
Smoothing discrete data (I)

– using the smooth.discrete() function in the mhsmm package

Søren Højsgaard and Jared O’Connell

August 22, 2023

Contents

1 Introduction 1

2 Using smooth.discrete() 1

3 The arguments to smooth.discrete() 2

1 Introduction

The smooth.discrete() function provides a simple smoothing of a time series of discrete values measured
at equidistant times. Under the hood of smooth.discrete() is a hidden Markov model.

More details – and an additional example – is provided in the vignette “Smoothing discrete data (II)”

2 Using smooth.discrete()

For example consider the data:

> y1 <- c(1,1,1,1,2,1,1,NA,1,1,2,1,1,1,2,1,1,1,1,1,2,2,2,2,1,2,2,2,1,2,2,2,1,1,1,1,1,1,1,1,2,2,2,1,1)

Calling smooth.discrete() on these data gives

> obj <- smooth.discrete(y1)

A 'smoothDiscrete' object
List of 4
$ s : num [1:45] 1 1 1 1 1 1 1 1 1 1 ...
$ model :List of 9
..- attr(*, "class")= chr "hmm"
$ data :List of 3
$ initial:List of 3
- attr(*, "class")= chr "smoothDiscrete"
NULL

The s slot of the object contains the smoothed values. We illustrate the results in Figure 1.

> plot(y1, ylim=c(0.8,2))
> addStates(obj$s)

The smoothed sequence of states is by default the jointly most likely sequence of states as obtained by the
Viterbi algorithm.

A smooth of a new time series is produced as

1

● ● ● ●

●

● ● ● ●

●

● ● ●

●

● ● ● ● ●

● ● ● ●

●

● ● ●

●

● ● ●

● ● ● ● ● ● ● ●

● ● ●

● ●

0 10 20 30 40

0.8
1.0

1.2
1.4

1.6
1.8

2.0
Index

y1

Figure 1: Observed and smoothed discrete time time series.

> y2 <- c(1,1,1,1,2,2,2,1,1,2,1,1,1,2,1,1,1,1,1,2,2,2,NA,1,1,1,2,2,1,2,2,2)
> predict(obj,x=y2)

$s
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2

$x
[1] 1 1 1 1 2 2 2 1 1 2 1 1 1 2 1 1 1 1 1 2 2 2 NA 1 1
[26] 1 2 2 1 2 2 2

$N
[1] 32

$loglik
[1] -24.53755

attr(,"class")
[1] "hsmm.data"

Here the smoothed values are in the s slot. Again, the sequence is by default the jointly most likely sequence
of states.

The estimated parameters are:

> summary(obj)

init:
1 0

transition:
[,1] [,2]

[1,] 0.920 0.080
[2,] 0.136 0.864

emission:
$pmf

[,1] [,2]
[1,] 0.7925235 0.2147958
[2,] 0.3418576 0.6443388

3 The arguments to smooth.discrete()

The arguments of smooth.discrete() are

> args(smooth.discrete)

2

function (y, init = NULL, trans = NULL, parms.emission = 0.5,
method = "viterbi", details = 0, ...)

NULL

� init is a vector of initial probabilities for the Markov chain. If init=NULL then the initial distribution
is taken to be the relative frequencies in data, that is

> table(y1)/sum(table(y1))

y1
1 2

0.6363636 0.3636364

� trans is the transition matrix for the Markov chain. If trans=NULL then the transition matrix is
derived from data as:

> ttt<-table(y1[-length(y1)],y1[-1])
> ttt

1 2
1 19 7
2 7 9

> sweep(ttt, 1, rowSums(ttt), "/")

1 2
1 0.7307692 0.2692308
2 0.4375000 0.5625000

If trans is a vector (of numbers smaller than 1) then these are taken to be the diagonal of the transition
matrix and the off–diagonal elements are then, within each row, taken to be identical so that the rows
sum to 1. Elements of trans are recycled so as to make the dimensions match. Under the hood, the
matrix is created as, for example:

> createTransition(c(0.8,0.9),2)

[,1] [,2]
[1,] 0.8 0.2
[2,] 0.1 0.9

� parms.emission is a matrix describing the conditional probabilities of the observed states given the
latent states. If parms.emission is a vector then the matrix is created following the same scheme as
for the transition matrix described above.

� The method argument is either "viterbi" (which produces the jointly most likely sequence of states).
The alternative method is smoothed which produces the individually most likely states.

� The dotted arguments are passed on the the hmmfit function. For example, one may specify lock.transition=TRUE

in which case the transition matrix is not estimated from data.

3

