Package ‘network’

December 5, 2023
Version 1.18.2
Date 2023-12-04
Title Classes for Relational Data
Maintainer Carter T. Butts <buttsc@uci.edu>
Depends R (>=2.10), utils
Imports tibble, magrittr, statnet.common (>= 4.5), stats
Suggests sna, testthat, covr

Description Tools to create and modify network objects. The network class can repre-
sent a range of relational data types, and supports arbitrary vertex/edge/graph attributes.

License GPL (>=2)

URL https://statnet.org/
RoxygenNote 7.2.0

Collate 'access.R' 'as.edgelist.R' 'assignment.R' 'coercion.R'
'constructors.R' 'dataframe.R' 'fileio.R' 'layout.R' 'misc.R’
'network-package.R' 'operators.R' 'plot.R' 'printsum.R' 'zzz.R'

Encoding UTF-8
NeedsCompilation yes

Author Carter T. Butts [aut, cre],
David Hunter [ctb],
Mark Handcock [ctb],
Skye Bender-deMoll [ctb],
Jeffrey Horner [ctb],
Li Wang [ctb],
Pavel N. Krivitsky [ctb] (<https://orcid.org/0000-0002-9101-3362>),
Brendan Knapp [ctb] (<https://orcid.org/0000-0003-3284-4972>),
Michat Bojanowski [ctb] (<https://orcid.org/0000-0001-7503-852X>),
Chad Klumb [ctb]

Repository CRAN
Date/Publication 2023-12-05 11:30:02 UTC

https://statnet.org/
https://orcid.org/0000-0002-9101-3362
https://orcid.org/0000-0003-3284-4972
https://orcid.org/0000-0001-7503-852X

2

R topics documented:

R topics documented:

Index

network-package L 3
addedges L e e e 5
add.vertices e e 7
as.color e 8
as.dataframe.network Lo Lo 10
as.edgelist e 11
as.amatrix.networko 13
as.network.matriX L e 16
AS.SOCIOMALIIX « . . v v v v v ettt e e e e e e e e e e e e e 18
attribute.methods 20
deletion.methods 25
edgeset.CoNSIIUCIONS v v vt e it e e e e e e e e e e 27
IMOM .« ¢ et e e e e e e e e e e e e e 29
flo . . . e 31
geLedges L e e 31
get.inducedSubgraph 33
get.neighborhood 35
has.edges L 36
1s.adjacent L L e e e e e 37
loading.attributes 38
missing.edges e e e e e e 42
MIXINZMALIIX o o et e e e e e e e 43
NEtWOTK L e 45
NEtWOTK.AQIrOW o e e e e e 50
network.density e e 52
network.dyadcount L 54
network.edgecount L e e 55
network.edgelabel 56
network.extraction L. e 58
network.indicators L. L e 60
network.initialize L. oL 62
network.layout e 63
network.loop e 66
NEIWOrK.OPEIators« .« v v v vt e e e e e e e e e e 68
NetwWork.Size e e e 70
NEEWOTK.VEITEX o o v it e e e e e e e e e e 71
permute.vertexIDs L. oL 73
plotnetwork.default L 74
plotArgsnetwork L. 78
prodnetwork oL 79
read.paj e 81
sum.anetwork . ..o 83
valideeids L e 85
whichmatrix.type o e e e e 86

88

network-package 3

network-package Classes for Relational Data

Description

Tools to create and modify network objects. The network class can represent a range of relational
data types, and supports arbitrary vertex/edge/graph attributes.

Details

The network package provides tools for creation, access, and modification of network class objects.
These objects allow for the representation of more complex structures than can be readily handled
by other means (e.g., adjacency matrices), and are substantially more efficient in handling large,
sparse networks. While the full capabilities of the network class can only be exploited by means
of the various custom interface methods (see below), many simple tasks are streamlined through
the use of operator overloading; in particular, network objects can often be treated as if they were
adjacency matrices (a representation which will be familiar to users of the sna package). network
objects are compatible with the sna package, and are required for many packages in the statnet
bundle.

Basic information on the creation of network objects can be found by typing help(network). To

learn about setting, modifying, or deleting network, vertex, or edge attributes, see help(attribute.methods).
For information on custom network operators, type help(network.operators); information on
overloaded operators can be found via help(network.extraction). Additional help topics are

listed below.

Package: network

Version: 1.14

Date: May 7, 2016

Depends: R (>=2.10), utils

Suggests: sna, statnet.common (>= 3.1-0)
License: GPL (>=2)

Index of documentation pages:

add.edges Add Edges to a Network Object

add.vertices Add Vertices to an Existing Network

as.matrix.network Coerce a Network Object to Matrix Form

as.network.matrix Coercion from Matrices to Network Objects

as.sociomatrix Coerce One or More Networks to Sociomatrix Form

attribute.methods Attribute Interface Methods for the Network
Class

deletion.methods Remove Elements from a Network Object

edgeset.constructors Edgeset Constructors for Network Objects

emon Interorganizational Search and Rescue Networks

(Drabek et al.)

flo
get.edges

get.inducedSubgraph
get.neighborhood
is.adjacent
loading.attributes

missing.edges

network
network.arrow
network.density
network.dyadcount

network.edgecount
network.edgelabel

network.extraction

network.indicators
network.initialize
network.layout
network. loop
network.operators
network-package
network.size
network.vertex
permute.vertexIDs
plotArgs.network

plot.network.default

prod.network
read.paj

sum. network
valid.eids
which.matrix.type

Author(s)

network-package

Florentine Wedding Data (Padgett)

Retrieve Edges or Edge IDs Associated with a
Given Vertex

Retrieve Induced Subgraphs and Cuts

Obtain the Neighborhood of a Given Vertex
Determine Whether Two Vertices Are Adjacent
Examples of how to load vertex and edge
attributes into networks

Identifying and Counting Missing Edges in a
Network Object

Network Objects

Add Arrows or Segments to a Plot

Compute the Density of a Network

Return the Number of (Possibly Directed) Dyads
in a Network Object

Return the Number of Edges in a Network Object
Plots a label corresponding to an edge in a
network plot.

Extraction and Replacement Operators for
Network Objects

Indicator Functions for Network Properties
Initialize a Network Class Object

Vertex Layout Functions for plot.network

Add Loops to a Plot

Network Operators

Classes for Relational Data

Return the Size of a Network

Add Vertices to a Plot

Permute (Relabel) the Vertices Within a Network
Expand and transform attributes of networks to
values appropriate for aguments to plot.network
Two-Dimensional Visualization for Network
Objects

Combine Networks by Edge Value Multiplication
Read a Pajek Project or Network File and
Convert to an R 'Network' Object

Combine Networks by Edge Value Addition

Get the valid edge which are valid in a network
Heuristic Determination of Matrix Types for
Network Storage

Carter T. Butts buttsc @uci.edu, with help from Mark S. Handcock handcock @stat.ucla.edu, David
Hunter dhunter @stat.psu.edu, Martina Morris morrism @u.washington.edu, Skye Bender-deMoll
skyebend @u.washington.edu, and Jeffrey Horner jeffrey.horner @ gmail.com.

Maintainer: Carter T. Butts buttsc @uci.edu

mailto:buttsc@uci.edu
mailto:handcock@stat.ucla.edu
mailto:dhunter@stat.psu.edu
mailto:morrism@u.washington.edu
mailto:skyebend@u.washington.edu
mailto:jeffrey.horner@gmail.com
mailto:buttsc@uci.edu

add.edges 5

add.edges Add Edges to a Network Object

Description

Add one or more edges to an existing network object.

Usage
add. edge(
X ’
tail,
head,
names.eval = NULL,
vals.eval = NULL,
edge.check = FALSE,
)
add.edges(x, tail, head, names.eval = NULL, vals.eval = NULL, ...)
Arguments
X an object of class network
tail for add. edge, a vector of vertex IDs reflecting the tail set for the edge to be
added; for add. edges, a list of such vectors
head for add.edge, a vector of vertex IDs reflecting the head set for the edge to be
added; for add. edges, a list of such vectors
names.eval for add. edge, an optional list of names for edge attributes; for add. edges, a list
of length equal to the number of edges, with each element containing a list of
names for the attributes of the corresponding edge
vals.eval for add. edge, an optional list of edge attribute values (matching names.eval);
for add. edges, a list of such lists
edge.check logical; should we perform (computationally expensive) tests to check for the
legality of submitted edges?
additional arguments
Details

The edge checking procedure is very slow, but should always be employed when debugging; with-
out it, one cannot guarantee that the network state is consistent with network level variables (see
network.indicators). For example, by default it is possible to add multiple edges to a pair of
vertices.

Edges can also be added/removed via the extraction/replacement operators. See the associated man
page for details.

6 add.edges

Value

Invisibly, add.edge and add.edges return pointers to their modified arguments; both functions
modify their arguments in place..

Note

add. edges and add. edge were converted to an S3 generic funtions in version 1.9, so they actually
call add. edges.network and add. edge . network by default, and may call other versions depend-
ing on context (i.e. when called with a networkDynamic object).

Author(s)

Carter T. Butts <buttsc@uci.edu>

References

Butts, C. T. (2008). “network: a Package for Managing Relational Data in R.” Journal of Statistical
Software, 24(2). https://www. jstatsoft.org/v24/i02/

See Also

network, add.vertices, network.extraction, delete.edges, network.edgelist
Examples

#Initialize a small, empty network
g<-network.initialize(3)

#Add an edge
add.edge(g,1,2)
g

#Can also add edges using the extraction/replacement operators
#note that replacement operators are much slower than add.edges()
gl,3]1<-1

gl,]

#Add multiple edges with attributes to a network

pretend we just loaded in this data.frame from a file
Note: network.edgelist() may be simpler for this case
elData<-data.frame(
from_id=c("1","2" "3 nqn n3m nqm nony
to_id=c("1", "1™, "1v, "2", v2", 3", "3"),
myEdgeWeight=c(1, 2, 1, 2, 5, 3, 9.5),
someLetters=c("B", "wW", "L", "Z", "P", "Q", "E"),
edgeCols=c("red","green"”,"blue”,"orange"”,"pink”,"brown”,"gray"),
stringsAsFactors=FALSE

https://www.jstatsoft.org/v24/i02/

add.vertices 7

valueNet<-network.initialize(3,loops=TRUE)

add.edges(valueNet,elData[,1],elData[, 2],
names.eval=rep(list(list("myEdgeWeight"”, "someLetters", "edgeCols")),nrow(elData)),
vals.eval=lapply(1:nrow(elData),function(r){as.list(elDatalr,3:51)}))

list.edge.attributes(valueNet)

add.vertices Add Vertices to an Existing Network

Description

add.vertices adds a specified number of vertices to an existing network; if desired, attributes for
the new vertices may be specified as well.

Usage
add.vertices(x, nv, vattr = NULL, last.mode = TRUE, ...)
Arguments
X an object of class network
nv the number of vertices to add
vattr optionally, a list of attributes with one entry per new vertex
last.mode logical; should the new vertices be added to the last (rather than the first) mode
of a bipartite network?
possible additional arguments to add.vertices
Details

New vertices are generally appended to the end of the network (i.e., their vertex IDs begin with
network.size(x) an count upward). The one exception to this rule is when x is bipartite and
last.mode==FALSE. In this case, new vertices are added to the end of the first mode, with existing
second-mode vertices being permuted upward in ID. (x’s bipartite attribute is adjusted accord-
ingly.)

Note that the attribute format used here is based on the internal (vertex-wise) storage method, as
opposed to the attribute-wise format used by network. Specifically, vattr should be a list with one
entry per new vertex, the ith element of which should be a list with an element for every attribute of
the ith vertex. (If the required na attribute is not given, it will be automatically created.)

Value

Invisibly, a pointer to the updated network object; add. vertices modifies its argument in place.

8 as.color

Note

add.vertices was converted to an S3 generic funtion in version 1.9, so it actually calls add. vertices.network
by default and may call other versions depending on context (i.e. when called with a networkDynamic
object).

Author(s)

Carter T. Butts <buttsc@uci.edu>

References

Butts, C. T. (2008). “network: a Package for Managing Relational Data in R.” Journal of Statistical
Software, 24(2). https://www. jstatsoft.org/v24/i02/

See Also

network, get.vertex.attribute, set.vertex.attribute

Examples

#Initialize a network object
g<-network.initialize(5)
g

#Add five more vertices
add.vertices(g,5)
g

#Create two more, with attributes
vat<-replicate(2,list(is.added=TRUE, num.added=2),simplify=FALSE)
add.vertices(g,2,vattr=vat)

g%v%"is.added" #Values are only present for the new cases
g%v%"num. added”

#Add to a bipartite network

bip <-network.initialize(5,bipartite=3)

get.network.attribute(bip, 'bipartite') # how many vertices in first mode?
add.vertices(bip, 3,last.mode=FALSE)

get.network.attribute(bip, 'bipartite')

as.color Transform vector of values into color specification

Description

Convenience function to convert a vector of values into a color specification.

https://www.jstatsoft.org/v24/i02/

as.color

Usage

as.color(x, opacity = 1)

is.color(x)

Arguments

X

opacity

Value

vector of numeric, character or factor values to be transformed

optional numeric value in the range 0.0 to 1.0 used to specify the opacity/transparency

(alpha) of the colors to be returned. 0 means fully opaque, 1 means fully trans-
parent.

Behavior of as.color is as follows:
* integer numeric values: unchanged, (assumed to corespond to values of R’s
active palette)

* integer real values: will be translated to into grayscale values ranging be-
tween the max and min

* factor: integer values corresponding to factor levels will be used
* character: if values are valid colors (as determined by is.color) they will

be returned as is. Otherwise converted to factor and numeric value of factor
returned.

The optional opacity parameter can be used to make colors partially transparent
(as a shortcut for adjustcolor. If used, colors will be returned as hex rgb color
string (i.e. "#0QFF0080")

The is.color function checks if each character element of x appears to be a
color name by comparing it to colors and checking if it is an HTML-style hex
color code. Note that it will return FALSE for integer values.

These functions are used for the color parameters of plot.network.

For as.color, a vector integer values (corresponding to color palette values) or character color
name. For is.color, a logical vector indicating if each element of x appears to be a color

as.color() returns TRUE if x is a character in a known color format.

Examples

as.color(1:3)

as.color(c('a','b','c"))

add some transparency
as.color(c('red', 'green', 'blue'),0.5) # gives "#FF000080", "#00OFF0080", "#00Q0OFF80"

is.color(c('red',1, 'foo',NA, "#FFFFFF55"'))

10 as.data.frame.network

as.data.frame.network Coerce a Network Object to a data.frame

Description

The as.data. frame method coerces its input to a data. frame containing x’s edges or vertices.

Usage

S3 method for class 'network'
as.data.frame(

X!

e,

unit = c("edges”, "vertices"),
na.rm = TRUE,

attrs_to_ignore = "na",

name_vertices = TRUE,
sort_attrs = FALSE,
store_eid = FALSE

)
Arguments
X an object of class network
additional arguments
unit whether a data. frame of edge or vertex attributes should be returned.
na.rm logical; ignore missing edges/vertices when constructing the data frame?

attrs_to_ignore

character; a vector of attribute names to exclude from the returned data. frame
(Default: "na™)

—_n

name_vertices logical; for unit="edges", should the .tail and the .head columns contain
vertex names as opposed to vertex indices?

sort_attrs logical; should the attribute columns in the returned data frame be sorted alpha-
betically?
store_eid logical; for unit="edges", should the edge ID in the network’s internal repre-

sentation be stored in a column .eid?

as.edgelist 11

as.edgelist Convert a network object into a numeric edgelist matrix

Description

Constructs an edgelist in a sorted format with defined attributes.

Usage

S3 method for class 'network'
as.edgelist(
X,
attrname = NULL,
as.snha.edgelist = FALSE,
output = c("matrix", "tibble"),

)

S3 method for class 'matrix'
as.edgelist(

X,

n,

directed = TRUE,

bipartite = FALSE,

loops = FALSE,

vhames = seq_len(n),

)

S3 method for class 'tbl_df'
as.edgelist(

X,

n,

directed = TRUE,

bipartite = FALSE,

loops = FALSE,

vhames = seq_len(n),

)

is.edgelist(x)

Arguments

X a network object with additional class added indicating how it should be dis-
patched.

12 as.edgelist

attrname optionally, the name of an edge attribute to use for edge values; may be a vector
of names if output="tibble"

as.sna.edgelist
logical; should the edgelist be returned in edgelist form expected by the sna
package? Ignored if output="tibble"

output return type: amatrix or a tibble; see as.matrix.network for the difference.

additional arguments to other methods

n integer number of vertices in network, value passed to the 'n’ flag on edgelist
returned

directed logical; is network directed, value passed to the ’directed’ flag on edgelist re-
turned

bipartite logical or integer; is network bipartite, value passed to the ’bipartite’ flag on
edgelist returned

loops logical; are self-loops allowed in network?, value passed to the "loops’ flag on
edgelist returned

vhames vertex names (defaults to vertex ids) to be attached to edgelist for sna package
compatibility

Details

Constructs a edgelist matrix or tibble from a network, sorted tails-major order, with tails first, and,
for undirected networks, tail < head. This format is required by some reverse-depending packages

(e.g. ergm)
The as.matrix.network.edgelist provides similar functionality but it does not enforce ordering
or set the edgelist class and so should be slightly faster.

is.edgelist tests if an object has the class 'edgelist’

Value
A matrix in which the first two columns are integers giving the tail (source) and head (target) vertex
ids of each edge. The matrix will be given the class edgelist.
The edgelist has additional attributes attached to it:

e attr(,"n") the number of vertices in the original network
* attr(,"vnames") the names of vertices in the original network
e attr(,"directed") logical, was the original network directed
e attr(,"bipartite”) was the original network bipartite
e attr(,"loops") does the original network contain self-loops
Note that if the attrname attribute is used the resulting edgelist matrix will have three columns.

And if attrname refers to a character attribute, the resulting edgelist matrix will be character rather
than numeric unless output="tibble".

Note

NOTE: this function was moved to network from the ergm package in network version 1.13

as.matrix.network 13

See Also

See also as.matrix.network.edgelist

Examples

data(emon)

as.edgelist(emon[[1]]1)
as.edgelist(emon[[1]],output="tibble")
contrast with unsorted columns of
as.matrix.network.edgelist(emon[[1]1])

as.matrix.network Coerce a Network Object to Matrix or Table Form

Description

The as.matrix methods attempt to coerce their input to a matrix in adjacency, incidence, or edge-
list form. Edge values (from a stored attribute) may be used if present. as_tibble coerces into
an edgelist in tibble (a type of data.frame) form; this can be especially useful if extrecting a
character-type edge attribute.

Usage

S3 method for class 'network'
as.matrix(x, matrix.type = NULL, attrname = NULL, ...)

S3 method for class 'adjacency'
as.matrix.network(x, attrname=NULL,
expand.bipartite = FALSE, ...)

S3 method for class 'edgelist'
as.matrix.network(x, attrname=NULL,

as.sna.edgelist = FALSE, na.rm = TRUE, ...)

S3 method for class 'network'

as_tibble(
X,
attrnames = (match.arg(unit) == "vertices"),
na.rm = TRUE,
unit = c("edges”, "vertices"),
store.eid = FALSE
)

as.tibble.network(

14 as.matrix.network

X’
attrnames = (match.arg(unit) == "vertices"),
na.rm = TRUE,
unit = c("edges”, "vertices"),
store.eid = FALSE
)
S3 method for class 'incidence'
as.matrix.network(x, attrname=NULL, ...)
Arguments
X an object of class network
matrix.type one of "adjacency”, "incidence”, "edgelist", or NULL
attrname optionally, the name of an edge attribute to use for edge values

e additional arguments.

expand.bipartite
logical; if x is bipartite, should we return the full adjacency matrix (rather than
the abbreviated, two-mode form)?

as.sha.edgelist
logical; should the edgelist be returned in sna edglist form?

na.rm logical; should missing edges/vertices be included in the edgelist formats? Ig-
nored if as.sna.edgelist=TRUE.

attrnames optionally, either a character vector of the names of edge attributes to use for
edge values, or a numerical or logical vector to use as indices for selecting them
from list.edge.attributes(x) or list.vertex.attributes(x) (depend-
ing on unit); passing TRUE therefore returns all edge attributes as columns

unit whether a tibble of edge or vertex attributes should be returned.
store.eid whether the edge ID should be stored in the third column (. eid).
Details

If no matrix type is specified, which.matrix.type will be used to make an educated guess based
on the shape of x. Where edge values are not specified, a dichotomous matrix will be assumed.

Edgelists returned by the as.matrix methods are by default in a slightly different form from the
sna edgelist standard, but do contain the sna extended matrix attributes (see as.network.matrix).
They should typically be compatible with sna library functions. To ensure compatibility, the
as.sna.edgelist argument can be set (which returns an exact sna edgelist). The as.edgelist
function also returns a similar edgelist matrix but with an enforced sorting.

For the as.matrix methods, if the attrname attribute is used to include a charcter attribute, the
resulting edgelist matrix will be character rather than numeric. The as_tibble methods never
coerce.

Note that adjacency matrices may also be obtained using the extraction operator. See the relevant
man page for details. Also note that which attributes get returned by the as_tibble method by
default depends on unit: by default no edge attributes are returned but all vertex attributes are.

as.matrix.network 15

Value

For as.matrix methods, an adjacency, incidence, or edgelist matrix. For the as_tibble method,
a tibble whose first two columns are .head and . tail, whose third column .eid is the edge ID,
and whose subsequent columns are the requested edge attributes.

Author(s)

Carter T. Butts <buttsc@uci.edu> and David Hunter <dhunter@stat.psu.edu>

References

Butts, C. T. (2008). “network: a Package for Managing Relational Data in R.” Journal of Statistical
Software, 24(2). https://www. jstatsoft.org/v24/i02/

See Also

which.matrix.type, network, network.extraction,as.edgelist

Examples

Create a random network

m <- matrix(rbinom(25,4,0.159),5,5) # 50% density

diag(m) <- @

g <- network(m, ignore.eval=FALSE, names.eval="a") # With values
g %e% "ac" <- letters[g %e% "a"]

Coerce to matrix form

No attributes:
as.matrix(g,matrix.type="adjacency")
as.matrix(g,matrix.type="incidence")
as.matrix(g,matrix.type="edgelist")

Attributes:
as.matrix(g,matrix.type="adjacency"”,attrname="a")
as.matrix(g,matrix.type="incidence"”,attrname="a")
as.matrix(g,matrix.type="edgelist"”,attrname="a")
as.matrix(g,matrix.type="edgelist”,attrname="ac")

Coerce to a tibble:
library(tibble)

as_tibble(g)

as_tibble(g, attrnames=c("a","ac"))
as_tibble(g, attrnames=TRUE)

Get vertex attributes instead:
as_tibble(g, unit = "vertices")

Missing data handling:

gl1,2] <- NA

as.matrix(g,matrix.type="adjacency”) # NA in the corresponding cell
as.matrix(g,matrix.type="edgelist”, na.rm=TRUE) # (1,2) excluded
as.matrix(g,matrix.type="edgelist"”, na.rm=FALSE) # (1,2) included

—_n

https://www.jstatsoft.org/v24/i02/

16 as.network.matrix

as_tibble(g, attrnames="na", na.rm=FALSE) # Which edges are marked missing?

Can also use the extraction operator

gl,] # Get entire adjacency matrix
gl1:2,3:5] # Obtain a submatrix
as.network.matrix Coercion from Matrices to Network Objects
Description

as.network.matrix attempts to coerce its first argument to an object of class network.

Usage

Default S3 method:
as.network(x, ...)

S3 method for class 'matrix'

as.network(
X,
matrix.type = NULL,
directed = TRUE,
hyper = FALSE,
loops = FALSE,
multiple = FALSE,
bipartite = FALSE,
ignore.eval = TRUE,
names.eval = NULL,
na.rm = FALSE,
edge.check = FALSE,

)
Arguments
X a matrix containing an adjacency structure
additional arguments
matrix.type one of "adjacency”, "edgelist”, "incidence"”, or NULL
directed logical; should edges be interpreted as directed?
hyper logical; are hyperedges allowed?
loops logical; should loops be allowed?

multiple logical; are multiplex edges allowed?

as.network. matrix 17

bipartite count; should the network be interpreted as bipartite? If present (i.e., non-
NULL) it is the count of the number of actors in the bipartite network. In this
case, the number of nodes is equal to the number of actors plus the number of
events (with all actors preceding all events). The edges are then interpreted as

nondirected.
ignore.eval logical; ignore edge values?
names.eval optionally, the name of the attribute in which edge values should be stored
na.rm logical; ignore missing entries when constructing the network?
edge.check logical; perform consistency checks on new edges?

Details

Depending on matrix. type, one of three edgeset constructor methods will be employed to read the
input matrix (see edgeset.constructors). If matrix. type==NULL, which.matrix.type will be
used to guess the appropriate matrix type.

The coercion methods will recognize and attempt to utilize the sna extended matrix attributes where
feasible. These are as follows:

n.on,

e "n": taken to indicate number of vertices in the network.
* "bipartite”: taken to indicate the network’s bipartite attribute, where present.

* "vnames": taken to contain vertex names, where present.

These attributes are generally used with edgelists, and indeed data in sna edgelist format should
be transparently converted in most cases. Where the extended matrix attributes are in conflict with
the actual contents of x, results are no guaranteed (but the latter will usually override the former).
For an edge list, the number of nodes in a network is determined by the number of unique nodes
specified. If there are isolate nodes not in the edge list, the "n" attribute needs to be set. See example
below.

Value

An object of class network

Author(s)

Carter T. Butts <buttsc@uci.edu> and David Hunter <dhunter@stat.psu.edu>

References
Butts, C. T. (2008). “network: a Package for Managing Relational Data in R.” Journal of Statistical
Software, 24(2). https://www. jstatsoft.org/v24/i02/

See Also

edgeset.constructors, network, which.matrix. type

https://www.jstatsoft.org/v24/i02/

18 as.sociomatrix

Examples

#Draw a random matrix
m<-matrix(rbinom(25,1,0.5),5)
diag(m)<-0

#Coerce to network form
g<-as.network.matrix(m,matrix.type="adjacency")

edge list example. Only 4 nodes in the edge list.
m = matrix(c(1,2, 2,3, 3,4), byrow = TRUE, nrow=3)
attr(m, 'n') =7

as.network(m, matrix.type='edgelist')

as.sociomatrix Coerce One or More Networks to Sociomatrix Form

Description

as.sociomatrix takes adjacency matrices, adjacency arrays, network objects, or lists thereof, and
returns one or more sociomatrices (adjacency matrices) as appropriate. This routine provides a
useful input-agnostic front-end to functions which process adjacency matrices.

Usage

as.sociomatrix(
X)
attrname NULL,
simplify = TRUE,
expand.bipartite = FALSE,

)
Arguments
X an adjacency matrix, array, network object, or list thereof.
attrname optionally, the name of a network attribute to use for extracting edge values (if
x is a network object).
simplify logical; should as. sociomatrix attempt to combine its inputs into an adjacency

array (TRUE), or return them as separate list elements (FALSE)?
expand.bipartite

logical; if x is bipartite, should we return the full adjacency matrix (rather than

the abbreviated, two-mode form)?

additional arguments for the coercion routine.

as.sociomatrix

Details

19

as.sociomatrix provides a more general means of coercing input into adjacency matrix form than
as.matrix.network. In particular, as.sociomatrix will attempt to coerce all input networks into
the appropriate form, and return the resulting matrices in a regularized manner. If simplify==TRUE,
as.sociomatrix attempts to return the matrices as a single adjacency array. If the input networks
are of variable size, or if simplify==FALSE, the networks in question are returned as a list of

matrices. In any event, a single input network is always returned as a lone matrix.

If attrname is given, the specified edge attribute is used to extract edge values from any network
objects contained in x. Note that the same attribute will be used for all networks; if no attribute is
specified, the standard dichotomous default will be used instead.

Value

One or more adjacency matrices. If all matrices are of the same dimension and simplify==TRUE,
the matrices are joined into a single array; otherwise, the return value is a list of single adjacency
matrices.

Author(s)

Carter T. Butts <buttsc@uci.edu>

References

Butts, C. T. (2008). “network: a Package for Managing Relational Data in R.” Journal of Statistical
Software, 24(2). https://www. jstatsoft.org/v24/i02/

See Also

as.matrix.network, network

Examples

#Generate an adjacency array
g<-array(rbinom(100,1,0.5),dim=c(4,5,5))

#Generate a network object
net<-network(matrix(rbinom(36,1,0.5),6,6))

#Coerce to adjacency matrix form using as.sociomatrix

as
as
as
as

.sociomatrix(g,simplify=TRUE)
.sociomatrix(g,simplify=FALSE)
.sociomatrix(net)
.sociomatrix(list(net,g))

#Returns
#Returns
#Coerces
#Returns

as-is

as list

to matrix

as list of matrices

https://www.jstatsoft.org/v24/i02/

20

attribute. methods

attribute.methods

Attribute Interface Methods for the Network Class

Description

These methods get, set, list, and delete attributes at the network, edge, and vertex level.

Usage

delete.edge.attribute(x, attrname,

S3 method for class 'network!'
delete.edge.attribute(x, attrname,

delete.network.attribute(x, attrname,

S3 method for class 'network'
delete.network.attribute(x, attrname,

delete.vertex.attribute(x, attrname,

S3 method for class 'network'
delete.vertex.attribute(x, attrname,

get.edge.attribute(x, ..., el)

S3 method for class 'network'
get.edge.attribute(
X,
attrname,
unlist = TRUE,
na.omit = FALSE,
null.na = FALSE,
deleted.edges.omit = FALSE,
el
)
S3 method for class 'list'
get.edge.attribute(
X,
attrname,
unlist = TRUE,
na.omit = FALSE,
null.na = FALSE,
deleted.edges.omit = FALSE,

L

.2

)

.2

attribute. methods

el
)

get.edge.value(x, ...)

S3 method for class
get.edge.value(
X)
attrname,
unlist = TRUE,
na.omit = FALSE,
null.na = FALSE,
deleted.edges.omit =

)

S3 method for class
get.edge.value(
X,
attrname,
unlist = TRUE,
na.omit = FALSE,
null.na = FALSE,
deleted.edges.omit =

)

"network’

FALSE,

"list’

FALSE,

get.network.attribute(x, ...)

S3 method for class

get.network.attribute(x, attrname,

get.vertex.attribute(x,

S3 method for class
get.vertex.attribute(
X,
attrname,
na.omit = FALSE,
null.na = TRUE,
unlist = TRUE,

)
list.edge.attributes(x,

S3 method for class
list.edge.attributes(x,

'network’

L)

'network’

L)

'network’

)

unlist = FALSE,

)

21

22 attribute. methods

list.network.attributes(x, ...)

S3 method for class 'network'
list.network.attributes(x, ...)

list.vertex.attributes(x, ...)

S3 method for class 'network'
list.vertex.attributes(x, ...)

network.vertex.names(x)
network.vertex.names(x) <- value
set.edge.attribute(x, attrname, value, e, ...)

S3 method for class 'network!'
set.edge.attribute(x, attrname, value, e = seq_along(x$mel), ...)

set.edge.value(x, attrname, value, e, ...)

S3 method for class 'network'
set.edge.value(x, attrname, value, e = seq_along(x$mel), ...)

set.network.attribute(x, attrname, value, ...)

S3 method for class 'network'
set.network.attribute(x, attrname, value, ...)

set.vertex.attribute(x, attrname, value, v = seq_len(network.size(x)), ...)

S3 method for class 'network'

set.vertex.attribute(x, attrname, value, v = seq_len(network.size(x)), ...)

Arguments
X an object of class network, or a list of edges (possibly network$mel)in get.edge.attribute.
attrname the name of the attribute to get or set.

additional arguments

el Deprecated; use x instead.
unlist logical; should retrieved attribute values be unlisted prior to being returned?
na.omit logical; should retrieved attribute values corresponding to vertices/edges marked

as “missing’ be removed?

null.na logical; should NULL values (corresponding to vertices or edges with no values
set for the attribute) be replaced with NAs in output?

attribute. methods 23

deleted.edges.omit
logical: should the elements corresponding to deleted edges be removed?

value values of the attribute to be set; these should be in vector or 1ist form for the
edge and vertex cases, or matrix form for set.edge.value.

e IDs for the edges whose attributes are to be altered.
v IDs for the vertices whose attributes are to be altered.
Details

The list.attributes functions return the names of all edge, network, or vertex attributes (respec-
tively) in the network. All attributes need not be defined for all elements; the union of all extant
attributes for the respective element type is returned.

The get.attribute functions look for an edge, network, or vertex attribute (respectively) with the
name attrname, returning its values. Note that, to retrieve an edge attribute from all edges within a
network x, x$mel should be used as the first argument to get.edge.attribute; get.edge.value
is a convenience function which does this automatically. As of v1.7.2, if a network object is passed
to get.edge.attribute it will automatically call get.edge.value instead of returning NULL.
When the parameters na.omit, or deleted. edges.omit are used, the position index of the attribute
values returned will not correspond to the vertex/edge id. To preserved backward compatibility, if
the edge attribute attrname does not exist for any edge, get.edge.attribute will still return NULL
even if null.na=TRUE

network.vertex.names is a convenience function to extract the "vertex.names"” attribute from
all vertices.

The set.attribute functions allow one to set the values of edge, network, or vertex attributes.
set.edge.value is a convenience function which allows edge attributes to be given in adjacency
matrix form, and the assignment form of network.vertex.names is likewise a convenient front-
end to set.vertex.attribute for vertex names. The delete.attribute functions, by contrast,
remove the named attribute from the network, from all edges, or from all vertices (as appropriate).
If attrname is a vector of attribute names, each will be removed in turn. These functions modify
their arguments in place, although a pointer to the modified object is also (invisibly) returned.

Additional practical example of how to load and attach attributes are on the loading.attributes
page.
Some attribute assignment/extraction can be performed conveniently through the various extrac-

tion/replacement operators, although they may be less efficient. See the associated man page for
details.

Value

For the list.attributes methods, a vector containing attribute names. For the get.attribute
methods, a list containing the values of the attribute in question (or simply the value itself, for
get.network.attribute). For the set.attribute and delete.attribute methods, a pointer to
the updated network object.

Note

As of version 1.9 the set.vertex.attribute function can accept and modify multiple attributes
in a single call to improve efficiency. For this case attrname can be a list or vector of attribute

24 attribute. methods

names and value is a list of values corresponding to the elements of attrname (can also be a list of
lists of values if elements in v should have different values).

Author(s)

Carter T. Butts <buttsc@uci.edu>

References

Butts, C. T. (2008). “network: a Package for Managing Relational Data in R.” Journal of Statistical
Software, 24(2). https://www. jstatsoft.org/v24/i02/

See Also

loading.attributes,network, as.network.matrix, as.sociomatrix, as.matrix.network, network.extraction

Examples

#Create a network with three edges
m<-matrix(Q,3,3)

mL1,2]<-1; m[2,3]<-1; m[3,1]<-1
g<-network(m)

#Create a matrix of values corresponding to edges
mm<-m
mm[1,2]1<-7; mm[2,3]<-4; mm[3,1]<-2

#Assign some attributes

set.edge.attribute(g, "myeval”,3:5)
set.edge.value(g, "myeval2"”,mm)
set.network.attribute(g, "mygval”, "boo")
set.vertex.attribute(g, "myvval”, letters[1:3])
network.vertex.names(g) <- LETTERS[1:10]

#List the attributes
list.edge.attributes(g)
list.network.attributes(g)
list.vertex.attributes(g)

#Retrieve the attributes

get.edge.attribute(g$mel, "myeval”) #Note the first argument!
get.edge.value(g, "myeval”) #Another way to do this
get.edge.attribute(g$mel, "myeval2”)

get.network.attribute(g, "mygval”)

get.vertex.attribute(g, "myvval”)

network.vertex.names(g)

#Purge the attributes
delete.edge.attribute(g, "myeval”)
delete.edge.attribute(g, "myeval2"”)
delete.network.attribute(g, "mygval”)
delete.vertex.attribute(g, "myvval”)

https://www.jstatsoft.org/v24/i02/

deletion.methods 25

#Verify that the attributes are gone
list.edge.attributes(g)
list.network.attributes(g)
list.vertex.attributes(g)

#Note that we can do similar things using operators

g %n% "mygval” <- "boo" #Set attributes, as above
g %v% "myvval” <- letters[1:3]

g %e% "myeval” <- mm

g[,,names.eval="myeval"] <- mm #Another way to do this
g %n% "mygval” #Retrieve the attributes

g %v% "myvval”

g %e% "mevval”

as.sociomatrix(g, "myeval”) # Or like this
deletion.methods Remove Elements from a Network Object
Description

delete.edges removes one or more edges (specified by their internal ID numbers) from a net-
work; delete.vertices performs the same task for vertices (removing all associated edges in the
process).

Usage

delete.edges(x, eid, ...)

S3 method for class 'network'
delete.edges(x, eid, ...)

delete.vertices(x, vid, ...)

S3 method for class 'network'

delete.vertices(x, vid, ...)
Arguments

X an object of class network.

eid a vector of edge IDs.

additional arguments to methods.

vid a vector of vertex IDs.

26 deletion.methods

Details

Note that an edge’s ID number corresponds to its order within x$mel. To determine edge IDs, see
get.edgelDs. Likewise, vertex ID numbers reflect the order with which vertices are listed inter-
nally (e.g., the order of x$oel and x$iel, or that used by as.matrix.network.adjacency). When
vertices are removed from a network, all edges having those vertices as endpoints are removed
as well. When edges are removed, the remaining edge ids are NOT permuted and NULL elements
will be left on the list of edges, which may complicate some functions that require eids (such as
set.edge.attribute). The function valid.eids provides a means to determine the set of valid
(non-NULL) edge ids.

Edges can also be added/removed via the extraction/replacement operators. See the associated man
page for details.
Value

Invisibly, a pointer to the updated network; these functions modify their arguments in place.

Author(s)

Carter T. Butts <buttsc@uci.edu>

References

Butts, C. T. (2008). “network: a Package for Managing Relational Data in R.” Journal of Statistical
Software, 24(2). https://www. jstatsoft.org/v24/i02/

See Also

get.edgelDs, network.extraction, valid.eids

Examples

#Create a network with three edges
m<-matrix(o,3,3)

m[1,21<-1; m[2,31<-1; m[3,11<-1
g<-network(m)

as.matrix.network(g)

delete.edges(g,2) #Remove an edge
as.matrix.network(g)
delete.vertices(g,?2) #Remove a vertex

as.matrix.network(g)

#Can also remove edges using extraction/replacement operators
g<-network(m)

gl1,2]1<-0 #Remove an edge
gl,]
gl,1<-0 #Remove all edges

gl,]

https://www.jstatsoft.org/v24/i02/

edgeset.constructors 27

edgeset.constructors Edgeset Constructors for Network Objects

Description

These functions convert relational data in matrix form to network edge sets.

Usage
network.bipartite(x, g, ignore.eval = TRUE, names.eval = NULL, ...)
network.adjacency(x, g, ignore.eval = TRUE, names.eval = NULL, ...)
network.edgelist(x, g, ignore.eval = TRUE, names.eval = NULL, ...)
network.incidence(x, g, ignore.eval = TRUE, names.eval = NULL, ...)
Arguments
X a matrix containing edge information
g an object of class network
ignore.eval logical; ignore edge value information in x?
names.eval a name for the edge attribute under which to store edge values, if any
possible additional arguments (such as edge . check)
Details

Each of the above functions takes a network and a matrix as input, and modifies the supplied
network object by adding the appropriate edges. network.adjacency takes x to be an adjacency
matrix; network.edgelist takes x to be an edgelist matrix; and network. incidence takes x to be

an incidence matrix. network.bipartite takes x to be a two-mode adjacency matrix where rows
and columns reflect each respective mode (conventionally, actors and events); If ignore.eval==FALSE,
(non-zero) edge values are stored as edgewise attributes with name names.eval. The edge.check
argument can be added via . . . and will be passed to add. edges.

Edgelist matrices to be used with network.edgelist should have one row per edge, with the first
two columns indicating the sender and receiver of each edge (respectively). Edge values may be
provided in additional columns. The edge attributes will be created with names corresponding to
the column names unless alternate names are provided via names.eval. The vertices specified in
the first two columns, which can be characters, are added to the network in default sort order. The
edges are added in the order specified by the edgelist matrix.

Incidence matrices should contain one row per vertex, with one column per edge. A non-zero
entry in the matrix means that the edge with the id corresponding to the column index will have an
incident vertex with an id corresponding to the row index. In the directed case, negative cell values
are taken to indicate tail vertices, while positive values indicate head vertices.

Results similar to network.adjacency can also be obtained by means of extraction/replacement
operators. See the associated man page for details.

28 edgeset.constructors

Value

Invisibly, an object of class network; these functions modify their argument in place.

Author(s)

Carter T. Butts <buttsc@uci.edu> and David Hunter <dhunter@stat.psu.edu>

References
Butts, C. T. (2008). “network: a Package for Managing Relational Data in R.” Journal of Statistical
Software, 24(2). https://www. jstatsoft.org/v24/i02/

See Also

loading.attributes, network, network.initialize, add.edges, network.extraction

Examples

#Create an arbitrary adjacency matrix
m<-matrix(rbinom(25,1,0.5),5,5)

diag(m)<-0
g<-network.initialize(5) #Initialize the network
network.adjacency(m,g) #Import the edge data

#Do the same thing, using replacement operators
g<-network.initialize(5)
gl,1<-m

load edges from a data.frame via network.edgelist
edata <-data.frame(

tails=c(1,2,3),

heads=c(2,3,1),

love=c('yes', 'no', 'maybe'),

hate=c(3,-5,2),

stringsAsFactors=FALSE

)

g<-network.edgelist(edata,network.initialize(4),ignore.eval=FALSE)
as.sociomatrix(g,attrname="hate")
g%e%' love'

load edges from an incidence matrix

inci<-matrix(c(1,1,0,0, 0,1,1,0, 1,0,1,0),ncol=3,byrow=FALSE)
inci
g<-network.incidence(inci,network.initialize(4,directed=FALSE))
as.matrix(g)

https://www.jstatsoft.org/v24/i02/

emon 29

emon Interorganizational Search and Rescue Networks (Drabek et al.)

Description

Drabek et al. (1981) provide seven case studies of emergent multi-organizational networks (EMONSs)
in the context of search and rescue (SAR) activities. Networks of interaction frequency are reported,
along with several organizational attributes.

Usage

data(emon)

Format

A list of 7 network objects:

[[1]]1 Cheyenne network Cheyenne SAR EMON
[[2]] HurrFrederic network Hurricane Frederic SAR EMON
[[3]] LakePomona network Lake Pomona SAR EMON

[[4]]1 MtSi network Mt. Si SAR EMON

[[5]]1 MtStHelens network Mt. St. Helens SAR EMON
[[6]1] Texas network Texas Hill Country SAR EMON
[[7]1 Wichita network Wichita Falls SAR EMON

Each network has one edge attribute:

Frequency numeric Interaction frequency (1-4; 1=most frequent)

Each network also has 8 vertex attributes:

Command.Rank.Score numeric Mean rank in the command structure
Decision.Rank.Score numeric =~ Mean rank in the decision process

Formalization numeric Degree of formalization
Location character Location code

Paid.Staff numeric ~ Number of paid staff
Sponsorship character Sponsorship type
vertex.names character ~Organization name
Volunteer.Staff numeric ~ Number of volunteer staff

Details

All networks collected by Drabek et al. reflect reported frequency of organizational interaction dur-
ing the search and rescue effort; the (i,j) edge constitutes i’s report regarding interaction with j, with
non-adjacent vertices reporting no contact. Frequency is rated on a four-point scale, with 1 indicat-
ing the highest frequency of interaction. (Response options: 1="continuously”, 2="about once an

30

emon

hour”, 3="every few hours”, 4="about once a day or less”) This is stored within the "Frequency”
edge attribute.

For each network, several covariates are recorded as vertex attributes:

Command.Rank.Score Mean (reversed) rank for the prominence of each organization in the com-
mand structure of the response, as judged by organizational informants.

Decision.Rank.Score Mean (reversed) rank for the prominence of each organization in decision
making processes during the response, as judged by organizational informants.

Formalization An index of organizational formalization, ranging from 0 (least formalized) to 4
(most formalized).

Localization For each organization, "L" if the organization was sited locally to the impact area,
"NL" if the organization was not sited near the impact area, "B" if the organization was sited
at both local and non-local locations.

Paid.Staff Number of paid staff employed by each organization at the time of the response.

Sponsorship The level at which each organization was sponsored (e.g., "City", "County”, "State"”,
"Federal”, and "Private").

vertex.names The identity of each organization.

Volunteer.Staff Number of volunteer staff employed by each organization at the time of the re-
sponse.

Note that where intervals were given by the original source, midpoints have been substituted. For
detailed information regarding data coding and procedures, see Drabek et al. (1981).

Source

Drabek, T.E.; Tamminga, H.L.; Kilijanek, T.S.; and Adams, C.R. (1981). Data from Managing
Multiorganizational Emergency Responses: Emergent Search and Rescue Networks in Natural Dis-
aster and Remote Area Settings. Program on Technology, Environment, and Man Monograph 33.
Institute for Behavioral Science, University of Colorado.

See Also

network

Examples

data(emon) #lLoad the emon data set

#Plot the EMONs

par(mfrow=c(3,3))

for(i in 1:length(emon))
plot(emon[[i]],main=names(emon)[i], edge.lwd="Frequency")

flo 31

flo Florentine Wedding Data (Padgett)

Description

This is a data set of Padgett (1994), consisting of weddings among leading Florentine families. This
data is stored in symmetric adjacency matrix form.

Usage
data(flo)

Source

Padgett, John F. (1994). “Marriage and Elite Structure in Renaissance Florence, 1282-1500.” Paper
delivered to the Social Science History Association.

References
Wasserman, S. and Faust, K. (1994) Social Network Analysis: Methods and Applications, Cam-
bridge: Cambridge University Press.

See Also

network

Examples

data(flo)
nflo<-network(flo,directed=FALSE) #Convert to network object form
all(nflo[,]==f1lo0) #Trust, but verify

#A fancy display:
plot(nflo,displaylabels=TRUE,boxed.labels=FALSE, label.cex=0.75)

get.edges Retrieve Edges or Edge IDs Associated with a Given Vertex

Description

get.edges retrieves a list of ed