
Package ‘gm’
October 13, 2022

Type Package

Title Generate Music Easily and Show Them Anywhere

Version 1.0.2

Author Renfei Mao

Maintainer Renfei Mao <renfeimao@gmail.com>

Description Provides a simple and intuitive high-level language, with which
you can create music easily. Takes care of all the dirty technical
details in converting your music to musical scores and audio files.
Works in 'R Markdown' documents <https://rmarkdown.rstudio.com/>,
R 'Jupyter Notebooks' <https://jupyter.org/>, and 'RStudio'
<https://www.rstudio.com/>, so you can embed generated music
anywhere. Internally, uses 'MusicXML' <https://www.musicxml.com/> to
represent musical scores, and 'MuseScore' <https://musescore.org/> to
convert 'MusicXML'.

License MIT + file LICENSE

URL https://github.com/flujoo/gm, https://flujoo.github.io/gm/

Encoding UTF-8

RoxygenNote 7.1.1

Suggests rmarkdown, testthat

Imports base64enc, glue, htmltools, knitr, magick, magrittr, MASS,
rlang, rstudioapi, stringr, utils

VignetteBuilder knitr

SystemRequirements MuseScore - https://musescore.org/

NeedsCompilation no

Repository CRAN

Date/Publication 2021-04-17 05:40:02 UTC

1

https://rmarkdown.rstudio.com/
https://jupyter.org/
https://www.rstudio.com/
https://www.musicxml.com/
https://musescore.org/
https://github.com/flujoo/gm
https://flujoo.github.io/gm/

2 +.Music

R topics documented:

+.Music . 2
Clef . 3
export . 4
gm . 5
inspect_errors . 5
Key . 6
Line . 7
Meter . 9
Music . 10
show . 11
Tempo . 12
Tupler . 13
tuplet . 14

Index 15

+.Music Add Component to Music Object

Description

Add a component to a Music object.

Usage

S3 method for class 'Music'
music + term

Arguments

music A Music object.

term A Line, Meter, Key, Clef or Tempo object.

Value

A list with class Music.

See Also

Music() for initializing a Music object.

Line(), Meter(), Key(), Clef() and Tempo() for creating objects of corresponding classes.

Clef 3

Examples

initialize a Music object
m <- Music()

add a Line object
m <- m + Line(list("C4"), list(1))
m

add a Meter object
m <- m + Meter(4, 4)
m

add a Key object
m <- m + Key(1)
m

add a Clef object
m <- m + Clef("G", to = 1)
m

add a Tempo object
m <- m + Tempo(120)
m

Clef Create Clef Object

Description

Create a Clef object.

Clef objects represent clefs.

Usage

Clef(sign, line = NULL, octave = NULL, to = NULL, bar = NULL, offset = NULL)

Arguments

sign "G", "F" or "C", case insensitive.

line Optional, 1 or 2 if sign is "G", an integer between 3 and 5 if sign is "F", or an
integer between 1 and 5 if sign is "C".

octave Optional, -1 or 1. octave can be specified only when sign is "G" and line is
2, or sign is "F" and line is 4.

to an index or a Line name, which indicates to which Line object to add the Clef
object.

bar Optional. A positive integer which indicates the number of the measure to which
to add the Clef object. By default, a Clef object will be added to the first
measure.

4 export

offset Optional. A duration value, sum of duration values or 0, which indicates the
position in a measure, at which to add the Clef object. The default value is 0.

Value

A list with class Clef.

See Also

+.Music() for adding Clef objects to a Music object.

vignette("gm", package = "gm") for details about duration values.

Examples

create a Clef object
Clef("G", line = 2, octave = 1)

add a Clef object to a Music object
Music() +

Line(list("C4"), list(1)) +
Clef("F", to = 1, bar = 10, offset = 1)

export Export Object

Description

Export an object to various file formats.

Usage

export(x, dir_path, file_name, formats)

S3 method for class 'Music'
export(x, dir_path, file_name, formats)

Arguments

x An object.

dir_path A single character which specifies the directory to which to export the object.

file_name A single character which specifies the name of the exported file(s).

formats A character vector which specifies the file formats. Supported file formats
are "mscz", "mscx", "pdf", "png", "svg", "wav", "mp3", "flac", "ogg", "midi",
"mid", "musicxml", "mxl", "xml", "metajson", "mlog", "mpos" and "spos".

gm 5

Value

Invisible NULL.

Files with name file_name and with extensions formats are generated in dir_path.

Methods (by class)

• Music: export a Music object.

Examples

if (interactive()) {
m <- Music() + Meter(4, 4) + Line(list("C4"), list(4))
export(m, tempdir(), "x", c("mp3", "png"))

}

gm gm: Generate Music Easily and Show Them Anywhere

Description

Provides a simple and intuitive high-level language, with which you can create music easily. Takes
care of all the dirty technical details in converting your music to musical scores and audio files.
Works in R Markdown documents, R Jupyter Notebooks and RStudio, so you can embed generated
music anywhere.

Author

Renfei Mao renfeimao@gmail.com

inspect_errors See Full Error Report

Description

See a full error report when the error message is too long and thus shortened.

Usage

inspect_errors()

Value

Invisible NULL.

The full error report is printed in console.

mailto:renfeimao@gmail.com

6 Key

Examples

Not run:
Line(list(c, "p", NULL, 1:3, TRUE, NA_character_))

End(Not run)

Key Create Key Object

Description

Create a Key object.

Key objects represent key signatures.

Usage

Key(key, bar = NULL, to = NULL, scope = NULL)

Arguments

key An integer between -7 and 7, which indicates the number of flat or sharp symbols
in the key signature.

bar Optional. A positive integer which indicates the number of the measure into
which to insert the Key object. By default, a Key object will be inserted into the
first measure(s).

to Optional. A positive integer or a single character which indicates the Line object
to which to add the Key object. By default, a Key object will be added to a whole
Music object rather than to any specific Line object.

scope Optional. "part" or "staff", which indicates whether to add the Key object to
a whole part or only to a staff of a part, if the argument to is specified, or this
argument will be ignored. The default value is "part".

Value

A list with class Key.

See Also

+.Music() for adding Key objects to a Music object.

Line 7

Examples

create a Key object
Key(-7)

insert a Key object into a specific measure
Music() + Key(7, bar = 2)

m <- Music() +
Line(list("E5"), list(1), name = "a") +
Line(list("C4"), list(1), name = "b", as = "staff")

add a Key to a part
m + Key(2, to = "b")

add a Key to a staff
m + Key(2, to = "b", scope = "staff")

Line Create Line Object

Description

Create a Line object.

Line objects represent musical lines.

Usage

Line(
pitches,
durations,
tie = NULL,
name = NULL,
as = NULL,
to = NULL,
after = NULL,
bar = NULL,
offset = NULL

)

Arguments

pitches A list whose members are

1. single pitch notations, like "C4", to represent the pitch contents of notes,
2. single MIDI note numbers, like 60 or "60", also to represent the pitch con-

tents of notes,
3. single NAs to represent the pitch contents of rests, or

8 Line

4. vectors of pitch notations and MIDI note numbers, like c("C4", "61"), to
represent the pitch contents of chords.

durations A list whose members are

1. single duration notations or their abbreviations, like "quarter" or just "q",
2. single duration values, like 1, which is equivalent to "quarter", or
3. Duration objects returned by tuplet(), which is used to create complex

tuplets.

tie Optional. A list of indices of argument pitches, which indicates at which posi-
tions to add ties.

name Optional. A single character to name the Line object.

as Optional. "part", "staff" or "voice", to specify the state of the Line object. The
default value is "part".

to Optional. An index or a Line name, which indicates with which Line object as
the reference to add the Line object.

after Optional. A single logical which indicates whether to add the Line object after
or before a reference Line object. The default value is TRUE.

bar Optional. A positive integer which indicates the number of the measure to which
to insert the Line object. By default, a Line object will be inserted to the first
measure.

offset Optional. A duration value, sum of duration values or 0, which indicates the
position in a measure, at which to insert the Line object. The default value is 0.

Value

A list with class Line.

See Also

+.Music() for adding Line objects to a Music object.

vignette("gm", package = "gm") for more details about Line objects.

Examples

create a Music object
m <- Music() + Meter(4, 4) + Line(list("C4"), list(8), name = "a")

create a Line object
l <- Line(

pitches = list("C5", "C5", "C5"),
durations = list(1, 1, 1),

tie the first two notes
tie = list(1),

add the Line as a voice
as = "voice",

Meter 9

with Line "a" as reference
to = "a",

before Line "a"
after = FALSE,

insert the Line to bar 2 with offset 1
bar = 2,
offset = 1

)
l

add the Line object to the Music object
m <- m + l
m

if (interactive()) {
show(m)

}

Meter Create Meter Object

Description

Create a Meter object.

Meter objects represent time signatures.

Usage

Meter(
number,
unit,
bar = NULL,
actual_number = NULL,
actual_unit = NULL,
invisible = NULL

)

Arguments

number A positive number to represent the upper numeral in a time signature symbol,
which indicates how many beats are contained in each measure.

unit 1, 2, 4, 8, 16, 32 or 64 to represent the lower numeral in a time signature symbol,
which indicates the duration of one beat.

bar Optional. A positive integer which indicates the number of the measure into
which to insert the Meter object. By default, a Meter object will be inserted
into the first measure(s).

10 Music

actual_number, actual_unit

Optional, which defines the actual time signature rather than the time signature
symbol on score. Usually used to create pickup measures. By default, these two
arguments are the same with number and unit respectively.

invisible Optional. A single logical, which indicates whether to show the time signature
symbol on score. The default value is FALSE.

Value

A list with class Meter.

See Also

+.Music() for adding Meter objects to a Music object.

Examples

create a 3/4 time signature
Meter(3, 4)

insert a time signature into a specific measure
Music() + Meter(3, 4, bar = 10)

m <- Music() + Line(list("C5"), list(3))

specify the actual time signature
ts <- Meter(3, 4, actual_number = 1, actual_unit = 4)
ts

if (interactive()) {
show(m + ts)

}

make a time signature invisible on score
if (interactive()) {

ts <- Meter(3, 4, invisible = TRUE)
show(m + ts)

}

Music Initialize Music Object

Description

Initialize a Music object.

Music objects represent whole music pieces.

Usage

Music()

show 11

Details

A typical workflow with Music objects:

1. Initialize an empty Music object with Music().
2. Add components to it with +.Music().
3. Print it, or display it as musical score or audio file with show(), to check its structure.
4. Keep adding components and checking it until you get what you want.
5. Sometimes you may want to export the final Music object with export().

Value

A list with class Music.

See Also

+.Music() for adding components to a Music object.

show() for displaying a Music object as musical score and audio file.

export() for exporting a Music object to various file formats.

Examples

initialize a Music object
Music()

print a Music object to check its structure
m <- Music() + Meter(4, 4) + Line(list("C4"), list(4))
m

show Show Object

Description

Show an object as musical score or audio file.

Usage

show(x, to)

S3 method for class 'Music'
show(x, to = NULL)

Arguments

x An object.
to Optional. A character vector which contains "score", "audio" or both, which

indicates whether to show the object as musical score or audio file. The default
value is "score".

12 Tempo

Value

Invisible NULL.

The generated musical score or audio file is

1. showed in Viewer panel if show is called in RStudio,

2. included in generated HTML file if called in R Markdown document,

3. showed in output cell if called in R Jupyter Notebook, and

4. showed in user’s browser if called in a normal R console.

Methods (by class)

• Music: show a Music object.

Examples

if (interactive()) {
m <- Music() + Meter(4, 4) + Line(list("C4"), list(4))
show(m, c("score", "audio"))

}

Tempo Create Tempo Object

Description

Create a Tempo object.

Tempo objects represent tempo marks.

Usage

Tempo(tempo, unit = NULL, bar = NULL, offset = NULL)

Arguments

tempo A number between 5 and 999 which indicates how many quarter notes per
minute the tempo is.

unit Optional. A duration notation, its abbreviation, or duration value corresponding
to "whole", "half", "quarter", "eighth", "16th", with or without a dot. The default
unit is "quarter".

bar Optional. A positive integer which indicates the number of the measure at which
to add the Tempo object. By default, a Tempo object will be added at the first
measure.

offset Optional. A duration value, sum of duration values or 0, which indicates the
position in a measure, at which to add the Tempo object. The default value is 0.

Tupler 13

Value

A list with class Tempo.

See Also

+.Music() for adding Tempo objects to a Music object.

vignette("gm", package = "gm") for details about duration notations and duration values.

Examples

create a Tempo object
Tempo(200)

set unit in a Tempo object
Tempo(120, unit = "half.")

add Tempo objects to a Music object
Music() + Tempo(200) + Tempo(100, bar = 10, offset = 1)

Tupler Create Tupler Object

Description

Create a Tupler object. Tupler objects are used in tuplet() to create tuplets.

Usage

Tupler(n, unit = NULL, take = unit)

Arguments

n A positive integer which indicates into how many parts to divide a duration.

unit, take A duration type followed by zero to four dots, or its corresponding duration
value.

Value

A list with class Tupler.

See Also

tuplet()

vignette("gm", package = "gm") for a friendly guide to tuplets.

14 tuplet

Examples

create a triplet quarter note
t <- Tupler(3, unit = "quarter", take = "quarter")
t

tuplet("half", t)

tuplet Create Tuplet

Description

Create a tuplet.

Usage

tuplet(duration, ...)

Arguments

duration A duration notation, duration value, or Duration object.

... Tupler objects returned by Tupler(), which specify how to divide the argument
duration into parts, and how to take from these parts.

Value

A list with class Duration.

See Also

Tupler()

vignette("gm", package = "gm") for a friendly guide to tuplets.

Examples

create a triplet quarter note
tuplet("half", Tupler(3, unit = "quarter", take = "quarter"))

Index

+.Music, 2
+.Music(), 4, 6, 8, 10, 11, 13

Clef, 3
Clef(), 2

export, 4
export(), 11

gm, 5

inspect_errors, 5

Key, 6
Key(), 2

Line, 7
Line(), 2

Meter, 9
Meter(), 2
Music, 10
Music(), 2, 11

show, 11
show(), 11

Tempo, 12
Tempo(), 2
Tupler, 13
Tupler(), 14
tuplet, 14
tuplet(), 13

15

	+.Music
	Clef
	export
	gm
	inspect_errors
	Key
	Line
	Meter
	Music
	show
	Tempo
	Tupler
	tuplet
	Index

