
Package ‘kmBlock’
September 18, 2023

Type Package

Title k-Means Like Blockmodeling of One-Mode and Linked Networks

Version 0.1.2

Date 2023-09-18

Maintainer Aleš Žiberna <ales.ziberna@fdv.uni-lj.si>

Description Implements k-means like blockmodeling of one-mode and linked networks as pre-
sented in Žiberna (2020) <doi:10.1016/j.socnet.2019.10.006>. The development of this pack-
age is financially supported by the Slovenian Re-
search Agency (<https://www.arrs.si/>) within the research programs P5-0168 and the re-
search projects J7-8279 (Blockmodeling multilevel and temporal networks) and J5-2557 (Com-
parison and evaluation of different approaches to blockmodeling dynamic networks by simula-
tions with application to Slovenian co-authorship networks).

License GPL (>= 2)

Encoding UTF-8

Imports blockmodeling, doParallel, doRNG, foreach, Rcpp (>= 1.0.0)

LinkingTo Rcpp, RcppArmadillo

Author Aleš Žiberna [aut, cre]

NeedsCompilation yes

RoxygenNote 7.2.3

Repository CRAN

Date/Publication 2023-09-18 17:50:02 UTC

R topics documented:
critFunKmeans . 2
kmBlockC . 3
kmBlockORPC . 4

Index 8

1

https://doi.org/10.1016/j.socnet.2019.10.006
https://www.arrs.si/

2 critFunKmeans

critFunKmeans Function that computes criterion function used in k-means like one-
mode blockmodeling. If clu is a list, the method for linked/multilevel
networks is applied

Description

Function that computes criterion function used in k-means like one-mode blockmodeling. If clu is
a list, the method for linked/multilevel networks is applied

Usage

critFunKmeans(
M,
clu,
weights = NULL,
diagonal = c("ignore", "seperate", "same"),
limitType = c("none", "inside", "outside"),
limits = NULL

)

Arguments

M A matrix representing the (usually valued) network. For multi-relational net-
works, this should be an array with the third dimension representing the relation.

clu A partition. Each unique value represents one cluster. If the network is one-
mode, than this should be a vector, else a list of vectors, one for each mode.
Similarly, if units are comprised of several sets, clu should be the list containing
one vector for each set.

weights The weights for each cell in the matrix/array. A matrix or an array with the same
dimensions as M.

diagonal How should the diagonal values be treated. Possible values are:
• ignore - diagonal values are ignored
• seperate - diagonal values are treated separately
• same - diagonal values are treated the same as all other values

limitType What do the limits represent, on which "side" of this limits should the values lie.
Possible values: "none","inside","outside"

limits If diagonal is "ignore" or "same", an array with dimensions equal to:
• number of clusters (of all types)
• number of clusters (of all types)
• number of relations
• 2 - the first is lower limit and the second is upper limit

If diagonal is "seperate", a list of two array. The first should be as described
above, representing limits for off diagonal values. The second should be similar
with only 3 dimensions, as one of the first two must be omitted.

kmBlockC 3

Value

A list similar to optParC in package blockmodeling.

kmBlockC Function that performs k-means like one-mode blockmodeling. If clu
is a list, the method for linked/multilevel networks is applied

Description

Function that performs k-means like one-mode blockmodeling. If clu is a list, the method for
linked/multilevel networks is applied

Usage

kmBlockC(
M,
clu,
weights = NULL,
diagonal = c("ignore", "seperate", "same"),
limitType = c("none", "inside", "outside"),
limits = NULL

)

Arguments

M A matrix representing the (usually valued) network. For multi-relational net-
works, this should be an array with the third dimension representing the relation.

clu A partition. Each unique value represents one cluster. If the network is one-
mode, than this should be a vector, else a list of vectors, one for each mode.
Similarly, if units are comprised of several sets, clu should be the list containing
one vector for each set.

weights The weights for each cell in the matrix/array. A matrix or an array with the same
dimensions as M.

diagonal How should the diagonal values be treated. Possible values are:

• ignore - diagonal values are ignored
• seperate - diagonal values are treated separately
• same - diagonal values are treated the same as all other values

limitType What do the limits represent, on which "side" of this limits should the values lie.
Possible values: "none","inside","outside"

limits If diagonal is "ignore" or "same", an array with dimensions equal to:

• number of clusters (of all types)
• number of clusters (of all types)
• number of relations
• 2 - the first is lower limit and the second is upper limit

4 kmBlockORPC

If diagonal is "seperate", a list of two array. The first should be as described
above, representing limits for off diagonal values. The second should be similar
with only 3 dimensions, as one of the first two must be omitted.

Value

A list similar to optParC in package blockmodeling.

See Also

kmBlockORPC

kmBlockORPC A function for optimizing multiple random partitions using k-means
one-mode and linked blockmodeling. Calls kmBlockC for optimizing
individual random partitions.

Description

A function for optimizing multiple random partitions using k-means one-mode and linked block-
modeling. Calls kmBlockC for optimizing individual random partitions.

Usage

kmBlockORPC(
M,
k,
rep,
save.initial.param = TRUE,
deleteMs = TRUE,
max.iden = 10,
return.all = FALSE,
return.err = TRUE,
seed = NULL,
parGenFun = blockmodeling::genRandomPar,
mingr = NULL,
maxgr = NULL,
addParam = list(genPajekPar = TRUE, probGenMech = NULL),
maxTriesToFindNewPar = rep * 10,
skip.par = NULL,
printRep = ifelse(rep <= 10, 1, round(rep/10)),
n = NULL,
nCores = 1,
useParLapply = TRUE,
cl = NULL,
stopcl = is.null(cl),
...

)

kmBlockORPC 5

Arguments

M A square matrix giving the adjaciency relationg between the network’s nodes
(aka vertexes)

k The number of clusters used in the generation of partitions.

rep The number of repetitions/different starting partitions to check.
save.initial.param

Should the inital parameters(approaches, ...) of using kmBlockC be saved. The
default value is TRUE.

deleteMs Delete networks/matrices from the results of to save space. Defaults to TRUE.

max.iden Maximum number of results that should be saved (in case there are more than
max.iden results with minimal error, only the first max.iden will be saved).

return.all If FALSE, solution for only the best (one or more) partition/s is/are returned.

return.err Should the error for each optimized partition be returned. Defaults to TRUE.

seed Optional. The seed for random generation of partitions.

parGenFun The function (object) that will generate random partitions. The default function
is genRandomPar. The function has to accept the following parameters: k (num-
ber o of partitions by modes, n (number of units by modes), seed (seed value
for random generation of partition), addParam (a list of additional parameters).

mingr Minimal allowed group size.

maxgr Maximal allowed group size.

addParam A list of additional parameters for function specified above. In the usage section
they are specified for the default function genRandomPar.

maxTriesToFindNewPar

The maximum number of partition try when trying to find a new partition to
optimize that was not yet checked before - the default value is rep * 1000.

skip.par The partitions that are not allowed or were already checked and should therefore
be skipped.

printRep Should some information about each optimization be printed.

n The number of units by "modes". It is used only for generating random parti-
tions. It has to be set only if there are more than two modes or if there are two
modes, but the matrix representing the network is one mode (both modes are in
rows and columns).

nCores Number of cores to be used. Value 0 means all available cores. It can also be a
cluster object.

useParLapply Should parLapplyLB be used (otherwise foreach is used). Defaults to true as it
needs less dependencies. It might be removed in future releases and only allow
the use of parLapplyLB.

cl The cluster to use (if formed beforehand). Defaults to NULL.

stopcl Should the cluster be stopped after the function finishes. Defaults to is.null(cl).

... Arguments passed to other functions, see kmBlockC.

6 kmBlockORPC

Value

A list of class "opt.more.par" containing:

M The one- or multi-mode matrix of the network analyzed

res If return.all = TRUE - A list of results the same as best - one best for each
partition optimized.

best A list of results from kmBlockC, only without M.

err If return.err = TRUE - The vector of errors or inconsistencies = -log-likelihoods.

ICL Integrated classification likelihood for the best partition.

checked.par If selected - A list of checked partitions. If merge.save.skip.par is TRUE, this
list also includes the partitions in skip.par.

call The call to this function.

initial.param If selected - The initial parameters are used.

Random.seed .Random.seed at the end of the function.

cl Cluster used for parallel computations if supplied as an input parameter.

Warning

It should be noted that the time needed to optimize the partition depends on the number of units (aka
nodes) in the networks as well as the number of clusters due to the underlying algorithm. Hence,
partitioning networks with several hundred units and large number of blocks (e.g., >5) can take a
long time (from 20 minutes to a few hours or even days).

Author(s)

Aleš, Žiberna

References

Žiberna, Aleš (2020). k-means-based algorithm for blockmodeling linked networks. Social Net-
works 32(1), 105-126, doi:10.1016/j.socnet.2019.10.006.

See Also

kmBlockC

Examples

Simple one-mode network
library(blockmodeling)
k<-2
blockSizes<-rep(20,k)
IM<-matrix(c(0.8,.4,0.2,0.8), nrow=2)
if(any(dim(IM)!=c(k,k))) stop("invalid dimensions")

set.seed(2021)
clu<-rep(1:k, times=blockSizes)

https://doi.org/10.1016/j.socnet.2019.10.006

kmBlockORPC 7

n<-length(clu)
M<-matrix(rbinom(n*n,1,IM[clu,clu]),ncol=n, nrow=n)
diag(M)<-0
plotMat(M)

resORP<-kmBlockORPC(M,k=2, rep=10, return.all = TRUE)
plot(resORP)
clu(resORP)

Linked network
library(blockmodeling)
set.seed(2021)
IM<-matrix(c(0.8,.4,0.2,0.8), nrow=2)
clu<-rep(1:2, each=20)
n<-length(clu)
nClu<-length(unique(clu))
M1<-matrix(rbinom(n^2,1,IM[clu,clu]),ncol=n, nrow=n)
M2<-matrix(rbinom(n^2,1,IM[clu,clu]),ncol=n, nrow=n)
M12<-diag(n)
nn<-c(n,n)
k<-c(2,2)
Ml<-matrix(0, nrow=sum(nn),ncol=sum(nn))
Ml[1:n,1:n]<-M1
Ml[n+1:n,n+1:n]<-M2
Ml[n+1:n, 1:n]<-M12
plotMat(Ml)

resMl<-kmBlockORPC(M=Ml, k=k, n=nn, rep=10)
plot(resMl)
clu(resMl)

Index

critFunKmeans, 2

genRandomPar, 5

kmBlockC, 3, 5, 6
kmBlockORPC, 4, 4

8

	critFunKmeans
	kmBlockC
	kmBlockORPC
	Index

