = 10,
base_colour = "black",
base_family = "",
parse = FALSE,
padding = unit(c(0.5, 0.4), "char"),
...

)

ttheme_gtbw(
base_size = 10,
base_colour = "black",
base_family = "",
parse = FALSE,
padding = unit(c(1, 0.6), "char"),
...

)

ttheme_gtplain(
base_size = 10,
base_colour = "black",
base_family = "",
parse = FALSE,
padding = unit(c(0.8, 0.6), "char"),
...

)

ttheme_gtdark(
base_size = 10,
base_colour = "grey90",
base_family = "",
parse = FALSE,
padding = unit(c(0.8, 0.6), "char"),
...

)

ttheme_gtlight(
base_size = 10,
base_colour = "grey10",
base_family = "",
parse = FALSE,
padding = unit(c(0.8, 0.6), "char"),
...

)

ttheme_gtsimple(
base_size = 10,

ttheme_gtdefault 117

base_colour = "grey10",
base_family = "",
parse = FALSE,
padding = unit(c(0.5, 0.4), "char"),
...

)

ttheme_gtstripes(
base_size = 10,
base_colour = "grey10",
base_family = "",
parse = FALSE,
padding = unit(c(0.8, 0.6), "char"),
...

)

Arguments

base_size numeric, default font size.

base_colour default font colour.

base_family default font family.

parse logical, default behaviour for parsing text as plotmath.

padding length-2 unit vector specifying the horizontal and vertical padding of text within
each cell.

... further arguments to control the gtable.

Details

Depending on the theme, the base_colour, which is mapped to the colour aesthetic if present, is
applied to only the text elements, or to the text elements and rules. The difference is exemplified
below.

Value

A list object that can be used as ttheme in the construction of tables with functions from package
’gridExtra’.

Note

These theme constructors are wrappers on gridExtra::ttheme_default() and gridExtra::ttheme_minimal().
They can also be used with grid.table if desired.

Examples

library(dplyr)
library(tibble)

mtcars %>%

118 ttheme_gtdefault

group_by(cyl) %>%
summarize(wt = mean(wt), mpg = mean(mpg)) %>%
ungroup() %>%
mutate(wt = sprintf("%.2f", wt),

mpg = sprintf("%.1f", mpg)) -> tb

df <- tibble(x = 5.45, y = 34, tb = list(tb))

Same as the default theme constructor
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

table.theme = ttheme_gtdefault) +
theme_classic()

Minimal theme constructor
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

table.theme = ttheme_gtminimal) +
theme_classic()

A theme with white background
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

table.theme = ttheme_gtbw) +
theme_bw()

Default colour of theme superceded by aesthetic constant
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

table.theme = ttheme_gtbw, colour = "darkblue") +
theme_bw()

A theme with dark background
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

table.theme = ttheme_gtdark) +
theme_dark()

Default colour of theme superceded by aesthetic constant
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

table.theme = ttheme_gtdark, colour = "yellow") +
theme_dark()

A theme with light background
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +

ttheme_set 119

geom_table(data = df, aes(x = x, y = y, label = tb),
table.theme = ttheme_gtlight)

Default colour of theme superceded by aesthetic constant
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

table.theme = ttheme_gtlight, colour = "darkred")

Default colour of theme superceded by aesthetic constant
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

table.theme = ttheme_gtsimple)

Default colour of theme superceded by aesthetic constant
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

table.theme = ttheme_gtstripes) +
theme_dark()

ttheme_set Set default table theme

Description

Set R option to the theme to use as current default. This function is implemented differently but is
used in the same way as ggplot2::theme_set() but affects the default table-theme instead of the
plot theme.

Usage

ttheme_set(table.theme = NULL)

Arguments

table.theme NULL, list or function A gridExtra ttheme defintion, or a constructor for a
ttheme or NULL for default.

Value

A named list with the previous value of the option.

Note

The ttheme is set when a plot object is constructed, and consequently the option setting does not
affect rendering of ready built plot objects.

120 volcano_example.df

Examples

library(dplyr)
library(tibble)

mtcars %>%
group_by(cyl) %>%
summarize(wt = mean(wt), mpg = mean(mpg)) %>%
ungroup() %>%
mutate(wt = sprintf("%.2f", wt),

mpg = sprintf("%.1f", mpg)) -> tb

df <- tibble(x = 5.45, y = 34, tb = list(tb))

Same as the default theme constructor
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb))

set a new default
old_ttheme <- ttheme_set(ttheme_gtstripes)

ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +
geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb))

restore previous setting
ttheme_set(old_ttheme)

volcano_example.df Gene expression data

Description

A dataset containing reshaped and simplified output from an analysis of data from RNAseq done
with package edgeR. Original data from gene expression in the plant species Arabidopsis thaliana.

Usage

volcano_example.df

Format

A data.frame object with 1218 rows and 5 variables

weather_18_june_2019.df 121

References

Rai, Neha; O’Hara, Andrew; Farkas, Daniel; Safronov, Omid; Ratanasopa, Khuanpiroon; Wang,
Fang; Lindfors, Anders V.; Jenkins, Gareth I.; Lehto, Tarja; Salojärvi, Jarkko; Brosché, Mikael;
Strid. Åke; Aphalo, Pedro José; Morales, Luis Orlando (2020) The photoreceptor UVR8 mediates
the perception of both UV-B and UV-A wavelengths up to 350 nm of sunlight with responsivity
moderated by cryptochromes. Plant, Cell & Environment, 43:1513-1527.

See Also

Other Transcriptomics data: quadrant_example.df

Examples

colnames(volcano_example.df)
head(volcano_example.df)

weather_18_june_2019.df

Weather data

Description

A data set containing weather data measured in Viikki, Helsinki, Finland. Values for all variables
are means of 12 readings at 5 seconds intervals. Sun angles were computed with R package ’pho-
tobiology’.

Usage

weather_18_june_2019.df

Format

A tibble with 18 columns and 1440 rows.

Details

The variables are as follows:

• time (yyyy-mm-dd hh:mm:ss)

• PAR_umol (umol m-2 s-1)

• PAR_diff_fr (/1)

• global_watt (W m-2)

• day_of_year

• month_of_year

• month_name

122 weather_18_june_2019.df

• calendar_year

• solar_time (h)

• sun_elevation (degrees above horizon)

• sun_azimuth (degrees)

• was_sunny (T/F)

• wind_speed (m s-1)

• wind_direction (degrees)

• air_temperature_C (C)

• air_RH (

• air_DP (C)

• air_pressure

References

P. J. Aphalo, unpublished data.

Examples

names(weather_18_june_2019.df)
head(weather_18_june_2019.df)

Index

∗ Functions for quadrant and volcano plots
geom_quadrant_lines, 37
stat_panel_counts, 105
stat_quadrant_counts, 109

∗ Geometries for marginal annotations in
ggplots

geom_x_margin_arrow, 45
geom_x_margin_grob, 47
geom_x_margin_point, 49

∗ Plant growth and morphology data
birch.df, 6
ivy.df, 53

∗ Transcriptomics data
quadrant_example.df, 74
volcano_example.df, 120

∗ datasets
birch.df, 6
ivy.df, 53
quadrant_example.df, 74
volcano_example.df, 120
weather_18_june_2019.df, 121

∗ geometries adding layers with insets.
geom_grob, 9

∗ geometries adding layers with insets
geom_plot, 29
geom_table, 40

∗ geometries for adding insets to ggplots
ttheme_gtdefault, 115

∗ position adjustments
position_dodgenudge, 54
position_jitternudge, 56
position_nudge_center, 59
position_nudge_keep, 64
position_nudge_line, 65
position_nudge_to, 68
position_stacknudge, 71

∗ statistics returning a subset of data
stat_dens1d_filter, 80
stat_dens1d_labels, 85

stat_dens2d_filter, 90
stat_dens2d_labels, 95

∗ summary stats
stat_apply_group, 75

aes, 10, 14, 18, 24, 30, 35, 38, 41, 46, 48, 50,
76, 81, 86, 92, 96, 100, 103, 106, 110

aes_, 81, 86, 92, 96, 100, 103, 106, 110
aes_colour_fill_alpha, 20, 26
aes_group_order, 20, 26
aes_linetype_size_shape, 20, 26
aes_position, 20, 26
annotate, 4, 12, 33, 36
arrow, 11, 19, 25, 31, 35, 42

birch.df, 6, 53
birch_dw.df (birch.df), 6
borders, 11, 15, 25, 31, 35, 38, 42, 47, 48, 51,

77, 82, 87, 92, 97, 101, 106, 110
bw.nrd, 82, 87

compute_npcx, 7
compute_npcy (compute_npcx), 7

dark_or_light, 8
density, 82, 83, 87, 88

expand_limits, 20

geom_abline, 39
geom_debug, 104, 107, 111
geom_function, 103
geom_grob, 9, 9, 42, 43
geom_grob_npc, 9, 42
geom_grob_npc (geom_grob), 9
geom_label, 11, 15, 16, 19, 20, 25, 27, 29
geom_label_npc, 13
geom_label_pairwise, 17
geom_label_s, 11, 20, 23
geom_plot, 29, 32, 44
geom_plot_npc, 30, 32

123

124 INDEX

geom_plot_npc (geom_plot), 29
geom_point, 34, 36
geom_point_s, 34
geom_quadrant_lines, 37, 107, 111
geom_rug, 49
geom_smooth, 77
geom_table, 33, 40, 101, 115
geom_table_npc, 40
geom_table_npc (geom_table), 40
geom_text, 9, 11, 12, 15, 16, 19, 20, 25, 27,

31, 40
geom_text_npc, 9
geom_text_npc (geom_label_npc), 13
geom_text_pairwise

(geom_label_pairwise), 17
geom_text_repel, 36
geom_text_s, 9, 11, 20, 29, 31, 40
geom_text_s (geom_label_s), 23
geom_vhlines (geom_quadrant_lines), 37
geom_x_margin_arrow, 45, 49, 51
geom_x_margin_grob, 47, 47, 51
geom_x_margin_point, 47, 49, 49
geom_y_margin_arrow

(geom_x_margin_arrow), 45
geom_y_margin_grob

(geom_x_margin_grob), 47
geom_y_margin_point

(geom_x_margin_point), 49
ggplot, 51, 52
ggpp (ggpp-package), 3
ggpp-package, 3
ggrepel, 85, 95
grid.table, 117

ivy.df, 7, 53

kde2d, 93, 97, 98

layer, 10, 15, 18, 24, 31, 35, 38, 41, 46, 48,
50, 77, 81, 86, 92, 96, 101, 103, 106,
110

lm, 66

poly, 66
position_dodge, 54, 55
position_dodge2, 54, 55
position_dodge2_keep

(position_dodgenudge), 54
position_dodge2nudge

(position_dodgenudge), 54

position_dodge_keep, 12, 27, 32, 36, 43, 49
position_dodge_keep

(position_dodgenudge), 54
position_dodgenudge, 12, 27, 32, 36, 43, 49,

54, 58, 61, 65, 67, 70, 73
position_fill, 72
position_fill_keep

(position_stacknudge), 71
position_fillnudge

(position_stacknudge), 71
position_jitter, 56, 58
position_jitter_keep, 12, 27, 32, 36, 43, 49
position_jitter_keep

(position_jitternudge), 56
position_jitternudge, 12, 27, 32, 36, 43,

49, 56, 56, 61, 65, 67, 70, 73
position_nudge, 11, 19, 25, 31, 36, 42,

54–58, 60, 64, 65, 67, 69–73
position_nudge_center, 11, 12, 27, 31, 32,

36, 42, 43, 49, 56, 58, 59, 65, 67, 70,
73

position_nudge_centre
(position_nudge_center), 59

position_nudge_keep, 12, 25, 27, 32, 36, 43,
49, 56, 58, 61, 64, 67, 70, 73

position_nudge_line, 12, 27, 32, 36, 43, 49,
56, 58, 61, 65, 65, 70, 73

position_nudge_repel, 56, 58, 67, 70, 73
position_nudge_to, 12, 27, 32, 36, 43, 49,

56, 58, 61, 65, 67, 68, 73
position_stack, 72, 73
position_stack_keep

(position_stacknudge), 71
position_stack_minmax

(position_stacknudge), 71
position_stacknudge, 12, 27, 32, 36, 43, 49,

56, 58, 61, 65, 67, 70, 71, 72

quadrant_example.df, 74, 121

scale_continuous_npc, 75
scale_npcx_continuous

(scale_continuous_npc), 75
scale_npcy_continuous

(scale_continuous_npc), 75
select, 101
slice, 101
stat_apply_group, 75
stat_centroid (stat_apply_group), 75

INDEX 125

stat_dens1d_filter, 80, 87, 88, 93, 98
stat_dens1d_filter_g

(stat_dens1d_filter), 80
stat_dens1d_labels, 83, 85, 93, 98
stat_dens2d_filter, 83, 88, 90, 97, 98
stat_dens2d_filter_g

(stat_dens2d_filter), 90
stat_dens2d_labels, 83, 88, 93, 95
stat_fmt_tb, 100
stat_functions, 102
stat_group_counts (stat_panel_counts),

105
stat_panel_counts, 39, 105, 111
stat_quadrant_counts, 39, 107, 109
stat_summary_xy (stat_apply_group), 75

tableGrob, 42, 44
try_data_frame, 114
try_tibble (try_data_frame), 114
ttheme_gtbw (ttheme_gtdefault), 115
ttheme_gtdark (ttheme_gtdefault), 115
ttheme_gtdefault, 44, 101, 115
ttheme_gtlight (ttheme_gtdefault), 115
ttheme_gtminimal (ttheme_gtdefault), 115
ttheme_gtplain (ttheme_gtdefault), 115
ttheme_gtsimple (ttheme_gtdefault), 115
ttheme_gtstripes (ttheme_gtdefault), 115
ttheme_set, 44, 119

volcano_example.df, 75, 120

weather_18_june_2019.df, 121

	ggpp-package
	annotate
	birch.df
	compute_npcx
	dark_or_light
	geom_grob
	geom_label_npc
	geom_label_pairwise
	geom_label_s
	geom_plot
	geom_point_s
	geom_quadrant_lines
	geom_table
	geom_x_margin_arrow
	geom_x_margin_grob
	geom_x_margin_point
	ggplot
	ivy.df
	position_dodgenudge
	position_jitternudge
	position_nudge_center
	position_nudge_keep
	position_nudge_line
	position_nudge_to
	position_stacknudge
	quadrant_example.df
	scale_continuous_npc
	stat_apply_group
	stat_dens1d_filter
	stat_dens1d_labels
	stat_dens2d_filter
	stat_dens2d_labels
	stat_fmt_tb
	stat_functions
	stat_panel_counts
	stat_quadrant_counts
	try_data_frame
	ttheme_gtdefault
	ttheme_set
	volcano_example.df
	weather_18_june_2019.df
	Index

