jordan: A Suite of Routines for Working with Jordan Algebras

A Jordan algebra is an algebraic object originally designed to study observables in quantum mechanics. Jordan algebras are commutative but non-associative; they satisfy the Jordan identity. The package follows the ideas and notation of K. McCrimmon (2004, ISBN:0-387-95447-3) "A Taste of Jordan Algebras". To cite in publications please use Hankin (2023) <doi:10.48550/arXiv.2303.06062>.

Version: 1.0-5
Depends: onion (≥ 1.4-0), Matrix
Imports: emulator, methods, mathjaxr
Suggests: knitr, rmarkdown
Published: 2024-03-29
Author: Robin K. S. Hankin ORCID iD [aut, cre]
Maintainer: Robin K. S. Hankin <hankin.robin at gmail.com>
BugReports: https://github.com/RobinHankin/jordan/issues
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://github.com/RobinHankin/jordan
NeedsCompilation: no
Citation: jordan citation info
Materials: README
In views: NumericalMathematics
CRAN checks: jordan results

Documentation:

Reference manual: jordan.pdf
Vignettes: jordan

Downloads:

Package source: jordan_1.0-5.tar.gz
Windows binaries: r-devel: jordan_1.0-5.zip, r-release: jordan_1.0-5.zip, r-oldrel: jordan_1.0-5.zip
macOS binaries: r-release (arm64): jordan_1.0-5.tgz, r-oldrel (arm64): jordan_1.0-5.tgz, r-release (x86_64): jordan_1.0-5.tgz
Old sources: jordan archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=jordan to link to this page.