Package 'skedastic’

January 8, 2024

Type Package

Title Handling Heteroskedasticity in the Linear Regression Model
Version 2.0.2
Description Implements numerous methods for testing for, modelling, and correcting for heteroskedasticity in the classical linear regression model. The most novel contribution of the package is found in the functions that implement the as-yet-unpublished auxiliary linear variance models and auxiliary nonlinear variance models that are designed to estimate error variances in a heteroskedastic linear regression model. These models follow principles of statistical learning described in Hastie (2009) doi:10.1007/978-0-387-21606-5. The nonlinear version of the model is estimated using quasi-likelihood methods as described in Seber and Wild (2003, ISBN: 0-471-47135-6). Bootstrap methods for approximate confidence intervals for error variances are implemented as described in Efron and Tibshirani (1993, ISBN: 978-1-4899-4541-9), including also the expansion technique described in Hesterberg (2014) doi:10.1080/00031305.2015.1089789. The wild bootstrap employed here follows the description in Davidson and Flachaire (2008) doi:10.1016/j.jeconom.2008.08.003. Tuning of hyper-parameters makes use of a golden section search function that is modelled after the MATLAB function of Zarnowiec (2022)
<https://www.mathworks.com/matlabcentral/fileexchange/ 25919-golden-section-method-algorithm>.
A methodological description of the algorithm can be found in Fox (2021, ISBN: 978-1-003-00957-3).
There are 25 different functions that implement hypothesis tests for heteroskedasticity. These include a test based on Anscombe (1961) https://projecteuclid.org/euclid.bsmsp/1200512155, Ramsey's (1969) BAMSET Test doi:10.1111/j.2517-6161.1969.tb00796.x, the tests of Bickel (1978) doi:10.1214/aos/1176344124, Breusch and Pagan (1979) doi:10.2307/1911963 with and without the modification proposed by Koenker (1981) doi:10.1016/0304-4076(81)90062-2, Carapeto and Holt (2003) doi:10.1080/0266476022000018475, Cook and Weisberg (1983) doi:10.1093/biomet/70.1.1 (including their graphical methods), Diblasi and Bowman (1997) doi:10.1016/S0167-7152(96)00115-0, Dufour, Khalaf,

Bernard, and Genest (2004) doi:10.1016/j.jeconom.2003.10.024, Evans and King (1985) doi:10.1016/0304-4076(85)90085-5 and Evans and King (1988) doi:10.1016/0304-4076(88)90006-1, Glejser (1969)
doi:10.1080/01621459.1969.10500976 as formulated by
Mittelhammer, Judge and Miller (2000, ISBN: 0-521-62394-4), Godfrey and Orme (1999) doi:10.1080/07474939908800438, Goldfeld and Quandt (1965) doi:10.1080/01621459.1965.10480811, Harrison and McCabe (1979) doi:10.1080/01621459.1979.10482544, Harvey (1976) doi:10.2307/1913974, Honda (1989) doi:10.1111/j.2517-6161.1989.tb01749.x, Horn (1981) doi:10.1080/03610928108828074, Li and Yao (2019) doi:10.1016/j.ecosta.2018.01.001 with and without the modification of Bai, Pan, and Yin (2016) doi:10.1007/s11749-017-0575-x, Rackauskas and Zuokas (2007) doi:10.1007/s10986-007-0018-6, Simonoff and Tsai (1994) doi:10.2307/2986026 with and without the modification of Ferrari, Cysneiros, and Cribari-Neto (2004) doi:10.1016/S0378-3758(03)00210-6, Szroeter (1978) doi:10.2307/1913831, Verbyla (1993) doi:10.1111/j.2517-6161.1993.tb01918.x, White (1980) doi:10.2307/1912934, Wilcox and Keselman (2006) doi:10.1080/10629360500107923, Yuce (2008) https://dergipark.org.tr/en/pub/iuekois/issue/8989/112070, and Zhou, Song, and Thompson (2015) doi:10.1002/cjs.11252. Besides these heteroskedasticity tests, there are supporting functions that compute the BLUS residuals of Theil (1965) doi:10.1080/01621459.1965.10480851, the conditional two-sided p-values of Kulinskaya (2008) arXiv:0810.2124v1, and probabilities for the nonparametric trend statistic of Lehmann (1975,
ISBN: 0-816-24996-1). For handling heteroskedasticity, in addition to the new auxiliary variance model methods, there is a function to implement various existing Heteroskedasticity-Consistent Covariance Matrix Estimators from the literature, such as those of White (1980) doi:10.2307/1912934, MacKinnon and White (1985) doi:10.1016/0304-4076(85)90158-7, Cribari-Neto (2004) doi:10.1016/S0167-9473(02)00366-3, Cribari-Neto et al. (2007)
doi:10.1080/03610920601126589, Cribari-Neto and da Silva (2011)
doi:10.1007/s10182-010-0141-2, Aftab and Chang (2016)
doi:10.18187/pjsor.v12i2.983, and Li et al. (2017)
doi:10.1080/00949655.2016.1198906.

RdMacros Rdpack

Depends R (>=3.6.0),
Imports Rdpack ($>=0.11 .1$), broom ($>=0.5 .6$), pracma ($>=2.2 .9$),
CompQuadForm ($>=1.4 .3$), MASS $(>=7.3 .47)$, bazar ($>=1.0 .11$),
quadprog ($>=1.5 .8$), inflection $(>=1.3 .5)$, Rfast $(>=2.0 .6)$, caret ($>=6.0 .90$), Matrix ($>=1.4 .1$), quadprogXT ($>=0.0 .5$), slam ($>=0.1 .49$), ROI ($>=1.0 .0$), osqp ($>=0.6 .0 .5$), $\mathrm{mgcv}(>=$ 1.8.40), ROI.plugin.qpoases ($>=1.0 .2$),

Suggests knitr, rmarkdown, devtools, lmtest, car, tseries, tibble, testthat, mlbench, expm, arrangements, quantreg, gmp, Rmpfr, cubature, mvtnorm, lmboot, sandwich, cmna
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
URL https://github.com/tjfarrar/skedastic
BugReports https://github.com/tjfarrar/skedastic/issues
NeedsCompilation no
Author Thomas Farrar [aut, cre] (https://orcid.org/0000-0003-0744-6972),
University of the Western Cape [cph]
Maintainer Thomas Farrar tjfarrar@alumni.uwaterloo.ca
Repository CRAN
Date/Publication 2024-01-08 15:30:08 UTC
R topics documented:
alvm.fit 4
anlvm.fit 9
anscombe 13
avm.ci 14
avm.fwls 17
avm.vcov 19
bamset 20
bickel 22
blus 24
bootlm 26
breusch_pagan 28
carapeto_holt 29
cook_weisberg 31
countpeaks 33
dDtrend 34
diblasi_bowman 35
dpeak 37
dpeakdat 38
dufour_etal 38
evans_king 40
glejser 42
godfrey_orme 43
goldfeld_quandt 45
GSS 48
harrison_mccabe 49
harvey 51
hccme 52
hetplot 54
honda 56
horn 58
li_yao 60
pDtrend 62
ppeak 63
pRQF 64
rackauskas_zuokas 66
simonoff_tsai 68
szroeter 71
twosidedpval 72
T_alpha 74
verbyla 75
white 76
wilcox_keselman 77
yuce 79
zhou_etal 80
Index 83
alvm.fit Auxiliary Linear Variance Model

Description

Fits an Auxiliary Linear Variance Model (ALVM) to estimate the error variances of a heteroskedastic linear regression model.

Usage

alvm.fit(
mainlm, M = NULL,
model = c("cluster", "spline", "linear", "polynomial", "basic", "homoskedastic"), varselect = c("none", "hettest", "cv.linear", "cv.cluster", "qgcv.linear",
"qgcv.cluster"),
lambda = c("foldcv", "qgcv"),
nclust = c("elbow.swd", "elbow.mwd", "elbow.both", "foldcv"),
clustering = NULL,
polypen = c("L2", "L1"),
$d=2 L$,
solver = c("auto", "quadprog", "quadprogXT", "roi", "osqp"), tsk = NULL,
tsm = NULL,
constol = 1e-10,
cvoption = c("testsetols", "partitionres"),
nfolds = 5L,
reduce2homosked = TRUE,
)

Arguments

model A character corresponding to the type of ALVM to be fitted: "cluster" for the
mainlm

M
varselect
lambda
nclust

Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " x " and " y " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e". clustering ALVM, "spline" for the thin-plate spline ALVM, "linear" for the linear ALVM, "polynomial" for the penalised polynomial ALVM, "basic" for the basic or naive ALVM, and "homoskedastic" for the homoskedastic error variance estimator, $e^{\prime} e /(n-p)$.

Either a double of length 1 indicating the value of the penalty hyperparameter λ, or a character specifying the tuning method for choosing λ : "foldcv" for K-fold cross-validation (the default) or "qgcv" for quasi-generalised crossvalidation. This argument is ignored if model is neither "polynomial" nor "spline".
Either an integer of length 1 indicating the value of the number of clusters n_{c}, or a character specifying the tuning method for choosing n_{c} : "elbow. swd" for the elbow method using a sum of within-cluster distances criterion, "elbow.mwd" for the elbow method using a maximum within-cluster distances criterion, "elbow.both" for rounded average of the results of the previous two, and "foldcv" for K-fold cross-validation. This argument is ignored if model is not "cluster".

clustering	A list object of class "doclust". If set to NULL (the default), such an object is generated (ignored if cluster is FALSE)
polypen	A character, either "L2" or "L1", indicating whether an L_{2} norm penalty (ridge regression) or L_{1} norm penalty (LASSO) should be used with the polynomial model. This argument is ignored if model is not "polynomial".
d	An integer specifying the degree of polynomial to use in the penalised polynomial ALVM; defaults to 2L. Ignored if model is other than "polynomial". Setting d to 1 L is not identical to setting model to "linear", because the linear ALVM does not have a penalty term in the objective function.
solver	A character, indicating which Quadratic Programming solver function to use to estimate γ. The options are "quadprog", corresponding to solve. QP. compact from the quadprog package; package; "quadprogXT", corresponding to buildQP from the quadprogXT package; "roi", corresponding to the qpoases solver implemented in ROI_solve from the ROI package with ROI.plugin.qpoases add-on; and "osqp", corresponding to solve_osqp from the osqp package. Alternatively, the user can specify "auto" (the default), in which case the function will select the solver that seems to work best for the chosen model.
tsk	An integer corresponding to the basis dimension k to be passed to the [mgcv]\{s\} function for fitting of a thin-plate spline ALVM; see [mgcv]\{choose.k\} for more details about choosing the parameter and defaults. Ignored if model is not "spline".
tsm	An integer corresponding to the order m of the penalty to be passed to the [mgcv]\{s\} function for fitting of a thin-plate spline ALVM. If left as the default (NULL), it will be set to 2 , corresponding to 2 nd derivative penalties for a cubic spline.
constol	A double corresponding to the boundary value for the constraint on error variances. Of course, the error variances must be non-negative, but setting the constraint boundary to 0 can result in zero estimates that then result in infinite weights for Feasible Weighted Least Squares. The boundary value should thus be positive, but small enough not to bias estimation of very small variances. Defaults to 1e-10.
cvoption	A character, either "testsetols" or "partitionres", indicating how to obtain the observed response values for each test fold when performing K-fold cross-validation on an ALVM. The default technique, "testsetols", entails fitting a linear regression model to the test fold of observations from the original response vector y and predictor matrix X. The squared residuals from this regression are the observed responses that are predicted from the trained model to compute the cross-validated squared error loss function. Under the other technique, "partitionres", the squared residuals from the full linear regression model are partitioned into training and test folds and the squared residuals in the test fold are the observed responses that are predicted for computation of the cross-validated loss.
nfolds	An integer specifying the number of folds K to use for cross-validation, if the λ and/or n_{c} hyperparameters are to be tuned using cross-validation. Defaults to 5 L . One must ensure that each test fold contains at least $p+1$ observations if the "testsetols" technique is used with cross-validation, so that there are enough degrees of freedom to fit a linear model to the test fold.

A logical indicating whether the homoskedastic error variance estimator $e^{\prime} e /(n-$ p) should be used if the variable selection procedure does not select any variables. Defaults to TRUE.
Other arguments that can be passed to (non-exported) helper functions, namely:

- greedy, a logical passed to the functions implementing best subset selection, indicating whether or not to use a greedy search rather than exhaustive search for the best subset. Defaults to FALSE, but coerced to TRUE unconditionally if $p>9$.
- distmetric, a character specifying the distance metric to use in computing distance for the clustering algorithm. Corresponds to the method argument of dist and defaults to "euclidean"
- linkage, a character specifying the linkage rule to use in agglomerative hierarchical clustering. Corresponds to the method argument of hclust and defaults to "complete"
- nclust2search, an integer vector specifying the values of n_{c} to try when tuning n_{c} by cross-validation. Defaults to 1L:20L
- alpha, a double specifying the significance level threshold to use when applying heteroskedasticity test for the purpose of feature selection in an ALVM; defaults to 0.1
- testname, a character corresponding to the name of a function that performs a heteroskedasticity test. The function must either be one that takes a deflator argument or breusch_pagan. Defaults to evans_king

Details

The ALVM model equation is

$$
e \circ e=(M \circ M) L \gamma+u
$$

, where e is the Ordinary Least Squares residual vector, M is the annihilator matrix $M=I-$ $X\left(X^{\prime} X\right)^{-1} X^{\prime}, L$ is a linear predictor matrix, u is a random error vector, γ is a p-vector of unknown parameters, and o denotes the Hadamard (elementwise) product. The construction of L depends on the method used to model or estimate the assumed heteroskedastic function $g(\cdot)$, a continuous, differentiable function that is linear in γ and by which the error variances ω_{i} of the main linear model are related to the predictors X_{i}.. This method has been developed as part of the author's doctoral research project.

Depending on the model used, the estimation method could be Inequality-Constrained Least Squares or Inequality-Constrained Ridge Regression. However, these are both special cases of Quadratic Programming. Therefore, all of the models are fitted using Quadratic Programming.
Several techniques are available for feature selection within the model. The LASSO-type model handles feature selection via a shrinkage penalty. For this reason, if the user calls the polynomial model with L_{1}-norm penalty, it is not necessary to specify a variable selection method, since this is handled automatically. Another feature selection technique is to use a heteroskedasticity test that tests for heteroskedasticity linked to a particular predictor variable (the 'deflator'). This test can be conducted with each features in turn serving as the deflator. Those features for which the null hypothesis of homoskedasticity is rejected at a specified significance level alpha are selected. A third feature selection technique is best subset selection, where the model is fitted with all possible subsets of features. The models are scored in terms of some metric, and the best-performing
subset of features is selected. The metric could be squared-error loss computed under K-fold crossvalidation or using quasi-generalised cross-validation. (The quasi- prefix refers to the fact that generalised cross-validation is, properly speaking, only applicable to a linear fitting method, as defined by Hastie et al. (2009). ALVMs are not linear fitting methods due to the inequality constraint). Since best subset selection requires fitting 2^{p-1} models (where $p-1$ is the number of candidate features), it is infeasible for large p. A greedy search technique can therefore be used as an alternative, where one begins with a null model and adds the feature that leads to the best improvement in the metric, stopping when no new feature leads to an improvement.
The polynomial and thin-plate spline ALVMs have a penalty hyperparameter λ that must either be specified or tuned. K-fold cross-validation or quasi-generalised cross-validation can be used for tuning. The clustering ALVM has a hyperparameter n_{c}, the number of clusters into which to group the observations (where error variances are assumed to be equal within each cluster). n_{c} can be specified or tuned. The available tuning methods are an elbow method (using a sum of withincluster distances criterion, a maximum within-cluster distance criterion, or a combination of the two) and K-fold cross-validation.

Value

An object of class "alvm.fit", containing the following:

- coef. est, a vector of parameter estimates, $\hat{\gamma}$
- var.est, a vector of estimates $\hat{\omega}$ of the error variances for all observations
- method, a character corresponding to the model argument
- ols, the lm object corresponding to the original linear regression model
- fitinfo, a list containing four named objects: Msq (the elementwise-square of the annihilator matrix M), L (the linear predictor matrix L), clustering (a list object with results of the clustering procedure), and gam. object, an object of class "gam" (see gamObject). The last two are set to NA unless the clustering ALVM or thin-plate spline ALVM is used, respectively
- hyperpar, a named list of hyperparameter values, lambda, nclust, tsk, and d, and tuning methods, lambdamethod and nclustmethod. Values corresponding to unused hyperparameters are set to NA.
- selectinfo, a list containing two named objects, varselect (the value of the eponymous argument), and selectedcols (a numeric vector with column indices of X that were selected, with 1 denoting the intercept column)
- pentype, a character corresponding to the polypen argument
- solver, a character corresponding to the solver argument (or specifying the QP solver actually used, if solver was set to "auto")
- constol, a double corresponding to the constol argument

References

Hastie T, Tibshirani R, Friedman JH (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edition. Springer, New York.

See Also

alvm.fit, avm.ci

Examples

```
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
myalvm <- alvm.fit(mtcars_lm, model = "cluster")
```

```
anlvm.fit
```

Auxiliary Nonlinear Variance Model

Description

Fits an Auxiliary Nonlinear Variance Model (ANLVM) to estimate the error variances of a heteroskedastic linear regression model.

Usage

anlvm.fit(
mainlm,
g,
M = NULL,
cluster = FALSE,
varselect = c("none", "hettest", "cv.linear", "cv.cluster", "qgcv.linear",
"qgcv.cluster"),
nclust = c("elbow.swd", "elbow.mwd", "elbow.both"),
clustering = NULL,
param.init = function(q) stats: $\operatorname{runif(n=q,~min=-5,~max~=5),~}$
maxgridrows = 20L,
nconvstop $=3 \mathrm{~L}$,
zerosallowed = FALSE,
maxitql $=100 \mathrm{~L}$,
tolql $=1 \mathrm{e}-08$,
nestedql = FALSE,
reduce2homosked = TRUE,
cvoption = c("testsetols", "partitionres"),
nfolds $=5 \mathrm{~L}$,
)

Arguments

mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " x " and " y " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

g	A numeric-valued function of one variable, or a character denoting the name of such a function. "sq" is allowed as a way of denoting function $(x) x^{\wedge} 2$.
M	An $n \times n$ annihilator matrix. If NULL (the default), this will be calculated from the mainlm object
cluster	A logical; should the design matrix X be replaced with an $n \times n_{c}$ matrix of ones and zeroes, with a single one in each row, indicating assignments of the n observations to n_{c} clusters using an agglomerative hierarchical clustering algorithm. In this case, the dimensionality of γ is n_{c} and not p. Defaults to FALSE
varselect	Either a character indicating how variable selection should be conducted, or an integer vector giving indices of columns of the predictor matrix (model. matrix of mainlm) to select. The vector must include 1L for the intercept to be selected. If a character, it must be one of the following: - "none": No variable selection is conducted; - "hettest": Variable selection is conducted by applying a heteroskedasticity test with each feature in turn serving as the 'deflator' variable - "cv.linear": Variable selection is conducted by best subset selection on the auxiliary linear variance model (linear specification), using squarederror loss computed under K-fold cross-validation - "cv.cluster": Variable selection is conducted by best subset selection on the auxiliary linear variance model (clustering specification), using squarederror loss computed under K-fold cross-validation - "qgcv.linear": Variable selection is conducted by best subset selection on the auxiliary linear variance model (linear specification), using squarederror loss computed under quasi-generalised cross-validation - "qgcv.cluster": Variable selection is conducted by best subset selection on the auxiliary linear variance model (clustering specification), using squared-error loss computed under quasi-generalised cross-validation
nclust	A character indicating which elbow method to use to select the number of clusters (ignored if cluster is FALSE). Alternatively, an integer specifying the number of clusters
clustering	A list object of class "doclust". If set to NULL (the default), such an object is generated (ignored if cluster is FALSE)
param.init	Specifies the initial values of the parameter vector to use in the Gauss-Newton fitting algorithm. This can either be a function for generating the initial values from a probability distribution, a list containing named objects corresponding to the arguments of seq (specifying a sequence of scalar values that will be passed to expand.grid), or a numeric vector specifying a single initial parameter vector
maxgridrows	An integer indicating the maximum number of initial values of the parameter vector to try, in case of param. init being a function or a list used to generate a grid. Defaults to 20L.
nconvstop	An integer indicating how many times the quasi-likelihood estimation algorithm should converge before the grid search across different initial parameter values is truncated. Defaults to 3L. If nconvstop >= maxgridrows, no early stopping rule will be used.

zerosallowed \quad| A logical indicating whether 0 values are acceptable in the initial values of the |
| :--- |
| parameter vector. Defaults to FALSE. |

maxitql
An integer specifying the maximum number of iterations to run in the Gauss-
Newton algorithm for quasi-likelihood estimation. Defaults to 100L.
tolql
A double specifying the convergence criterion for the Gauss-Newton algorithm;
defaults to $1 \mathrm{e}-8$. The criterion is applied to the L _ 2 norm of the difference
between parameter vectors in successive iterations.

A logical indicating whether the homoskedastic error variance estimator $e^{\prime} e /(n-$ $p)$ should be used if the variable selection procedure does not select any variables. Defaults to TRUE.
cvoption A character, either "testsetols" or "partitionres", indicating how to obtain the observed response values for each test fold when performing K-fold cross-validation on an ALVM. The default technique, "testsetols", entails fitting a linear regression model to the test fold of observations from the original response vector y and predictor matrix X. The squared residuals from this regression are the observed responses that are predicted from the trained model to compute the cross-validated squared error loss function. Under the other technique, "partitionres", the squared residuals from the full linear regression model are partitioned into training and test folds and the squared residuals in the test fold are the observed responses that are predicted for computation of the cross-validated loss.
nfolds An integer specifying the number of folds K to use for cross-validation, if the λ and/or n_{c} hyperparameters are to be tuned using cross-validation. Defaults to 5 L . One must ensure that each test fold contains at least $p+1$ observations if the "testsetols" technique is used with cross-validation, so that there are enough degrees of freedom to fit a linear model to the test fold.
Other arguments that can be passed to (non-exported) helper functions, namely:

- greedy, a logical passed to the functions implementing best subset selection, indicating whether or not to use a greedy search rather than exhaustive search for the best subset. Defaults to FALSE, but coerced to TRUE unconditionally if $p>9$.
- distmetric, a character specifying the distance metric to use in computing distance for the clustering algorithm. Corresponds to the method argument of dist and defaults to "euclidean"
- linkage, a character specifying the linkage rule to use in agglomerative hierarchical clustering. Corresponds to the method argument of hclust and defaults to "complete"
- alpha, a double specifying the significance level threshold to use when applying heteroskedasticity test for the purpose of feature selection in an ALVM; defaults to 0.1
- testname, a character corresponding to the name of a function that performs a heteroskedasticity test. The function must either be one that takes a deflator argument or breusch_pagan. Defaults to evans_king

Details

The ANLVM model equation is

$$
e_{i}^{2}=\sum_{k=1}^{n} g\left(X_{k}^{\prime} \cdot \gamma\right) m_{i k}^{2}+u_{i}
$$

, where e_{i} is the i th Ordinary Least Squares residual, X_{k}. is a vector corresponding to the k th row of the $n \times p$ design matrix $X, m_{i k}^{2}$ is the (i, k) th element of the annihilator matrix $M=$ $I-X\left(X^{\prime} X\right)^{-1} X^{\prime}, u_{i}$ is a random error term, γ is a p-vector of unknown parameters, and $g(\cdot)$ is a continuous, differentiable function that need not be linear in γ, but must be expressible as a function of the linear predictor $X_{k}^{\prime} . \gamma$. This method has been developed as part of the author's doctoral research project.
The parameter vector γ is estimated using the maximum quasi-likelihood method as described in section 2.3 of Seber and Wild (2003). The optimisation problem is solved numerically using a Gauss-Newton algorithm.
For further discussion of feature selection and the methods for choosing the number of clusters to use with the clustering version of the model, see alvm. fit.

Value

An object of class "anlvm.fit", containing the following:

- coef.est, a vector of parameter estimates, $\hat{\gamma}$
- var.est, a vector of estimates $\hat{\omega}$ of the error variances for all observations
- method, either "cluster" or "functionalform", depending on whether cluster was set to TRUE
- ols, the lm object corresponding to the original linear regression model
- fitinfo, a list containing three named objects, g (the heteroskedastic function), Msq (the elementwise-square of the annihilator matrix M), Z (the design matrix used in the ANLVM, after feature selection if applicable), and clustering (a list object with results of the clustering procedure, if applicable).
- selectinfo, a list containing two named objects, varselect (the value of the eponymous argument), and selectedcols (a numeric vector with column indices of X that were selected, with 1 denoting the intercept column)
- qlinfo, a list containing nine named objects: converged (a logical, indicating whether the Gauss-Newton algorithm converged for at least one initial value of the parameter vector), iterations (the number of Gauss-Newton iterations used to obtain the parameter estimates returned), Smin (the minimum achieved value of the objective function used in the GaussNewton routine), and six arguments passed to the function (nested, param. init, maxgridrows, nconvstop, maxitql, and tolql)

References

Seber GAF, Wild CJ (2003). Nonlinear Regression. Wiley, Hoboken, NJ.

See Also

alvm.fit, avm.ci

Examples

```
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
myanlvm <- anlvm.fit(mtcars_lm, g = function(x) x ^ 2,
    varselect = "qgcv.linear")
```


Description

This function implements the method of Anscombe (1961) for testing for heteroskedasticity in a linear regression model, with or without the studentising modification of Bickel (1978).

Usage

anscombe(mainlm, studentise $=$ TRUE, statonly $=$ FALSE)

Arguments

mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " x " and " y " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
studentise A logical. Should studentising modification of Bickel (1978) be implemented? Defaults to TRUE; if FALSE, the original form of the test proposed by Anscombe (1961) is used.
statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

Details

Anscombe's Test is among the earliest suggestions for heteroskedasticity diagnostics in the linear regression model. The test is not based on formally derived theory but on a test statistic that Anscombe intuited to be approximately standard normal under the null hypothesis of homoskedasticity. Bickel (1978) discusses the test and suggests a studentising modification (included in this function) as well as a robustifying modification (included in bickel). The test is two-tailed.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

Anscombe FJ (1961). "Examination of Residuals." In Neyman J (ed.), Fourth Berkeley Symposium on Mathematical Statistics and Probability June 20-July 30, 1960, 1-36. Berkeley: University of California Press.

Bickel PJ (1978). "Using Residuals Robustly I: Tests for Heteroscedasticity, Nonlinearity." The Annals of Statistics, 6(2), 266-291.

See Also

bickel, which is a robust extension of this test.

Examples

```
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
anscombe(mtcars_lm)
```

avm.ci

Description

Uses bootstrap methods to compute approximate confidence intervals for error variances in a heteroskedastic linear regression model based on an auxiliary linear variance model (ALVM) or auxiliary nonlinear variance model (ANLVM).

Usage

avm.ci(object, bootobject = NULL, bootavmobject = NULL, jackobject = NULL, bootCImethod = c("pct", "bca", "stdnorm"), bootsampmethod = c("pairs", "wild"), Bextra = 500L, Brequired = 1000L, conf.level = 0.95, expand = TRUE, retune = FALSE, resfunc = c("identity", "hccme"), qtype = 6, rm_on_constraint = TRUE, rm_nonconverged = TRUE, jackknife_point = FALSE,

```
)
```


Arguments

$\left.\begin{array}{ll}\text { object } & \begin{array}{l}\text { An object of class "alvm. fit" or of class "anlvm. fit", containing information } \\ \text { on a fitted ALVM or ANLVM }\end{array} \\ \text { bootobject } & \text { An object of class "bootlm", containing information on a set of } B \text { bootstrapped } \\ \text { versions of a linear regression model, obtained by a nonparametric bootstrap } \\ \text { method suitable for heteroskedastic linear models. If set to NULL (the default), it } \\ \text { is generated by calling bootlm. }\end{array}\right\}$

resfunc	Either a character naming a function to call to apply a transformation to the Ordinary Least Squares residuals, or a function to apply for the same purpose. This argument is ignored if sampmethod is "pairs". The only two character values accepted are "identity", in which case no transformation is applied to the residuals, and "hccme", in which case the transformation corresponds to a heteroskedasticity-consistent covariance matrix estimator calculated from hccme. If resfunc is a function, it is assumed that its first argument is the numeric vector of residuals.
qtype	A numeric corresponding to the type argument of quantile. Defaults to 6.

A logical specifying whether to exclude bootstrapped ALVMs from the interval estimation method where the ALVM parameter estimate falls on the constraint boundary. Defaults to TRUE.
rm_nonconverged
A logical specifying whether to exclude bootstrapped ANLVMs from the interval estimation method where the optimisation algorithm used in quasi-likelihood estimation of the ANLVM parameter did not converge. Defaults to TRUE.
jackknife_point
A logical specifying whether to replace the point estimates of the error variances ω with jackknife estimates based only on the leave-one-out auxiliary models where the parameter estimates do not lie on the constraint boundary (in the ALVM case) or where the quasi-likelihood estimation algorithm converged (in the ANLVM case). Defaults to FALSE.
Other arguments to pass to non-exported helper functions

Details

B resampled versions of the original linear regression model (which can be accessed using object $\$ 0$ ls) are generated using a nonparametric bootstrap method that is suitable for heteroskedastic linear regression models, namely either the pairs bootstrap or the wild bootstrap (bootstrapping residuals is not suitable). Depending on the class of object, either an ALVM or an ANLVM is fit to each of the bootstrapped regression models. The distribution of the B bootstrap estimates of each error variance $\omega_{i}, i=1,2, \ldots, n$, is used to construct an approximate confidence interval for ω_{i}. This is done using one of three methods. The first is the percentile interval, which simply takes the empirical $\alpha / 2$ and $1-\alpha / 2$ quantiles of the i th bootstrap variance estimates. The second is the Bias-Corrected and accelerated (BCa) method as described in Efron and Tibshirani (1993), which is intended to improve on the percentile interval (although simulations have not found it to yield better coverage probabilities). The third is the naive standard normal interval, which takes $\hat{\omega}_{i} \pm z_{1-\alpha / 2} \widehat{\mathrm{SE}}$, where $\widehat{\mathrm{SE}}$ is the standard deviation of the B bootstrap estimates of ω_{i}. By default, the expansion technique described in Hesterberg (2015) is also applied; evidence from simulations suggests that this does improve coverage probabilities.
Technically, the hyperparameters of the ALVM, such as λ (for a penalised polynomial or thin-plate spline model) or n_{c} (for a clustering model) should be re-tuned every time the ALVM is fitted to another bootstrapped regression model. However, due to the computational cost, this is not done by avm.ci unless retune is set to TRUE.
When obtained from ALVMs, bootstrap estimates of ω_{i} that fall on the constraint boundary (i.e., are estimated to be near 0) are ignored by default; there is an attempt to obtain Brequired bootstrap
estimates of each ω_{i} that do not fall on the constraint boundary. This fine-tuning can be turned off by setting the rm_onconstraint argument to FALSE; the amount of effort put into obtaining non-boundary estimates is controlled using the Bextra argument. When ANLVMs are used, the default behaviour is to try to obtain Brequired bootstrap estimates of ω where the Gauss-Newton algorithm applied for quasi-likelihood estimation has converged, and ignore estimates obtained from non-convergent cases. This behaviour can be toggled using the rm_nonconverged argument.

Value

An object of class "avm.ci", containing the following:

- climits, an $n \times 2$ matrix with lower confidence limits in the first column and upper confidence limits in the second
- var.est, a vector of length n of point estimates $\hat{\omega}$ of the error variances. This is the same vector passed within object, unless jackknife_point is TRUE.
- conf. level, corresponding to the eponymous argument
- bootCImethod, corresponding to the eponymous argument
- bootsampmethod, corresponding to the eponymous argument or otherwise extracted from bootobject

References

Efron B, Tibshirani RJ (1993). An Introduction to the Bootstrap. Springer Science+Business Media, Dordrecht.

Hesterberg T (2015). "What Teachers Should Know about the Bootstrap: Resampling in the Undergraduate Statistics Curriculum."

See Also

alvm.fit, anlvm.fit, Efron and Tibshirani (1993)

Examples

```
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
myalvm <- alvm.fit(mtcars_lm, model = "cluster")
# Brequired would of course not be so small in practice
ci.alvm <- avm.ci(myalvm, Brequired = 5)
```


Description

This function applies feasible weighted least squares (FWLS) to a linear regression model using error variance estimates obtained from an auxiliary linear variance model fit using alvm.fit or from an auxiliary nonlinear variance model fit using anlvm.fit.

Usage

avm.fwls(object, fastfit $=$ FALSE)

Arguments

object Either an object of class "alvm.fit" or an object of class "anlvm.fit"
fastfit A logical. If FALSE (the default), the linear regression model is fit using lm; otherwise, using lm.wfit

Details

The function simply calculates

$$
\hat{\beta}=\left(X^{\prime} \hat{\Omega}^{-1} X\right)^{-1} X^{\prime} \hat{\Omega}^{-1} y
$$

, where X is the design matrix, y is the response vector, and $\hat{\Omega}$ is the diagonal variance-covariance matrix of the random errors, whose diagonal elements have been estimated by an auxiliary variance model.

Value

Either an object of class "lm" (if fastfit is FALSE) or otherwise a generic list object

References

There are no references for Rd macro \insertAllCites on this help page.

See Also

alvm.fit, anlvm.fit, avm.vcov

Examples

```
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
myalvm <- alvm.fit(mainlm = mtcars_lm, model = "linear",
    varselect = "qgcv.linear")
myfwls <- avm.fwls(myalvm)
cbind(coef(mtcars_lm), coef(myfwls))
```


Description

The function simply calculates

$$
\operatorname{Cov} \hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} \hat{\Omega} X\left(X^{\prime} X\right)^{-1}
$$

, where X is the design matrix of a linear regression model and $\hat{\Omega}$ is an estimate of the diagonal variance-covariance matrix of the random errors, whose diagonal elements have been obtained from an auxiliary variance model fit with alvm. fit or anlvm.fit.

Usage

avm.vcov(object, as_matrix = TRUE)

Arguments

object Either an object of class "alvm.fit" or an object of class "anlvm.fit"
as_matrix A logical. If TRUE (the default), a $p \times p$ matrix is returned, where p is the number of columns in X. Otherwise, a numeric vector of length p is returned.

Value

Either a numeric matrix or a numeric vector, whose (diagonal) elements are $\widehat{\operatorname{Var}}\left(\hat{\beta}_{j}\right), j=1,2, \ldots, p$.

References

There are no references for Rd macro \insertAllCites on this help page.

See Also

alvm.fit, anlvm.fit, avm.fwls. If a matrix is returned, it can be passed to coeftest for implementation of a quasi- t-test of significance of the β coefficients.

Examples

```
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
myalvm <- alvm.fit(mainlm = mtcars_lm, model = "linear",
    varselect = "qgcv.linear")
myvcov <- avm.vcov(myalvm)
lmtest::coeftest(mtcars_lm, vcov. = myvcov)
```


Description

This function implements the Bartlett's M Specification Error Test (BAMSET) method of Ramsey (1969) for testing for heteroskedasticity in a linear regression model.

Usage

```
bamset(
    mainlm,
    k = 3,
    deflator = NA,
    correct = TRUE,
    omitatmargins = TRUE,
    omit = NA,
    categorical = FALSE,
    statonly = FALSE
)
```


Arguments

mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " X " and " y " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
$k \quad$ An integer. The number of subsets $(>=2)$ into which the BLUS residuals are to be partitioned. Defaults to 3, the value suggested in Ramsey (1969).
deflator Either a character specifying a column name from the design matrix of mainlm or an integer giving the index of a column of the design matrix. This variable is suspected to be related to the error variance under the alternative hypothesis. deflator may not correspond to a column of 1's (intercept). Default NA means the data will be left in its current order (e.g. in case the existing index is believed to be associated with error variance).
correct A logical. Should the test statistic be divided by a scaling constant to improve the chi-squared approximation? Defaults to TRUE.
omitatmargins A logical. Should the indices of observations at the margins of the k subsets be passed to blus as the omit argument? If TRUE (the default), this overrides any omit argument passed directly. If FALSE, the omit argument must be specified and cannot be left as NA. If categorical is TRUE, setting omitatmargins to

TRUE results in omitting observations from the most frequently occurring factor levels or values.
omit A numeric vector of length p (the number of columns in the linear model design matrix) giving the indices of p observations to omit in the BLUS residual vector; or a character partially matching "first" (for the first p) observations, "last" (for the last p observations), or "random" (for a random sample of p indices between 1 and n). Defaults to "first".
categorical A logical. Is the deflator a categorical variable? If so, the number of levels will be used as k with each level forming a subset. Defaults to FALSE.
statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

Details

BAMSET is an analogue of Bartlett's M Test for heterogeneity of variances across independent samples from k populations. In this case the populations are k subsets of the residuals from a linear regression model. In order to meet the independence assumption, BLUS residuals are computed, meaning that only $n-p$ observations are used (where n is the number of rows and p the number of columns in the design matrix). Under the null hypothesis of homoskedasticity, the test statistic is asymptotically chi-squared distributed with $k-1$ degrees of freedom. The test is right-tailed.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

Ramsey JB (1969). "Tests for Specification Errors in Classical Linear Least-Squares Regression Analysis." Journal of the Royal Statistical Society. Series B (Statistical Methodology), 31(2), 350371.

Examples

```
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
bamset(mtcars_lm, deflator = "qsec", k = 3)
# BLUS residuals cannot be computed with given `omit` argument and so
# omitted indices are randomised:
bamset(mtcars_lm, deflator = "qsec", k = 4, omitatmargins = FALSE, omit = "last")
```

bickel Bickel's Test for Heteroskedasticity in a Linear Regression Model

Description

This function implements the method of Bickel (1978) for testing for heteroskedasticity in a linear regression model, with or without the scale-invariance modification of Carroll and Ruppert (1981).

Usage

```
bickel(
    mainlm,
    fitmethod = c("lm", "rlm"),
    a = "identity",
    b = c("hubersq", "tanhsq"),
    scale_invariant = TRUE,
    k = 1.345,
    statonly = FALSE,
    )
```


Arguments

mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " X " and " y " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
fitmethod A character indicating the method to be used to fit the regression model. This can be "OLS" for ordinary least squares (the default) or "robust" in which case a robust fitting method is called from rlm.
a
A character argument specifying the name of a function to be applied to the fitted values, or an integer m in which case the function applied is $f(x)=x^{m}$. Defaults to "identity" for identity.
b
A character argument specifying a function to be applied to the residuals. Defaults to Huber's function squared, as recommended by Carroll and Ruppert (1981). Currently the only supported functions are "hubersq" (for Huber's function squared) and "tanhsq" (for $b(x)=\tanh (x)^{2}$.)
scale_invariant
A logical indicating whether the scale-invariance modification proposed by Carroll and Ruppert (1981) should be implemented. Defaults to TRUE.
k A double argument specifying a parameter for Huber's function squared; used only if $b==$ "hubersq". This is not to be confused with the argument $k 2$ that could be passed to rlm if the regression is fitted using robust methods. k defaults to 1.345 .
statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.
... Optional arguments to be passed to rlm

Details

Bickel's Test is a robust extension of Anscombe's Test (Anscombe 1961) in which the OLS residuals and estimated standard error are replaced with an M estimator. Under the null hypothesis of homoskedasticity, the distribution of the test statistic is asymptotically standard normally distributed. The test is two-tailed.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

Anscombe FJ (1961). "Examination of Residuals." In Neyman J (ed.), Fourth Berkeley Symposium on Mathematical Statistics and Probability June 20-July 30, 1960, 1-36. Berkeley: University of California Press.

Bickel PJ (1978). "Using Residuals Robustly I: Tests for Heteroscedasticity, Nonlinearity." The Annals of Statistics, 6(2), 266-291.

Carroll RJ, Ruppert D (1981). "On Robust Tests for Heteroscedasticity." The Annals of Statistics, 9(1), 206-210.

See Also

discussions of this test in Carroll and Ruppert (1981) and Ali and Giaccotto (1984).

Examples

```
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
bickel(mtcars_lm)
bickel(mtcars_lm, fitmethod = "rlm")
bickel(mtcars_lm, scale_invariant = FALSE)
```

Compute Best Linear Unbiased Scalar-Covariance (BLUS) residuals
from a linear model

Description

This function computes the Best Linear Unbiased Scalar-Covariance (BLUS) residuals from a linear model, as defined in Theil (1965) and explained further in Theil (1968).

Usage

```
blus(
    mainlm,
    omit = c("first", "last", "random"),
    keepNA = TRUE,
    exhaust = NA,
    seed = 1234
    )
```


Arguments

mainlm	Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " x " and " y " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
omit	A numeric vector of length p (the number of columns in the linear model design matrix) giving the indices of p observations to omit in the BLUS residual vector; or a character partially matching "first" (for the first p) observations, "last" (for the last p observations), or "random" (for a random sample of p indices between 1 and n). Defaults to "first".
keepNA	A logical. Should BLUS residuals for omitted observations be returned as NA_real_ to preserve the length of the residual vector?
exhaust	An integer. If singular matrices are encountered using the passed value of omit, how many random combinations of p indices should be attempted before an error is thrown? If NA (the default), all possible combinations are attempted provided that $\binom{n}{p} \leq 10^{4}$; otherwise up to 10^{4} random samples of size p from $1: n$ are attempted (with replacement). Integer values of exhaust greater than 1 e 4 L are treated as NA.
seed	An integer specifying a seed to pass to set. seed for random number generation. This allows reproducibility of bootstrap results. The value NA results in not setting a seed.

Details

Under the ideal linear model conditions, the BLUS residuals have a scalar covariance matrix ωI (meaning they have a constant variance and are mutually uncorrelated), unlike the OLS residuals, which have covariance matrix ωM where M is a function of the design matrix. Use of BLUS residuals could improve the performance of tests for heteroskedasticity and/or autocorrelation in the linear model. A linear model with n observations and an $n \times p$ design matrix yields only $n-p$ BLUS residuals. The choice of which p observations will not be represented in the BLUS residuals is specified within the algorithm.

Value

A double vector of length n containing the BLUS residuals (with NA_real_) for omitted observations), or a double vector of length $n-p$ containing the BLUS residuals only (if keepNA is set to FALSE)

References

Theil H (1965). "The Analysis of Disturbances in Regression Analysis." Journal of the American Statistical Association, 60(312), 1067-1079.

Theil H (1968). "A Simplification of the BLUS Procedure for Analyzing Regression Disturbances." Journal of the American Statistical Association, 63(321), 242-251.

See Also

H. D. Vinod's online article, Theil's BLUS Residuals and R Tools for Testing and Removing Autocorrelation and Heteroscedasticity, for an alternative function for computing BLUS residuals.

Examples

```
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
blus(mtcars_lm)
plot(mtcars_lm$residuals, blus(mtcars_lm))
# Same as first example
mtcars_list <- list("y" = mtcars$mpg, "X" = cbind(1, mtcars$wt, mtcars$qsec, mtcars$am))
blus(mtcars_list)
# Again same as first example
mtcars_list2 <- list("e" = mtcars_lm$residuals, "X" = cbind(1, mtcars$wt, mtcars$qsec, mtcars$am))
blus(mtcars_list2)
# BLUS residuals cannot be computed with `omit = "last"` in this example, so
# omitted indices are randomised:
blus(mtcars_lm, omit = "last")
```

bootlm | Nonparametric Bootstrapping of Heteroskedastic Linear Regression |
| :--- |
| Models | Models

Description

Generates B nonparametric bootstrap replications of a linear regression model that may have heteroskedasticity.

Usage

```
    bootlm(
        object,
        sampmethod = c("pairs", "wild"),
        B = 1000L,
        resfunc = c("identity", "hccme"),
        fastfit = TRUE,
    )
```


Arguments

object Either an object of class "lm" (generated by lm), an object of class "alvm.fit" (generated by alvm.fit), or an object of class "anlvm.fit" (generated by anlvm.fit)
sampmethod A character, either "pairs" or "wild", indicating the method to be used to generate the resampled models: bootstrapping pairs (Efron and Tibshirani 1993) or the wild bootstrap (Davidson and Flachaire 2008). Defaults to "pairs".

B An integer representing the number of bootstrapped linear regression models to generate; defaults to 1000L
resfunc Either a character naming a function to call to apply a transformation to the Ordinary Least Squares residuals, or a function to apply for the same purpose. This argument is ignored if sampmethod is "pairs". The only two character values accepted are "identity", in which case no transformation is applied to the residuals, and "hccme", in which case the transformation corresponds to a heteroskedasticity-consistent covariance matrix estimator calculated from hccme. If resfunc is a function, it is assumed that its first argument is the numeric vector of residuals.
fastfit A logical indicating whether the lm. fit function should be used to fit the bootstrapped regression models for greater computational speed; defaults to TRUE. This affects the class of the returned value (see below). If FALSE, Im is used to fit the bootstrapped regression models.
... Other arguments to pass to hccme

Details

Each replication of the pairs bootstrap entails drawing a sample of size n (the number of observations) with replacement from the indices $i=1,2, \ldots, n$. The pair or case $\left(y_{i}, X_{i}\right)$ is included as an observation in the bootstrapped data set for each sampled index. An Ordinary Least Squares fit to the bootstrapped data set is then computed.
Under the wild bootstrap, each replication of the linear regression model is generated by first independently drawing n random values $r_{i}, i=1,2, \ldots, n$, from a distribution with zero mean and unit variance. The i th bootstrap response is then computed as

$$
X_{i}^{\prime} \hat{\beta}+f_{i}\left(e_{i}\right) r_{i}
$$

, where X_{i} is the i th design observation, $\hat{\beta}$ is the Ordinary Least Squares estimate of the coefficient vector β, e_{i} is the i th Ordinary Least Squares residual, and $f_{i}(\cdot)$ is a function performing some transformation on the residual. An Ordinary Least Squares fit is then computed on the original design matrix and the bootstrap response vector.

Value

A list object of class "bootlm", containing B objects, each of which is a bootstrapped linear regression model fit by Ordinary Least Squares. If fastfit was set to TRUE, each of these objects will be a list containing named objects y (the bootstrap response vector), X (the bootstrap design matrix, which is just the original design matrix under the wild bootstrap), e (the residual vector from the Ordinary Least Squares fit to this bootstrap data set), beta. hat (the vector of coefficient estimates from the Ordinary Least Squares fit to this bootstrap data set), sampmethod, and ind (a vector of the indices from the original data set used in this bootstrap sample; ignored under the wild bootstrap) of the kind returned by lm.fit; otherwise, each will be an object of class " 1 m ".

References

Davidson R, Flachaire E (2008). "The Wild Bootstrap, Tamed at Last." Journal of Econometrics, 146, 162-169.

Efron B, Tibshirani RJ (1993). An Introduction to the Bootstrap. Springer Science+Business Media, Dordrecht.

See Also

paired.boot and wild.boot for the pairs bootstrap and wild bootstrap, respectively. The latter function does not appear to allow transformations of the residuals in the wild bootstrap.

Examples

mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
mybootlm <- bootlm(mtcars_lm)

Description

This function implements the popular method of Breusch and Pagan (1979) for testing for heteroskedasticity in a linear regression model, with or without the studentising modification of Koenker (1981).

Usage

breusch_pagan(mainlm, auxdesign = NA, koenker = TRUE, statonly = FALSE)

Arguments

mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " X " and " y " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
auxdesign A data.frame or matrix representing an auxiliary design matrix of containing exogenous variables that (under alternative hypothesis) are related to error variance, or a character "fitted.values" indicating that the fitted \hat{y}_{i} values from OLS should be used. If set to NA (the default), the design matrix of the original regression model is used. An intercept is included in the auxiliary regression even if the first column of auxdesign is not a vector of ones.
koenker A logical. Should studentising modification of Koenker (1981) be implemented? Defaults to TRUE; if FALSE, the original form of the test proposed by Breusch and Pagan (1979) is used.
statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

Details

The Breusch-Pagan Test entails fitting an auxiliary regression model in which the response variable is the vector of squared residuals from the original model and the design matrix Z consists of one or more exogenous variables that are suspected of being related to the error variance. In the absence of prior information on a possible choice of Z, one would typically use the explanatory variables from the original model. Under the null hypothesis of homoskedasticity, the distribution of the test statistic is asymptotically chi-squared with parameter degrees of freedom. The test is right-tailed.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

Breusch TS, Pagan AR (1979). "A Simple Test for Heteroscedasticity and Random Coefficient Variation." Econometrica, 47(5), 1287-1294.

Koenker R (1981). "A Note on Studentizing a Test for Heteroscedasticity." Journal of Econometrics, 17, 107-112.

See Also

lmtest::bptest, which performs exactly the same test as this function; car::ncvTest, which is not the same test but is implemented in cook_weisberg; white, which is a special case of the Breusch-Pagan Test.

Examples

```
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
breusch_pagan(mtcars_lm)
breusch_pagan(mtcars_lm, koenker = FALSE)
# Same as first example
mtcars_list <- list("y" = mtcars$mpg, "X" = cbind(1, mtcars$wt, mtcars$qsec, mtcars$am))
breusch_pagan(mtcars_list)
```

carapeto_holt Carapeto-Holt Test for Heteroskedasticity in a Linear Regression
Model

Description

This function implements the two methods (parametric and nonparametric) of Carapeto and Holt (2003) for testing for heteroskedasticity in a linear regression model.

Usage

```
carapeto_holt(
    mainlm,
    deflator = NA,
    prop_central = 1/3,
    group1prop = 1/2,
    qfmethod = "imhof",
    alternative = c("greater", "less", "two.sided"),
    twosidedmethod = c("doubled", "kulinskaya"),
    statonly = FALSE
)
```


Arguments

mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " x " and " y " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
deflator Either a character specifying a column name from the design matrix of mainlm or an integer giving the index of a column of the design matrix. This variable is suspected to be related to the error variance under the alternative hypothesis. deflator may not correspond to a column of 1's (intercept). Default NA means the data will be left in its current order (e.g. in case the existing index is believed to be associated with error variance).
prop_central A double specifying the proportion of central observations to exclude when comparing the two subsets of observations. round is used to ensure the number of central observations is an integer. Defaults to $\frac{1}{3}$.
group1prop A double specifying the proportion of remaining observations (after excluding central observations) to allocate to the first group. The default value of $1 / 2$ means that an equal number of observations is assigned to the first and second groups.
qfmethod A character, either "imhof", "davies", or "integrate", corresponding to the algorithm argument of $p R Q F$. The default is "imhof".
alternative A character specifying the form of alternative hypothesis. If it is suspected that the error variance is positively associated with the deflator variable, "greater". If it is suspected that the error variance is negatively associated with deflator variable, "less". If no information is available on the suspected direction of the association, "two.sided". Defaults to "greater".
twosidedmethod A character indicating the method to be used to compute two-sided p-values for the parametric test when alternative is "two.sided". The argument is passed to twosidedpval as its method argument.
statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

Details

The test is based on the methodology of Goldfeld and Quandt (1965) but does not require any auxiliary regression. It entails ordering the observations by some suspected deflator (one of the explanatory variables) in such a way that, under the alternative hypothesis, the observations would now be arranged in decreasing order of error variance. A specified proportion of the most central observations (under this ordering) is removed, leaving a subset of lower observations and a subset of upper observations. The test statistic is then computed as a ratio of quadratic forms corresponding to the sums of squared residuals of the upper and lower observations respectively. p-values are computed by the Imhof algorithm in PRQF.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

Carapeto M, Holt W (2003). "Testing for Heteroscedasticity in Regression Models." Journal of Applied Statistics, 30(1), 13-20.

Goldfeld SM, Quandt RE (1965). "Some Tests for Homoscedasticity." Journal of the American Statistical Association, 60(310), 539-547.

Examples

```
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
carapeto_holt(mtcars_lm, deflator = "qsec", prop_central = 0.25)
# Same as previous example
mtcars_list <- list("y" = mtcars$mpg, "X" = cbind(1, mtcars$wt, mtcars$qsec, mtcars$am))
carapeto_holt(mtcars_list, deflator = 3, prop_central = 0.25)
```

```
cook_weisberg
```

Cook-Weisberg Score Test for Heteroskedasticity in a Linear Regression Model

Description

This function implements the score test of Cook and Weisberg (1983) for testing for heteroskedasticity in a linear regression model.

Usage

```
    cook_weisberg(
    mainlm,
    auxdesign = NA,
    hetfun = c("mult", "add", "logmult"),
    statonly = FALSE
)
```


Arguments

mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " X " and " y " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

auxdesign	A data.frame or matrix representing an auxiliary design matrix of contain- ing exogenous variables that (under alternative hypothesis) are related to error variance, or a character "fitted.values" indicating that the fitted \hat{y}_{i} values from OLS should be used. If set to NA (the default), the design matrix of the original regression model is used. An intercept is included in the auxiliary regression even if the first column of auxdesign is not a vector of ones.
hetfun	A character describing the form of $w(\cdot)$, the error variance function under the
heteroskedastic alternative. Possible values are "mult" (the default), corre-	
	sponding to $w\left(Z_{i}, \lambda\right)=\exp \left\{\sum_{j=1}^{q} \lambda_{j} Z_{i j}\right\}$, "add", corresponding to $w\left(Z_{i}, \lambda\right)=$
	$\left(1+\sum_{j=1}^{q} \lambda_{j} Z_{i j}\right)^{2}$, and "logmult", corresponding to $w\left(Z_{i}, \lambda\right)=\exp \left\{\sum_{j=1}^{q} \lambda_{j} \log Z_{i j}\right\}$.
The multiplicative and log-multiplicative cases are considered in Cook and Weis-	
berg (1983); the additive case is discussed, inter alia, by Griffiths and Surekha	
(1986). Results for the additive and multiplicative models are identical for this	
test. Partial matching is used.	

Details

The Cook-Weisberg Score Test entails fitting an auxiliary regression model in which the response variable is the vector of standardised squared residuals $e_{i}^{2} / \hat{\omega}$ from the original OLS model and the design matrix is some function of Z, an $n \times q$ matrix consisting of q exogenous variables, appended to a column of ones. The test statistic is half the residual sum of squares from this auxiliary regression. Under the null hypothesis of homoskedasticity, the distribution of the test statistic is asymptotically chi-squared with q degrees of freedom. The test is right-tailed.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

Cook RD, Weisberg S (1983). "Diagnostics for Heteroscedasticity in Regression." Biometrika, 70(1), 1-10.

Griffiths WE, Surekha K (1986). "A Monte Carlo Evaluation of the Power of Some Tests for Heteroscedasticity." Journal of Econometrics, 31(1), 219-231.

See Also

car: :ncvTest, which implements the same test. Calling car: :ncvTest with var.formula argument omitted is equivalent to calling skedastic: :cook_weisberg with auxdesign = "fitted.values", hetfun = "additive". Calling car: :ncvTest with var.formula $=\sim \mathrm{X}$ (where X is the design matrix of the linear model with the intercept column omitted) is equivalent to calling skedastic: :cook_weisberg with default auxdesign and hetfun values. The hetfun = "multiplicative" option has no equivalent in car: : ncvTest.

Examples

```
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
cook_weisberg(mtcars_lm)
cook_weisberg(mtcars_lm, auxdesign = "fitted.values", hetfun = "logmult")
```

```
countpeaks Count peaks in a data sequence
```


Description

This function computes the number of peaks in a double vector, with peak defined as per Goldfeld and Quandt (1965). The function is used in the Goldfeld-Quandt nonparametric test for heteroskedasticity in a linear model. NA and NaN values in the sequence are ignored.

Usage

countpeaks(x)

Arguments

$x \quad$ A double vector.

Value

An integer value between 0 and length $(x)-1$ representing the number of peaks in the sequence.

References

Goldfeld SM, Quandt RE (1965). "Some Tests for Homoscedasticity." Journal of the American Statistical Association, 60(310), 539-547.

See Also

goldfeld_quandt

Examples

```
set.seed(9586)
countpeaks(stats::rnorm(20))
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
countpeaks(mtcars_lm$residuals)
```


Description

This function computes $\operatorname{Pr}(D=k)$, i.e. the probability mass function for $D=\sum_{i=1}^{n}\left(R_{i}-i\right)^{2}$, the nonparametric trend statistic proposed by Lehmann (1975), under the assumption that the ranks R_{i} are computed on a series of n independent and identically distributed random variables with no ties.

Usage

dDtrend(k = "all", n, override = FALSE)

Arguments

k An integer of length ≥ 1 or a character "all" (the default) indicating that the probability mass function should be applied to the entire support of D.
$\mathrm{n} \quad$ A positive integer representing the number of observations in the series. Note that computation time increases rapidly with n and is infeasible for $n>11$.
override A logical. By default, the function aborts if $n>11$ due to the prohibitively slow computation (which may cause some systems to crash). Setting this argument to TRUE overrides the abort.

Details

The function is used within horn in computing p-values for Horn's nonparametric test for heteroskedasticity in a linear regression model (Horn 1981). The support of D consists of consecutive even numbers from 0 to $\frac{n(n-1)(n+1)}{3}$, with the exception of the case $n=3$, when the value 4 is excluded from the support. Note that computation speed for $k=$ "all" is about the same as when k is set to an individual integer value, because the entire distribution is still computed in the latter case.

Value

A double vector containing the probabilities corresponding to the integers in its names attribute.

References

Horn P (1981). "Heteroscedasticity of Residuals: A Non-Parametric Alternative to the GoldfeldQuandt Peak Test." Communications in Statistics - Theory and Methods, 10(8), 795-808.

Lehmann EL (1975). Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San Francisco.

See Also

Examples

```
prob <- dDtrend(k = "all", n = 6)
values <- as.integer(names(prob))
plot(c(values[1], values[1]), c(0, prob[1]), type = "l",
    axes = FALSE, xlab = expression(k), ylab = expression(Pr(D == k)),
    xlim = c(0, 70), yaxs = "i", ylim = c(0, 1.05 * max(prob)))
    axis(side = 1, at = seq(0, 70, 10), las = 2)
for (i in seq_along(values)) {
    lines(c(values[i], values[i]), c(0, prob[i]))
}
```

diblasi_bowman
Diblasi and Bowman's Test for Heteroskedasticity in a Linear Regression Model

Description

This function implements the nonparametric test of Diblasi and Bowman (1997) for testing for heteroskedasticity in a linear regression model.

Usage

diblasi_bowman(
mainlm,
distmethod = c("moment.match", "bootstrap"),
H = 0.08,
ignorecov = TRUE,
$B=500 \mathrm{~L}$,
seed = 1234,
statonly = FALSE
)

Arguments

mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " x " and " y " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
distmethod A character specifying the method by which to estimate the p-values, either "moment.match" or "bootstrap".

H A hyperparameter denoting the bandwidth matrix in the kernel function used for weights in nonparametric smoothing. If a double of length 1 (the default), H is set to $h I_{p^{\prime}}$ where h is the scalar bandwidth value entered and $I_{p^{\prime}}$ is the $p^{\prime} \times p^{\prime}$ identity matrix (where p^{\prime} is the number of columns in the X matrix, excluding an intercept if present). If a double of length p^{\prime}, H is set to $\operatorname{diag}(h)$ where h is the bandwidth vector entered. If H is a $p^{\prime} \times p^{\prime}$ matrix it is used as is. Any other dimensionality of H results in an error.
ignorecov A logical. If TRUE (the default), the variance-covariance matrix of s is assumed to be diagonal. (This assumption is, strictly speaking, invalid, but usually yields a reasonable approximation. Computation time is prohibitive for large sample sizes if set to FALSE).
B
An integer specifying the number of nonparametric bootstrap replications to be used, if distmethod="bootstrap".
seed An integer specifying a seed to pass to set. seed for random number generation. This allows reproducibility of bootstrap results. The value NA results in not setting a seed.
statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

Details

The test entails undertaking a transformation of the OLS residuals $s_{i}=\sqrt{\left|e_{i}\right|}-E_{0}\left(\sqrt{\left|e_{i}\right|}\right)$, where E_{0} denotes expectation under the null hypothesis of homoskedasticity. The kernel method of nonparametric regression is used to fit the relationship between these s_{i} and the explanatory variables. This leads to a test statistic T that is a ratio of quadratic forms involving the vector of s_{i} and the matrix of normal kernel weights. Although nonparametric in its method of fitting the possible heteroskedastic relationship, the distributional approximation used to compute p-values assumes normality of the errors.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

Diblasi A, Bowman A (1997). "Testing for Constant Variance in a Linear Model." Statistics \& Probability Letters, 33, 95-103.

Examples

```
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
diblasi_bowman(mtcars_lm)
diblasi_bowman(mtcars_lm, ignorecov = FALSE)
diblasi_bowman(mtcars_lm, distmethod = "bootstrap")
```


dpeak Probability mass function of number of peaks in an i.i.d. random sequence

Description

This function computes $P(n, k)$ as defined by Goldfeld and Quandt (1965), i.e. the probability that a sequence of n independent and identically distributed random variables contains exactly k peaks, with peaks also as defined by Goldfeld and Quandt (1965). The function is used in ppeak to compute p-values for the Goldfeld-Quandt nonparametric test for heteroskedasticity in a linear model.

Usage

dpeak (k, n , usedata $=\mathrm{FALSE}$)

Arguments

$k \quad$ An integer or a sequence of integers strictly incrementing by 1 , with all values between 0 and $n-1$ inclusive. Represents the number of peaks in the sequence.
$\mathrm{n} \quad$ A positive integer representing the number of observations in the sequence.
usedata A logical. Should probability mass function values be read from dpeakdat rather than computing them? This option will save significantly on computation time if $n<170$ but is currently only available for $n \leq 1000$.

Value

A double between 0 and 1 representing the probability of exactly k peaks occurring in a sequence of n independent and identically distributed continuous random variables. The double has a names attribute with the values corresponding to the probabilities. Computation time is very slow for $n>170$ (if usedata is FALSE) and for $n>1000$ regardless of usedata value.

References

Goldfeld SM, Quandt RE (1965). "Some Tests for Homoscedasticity." Journal of the American Statistical Association, 60(310), 539-547.

See Also

ppeak, goldfeld_quandt

Examples

```
dpeak(0:9, 10)
plot(0:9, dpeak(0:9, 10), type = "p", pch = 20, xlab = "Number of Peaks",
    ylab = "Probability")
# This would be extremely slow if usedata were set to FALSE:
```

```
prob <- dpeak(0:199, 200, usedata = TRUE)
plot(0:199, prob, type = "l", xlab = "Number of Peaks", ylab = "Probability")
# `dpeakdat` is a dataset containing probabilities generated from `dpeak`
utils::data(dpeakdat)
expval <- unlist(lapply(dpeakdat,
    function(p) sum(p * 0:(length(p) - 1))))
plot(1:1000, expval[1:1000], type = "l", xlab = parse(text = "n"),
    ylab = "Expected Number of Peaks")
```

dpeakdat

Probability distribution for number of peaks in a continuous, uncorrelated stochastic series

Description

A dataset containing the probability mass function for the distribution of the number of peaks in a continuous, uncorrelated stochastic series.

Usage

dpeakdat

Format

A list of 1000 objects. The nth object is a double vector of length n, with elements representing the probability of k peaks for $k=0,1, \ldots, n-1$.

Details

These probabilities were generated from the dpeak function. This function is computationally very slow for $n>170$; thus the functions of skedastic package that require peak probabilities (ppeak and goldfeld_quandt) by default obtain the probabilities from this data set rather than from dpeak, provided that $n \leq 1000$. For $n>1000$, good luck!

dufour_etal | Dufour et al.'s Monte Carlo Test for Heteroskedasticity in a Linear |
| :--- |
| Regression Model |

Description

This function implements the method of Dufour et al. (2004) for testing for heteroskedasticity in a linear regression model.

```
Usage
    dufour_etal(
        mainlm,
        hettest,
        R = 1000L,
        alternative = c("greater", "less", "two.sided"),
        errorgen = stats::rnorm,
        errorparam = list(),
        seed = 1234,
    ...
)
```


Arguments

mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " x " and " y " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
hettest A character specifying the name of a function that implements a heteroskedasticity test on a linear regression model. The function is called with the statonly argument set to TRUE to improve computational efficiency.
R An integer specifying the number of Monte Carlo replicates to generate. Defaults to 1000.
alternative The tailedness of the test whose statistic is computed by hettest function; one of "greater" (the default), "less", or "two.sided".
errorgen A function, or a character specifying the name of a function, from which the random errors are to be generated. The function should correspond to a continuous probability distribution that has (or at least can have) a mean of 0 . Defaults to rnorm.
errorparam An optional list of parameters to pass to errorgen. This argument is ignored if errorgen is rnorm, since mean must be set to 0 , and sd is set to 1 because the heteroskedasticity test implemented by hettest function is assumed to be scale invariant. If errorgen is not rnorm, errorparam should be chosen in such a way that the error distribution has a mean of 0 .
seed An integer specifying a seed to pass to set. seed for random number generation. This allows reproducibility of Monte Carlo results. A value of NA results in not setting a seed.
... Additional arguments to pass to function with name hettest

Details

The test implements a Monte Carlo procedure as follows. (1) The observed value of the test statistic T_{0} is computed using function with name hettest. (2) R replications of the random error vector
are generated from the distribution specified using errorgen. (3) R replications of the test statistic, $T_{1}, T_{2}, \ldots, T_{R}$, are computed from the generated error vectors. (4) The empirical p -value is computed as $\frac{\hat{G}_{R}\left(T_{0}\right)+1}{R+1}$, where $\hat{G}_{R}(x)=\sum_{j=1}^{R} 1_{T_{j} \geq x}, 1 \bullet$ being the indicator function. The test is righttailed, regardless of the tailedness of hettest. Note that the heteroskedasticity test implemented by hettest must have a test statistic that is continuous and that is invariant with respect to nuisance parameters (ω and β). Note further that if hettest is goldfeld_quandt with method argument "parametric", the replicated Goldfeld-Quandt F statistics are computed directly within this function rather than by calling goldfeld_quandt, due to some idiosyncratic features of this test. Note that, if alternative is set to "two. sided", the one-sided p-value is doubled (twosidedpval cannot be used in this case).

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

Dufour J, Khalaf L, Bernard J, Genest I (2004). "Simulation-Based Finite-Sample Tests for Heteroskedasticity and ARCH Effects." Journal of Econometrics, 122, 317-347.

Examples

mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
dufour_etal(mtcars_lm, hettest = "breusch_pagan")

Description

This function implements the two methods of Evans and King (1988) for testing for heteroskedasticity in a linear regression model.

Usage

```
evans_king(
    mainlm,
    method = c("GLS", "LM"),
    deflator = NA,
    lambda_star = 5,
    qfmethod = "imhof",
    statonly = FALSE
)
```


Arguments

mainlm	Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " x " and " y " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
method	A character indicating which of the two tests derived in Evans and King (1988) should be implemented. Possible values are "GLS" and "LM"; partial matching is used (which is not case-sensitive).
deflator	Either a character specifying a column name from the design matrix of mainlm or an integer giving the index of a column of the design matrix. This variable is suspected to be related to the error variance under the alternative hypothesis. deflator may not correspond to a column of 1's (intercept). Default NA means the data will be left in its current order (e.g. in case the existing index is believed to be associated with error variance).
lambda_star	A double; coefficient representing the degree of heteroskedasticity under the alternative hypothesis. Evans and King (1985) suggests 2.5, 5, 7.5, and 10 as values to consider, and Evans and King (1988) finds that 2.5 and 5 perform best empirically. This parameter is used only for the "GLS" method; the "LM" method represents the limiting case as $\lambda^{\star} \rightarrow 0$. Defaults to 5 .
qfmethod	A character, either "imhof", "davies", or "integrate", corresponding to the algorithm argument of pRQF. The default is "imhof".
statonly	A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

Details

The test entails putting the data rows in increasing order of some specified deflator (e.g., one of the explanatory variables) that is believed to be related to the error variance by some non-decreasing function. There are two statistics that can be used, corresponding to the two values of the method argument. In both cases the test statistic can be expressed as a ratio of quadratic forms in the errors, and thus the Imhof algorithm is used to compute p-values. Both methods involve a left-tailed test.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

Evans M, King ML (1985). "A Point Optimal Test for Heteroscedastic Disturbances." Journal of Econometrics, 27(2), 163-178.

Evans MA, King ML (1988). "A Further Class of Tests for Heteroscedasticity." Journal of Econometrics, 37, 265-276.

See Also

Evans and King (1985), which already anticipates one of the tests.

Examples

```
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
evans_king(mtcars_lm, deflator = "qsec", method = "GLS")
evans_king(mtcars_lm, deflator = "qsec", method = "LM")
```


Description

This function implements the method of Glejser (1969) for testing for "multiplicative" heteroskedasticity in a linear regression model. Mittelhammer et al. (2000) gives the formulation of the test used here.

Usage

```
    glejser(
        mainlm,
        auxdesign = NA,
        sigmaest = c("main", "auxiliary"),
        statonly = FALSE
    )
```


Arguments

mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " x " and " y " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
auxdesign A data.frame or matrix representing an auxiliary design matrix of containing exogenous variables that (under alternative hypothesis) are related to error variance, or a character "fitted.values" indicating that the fitted \hat{y}_{i} values from OLS should be used. If set to NA (the default), the design matrix of the original regression model is used. An intercept is included in the auxiliary regression even if the first column of auxdesign is not a vector of ones.

$$
\begin{array}{ll}
\text { sigmaest } & \begin{array}{l}
\text { A character indicating which model residuals to use in the } \hat{\omega} \text { estimator in the } \\
\text { denominator of the test statistic. If "main" (the default), the OLS residuals from } \\
\text { the original model are used; this produces results identical to the Glejser Test } \\
\text { in SHAZAM software. If "auxiliary", the OLS residuals from the auxiliary } \\
\text { model are used, as in Mittelhammer et al. (2000). Partial matching is used. }
\end{array} \\
\text { statonly } & \begin{array}{l}
\text { A logical. If TRUE, only the test statistic value is returned, instead of an object } \\
\text { of class "htest". Defaults to FALSE. }
\end{array}
\end{array}
$$

Details

Glejser's Test entails fitting an auxiliary regression model in which the response variable is the absolute residual from the original model and the design matrix Z consists of one or more exogenous variables that are suspected of being related to the error variance. In the absence of prior information on a possible choice of Z, one would typically use the explanatory variables from the original model. Under the null hypothesis of homoskedasticity, the distribution of the test statistic is asymptotically chi-squared with parameter degrees of freedom. The test is right-tailed.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

Glejser H (1969). "A New Test for Heteroskedasticity." Journal of the American Statistical Association, 64(325), 316-323.

Mittelhammer RC, Judge GG, Miller DJ (2000). Econometric Foundations. Cambridge University Press, Cambridge.

See Also

the description of the test in SHAZAM software (which produces identical results).

Examples

```
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
glejser(mtcars_lm)
```

godfrey_orme Godfrey and Orme's Nonparametric Bootstrap Test for Heteroskedasticity in a Linear Regression Model

Description

This function implements the method of Godfrey and Orme (1999) for testing for heteroskedasticity in a linear regression model. The procedure is more clearly described in Godfrey et al. (2006).

Usage

```
godfrey_orme(
    mainlm,
    hettest,
    B = 1000L,
    alternative = c("greater", "less", "two.sided"),
    seed = 1234,
)
```


Arguments

mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " x " and " y " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
hettest A character specifying the name of a function that implements a heteroskedasticity test on a linear regression model. The function is called with the statonly argument set to TRUE to improve computational efficiency.

B
An integer specifying the number of nonparametric bootstrap samples to generate. Defaults to 1000L.
alternative The tailedness of the test whose statistic is computed by hettest function; one of "greater" (the default), "less", or "two.sided".
seed An integer specifying a seed to pass to set. seed for random number generation. This allows reproducibility of bootstrap results. A value of NA results in not setting a seed.
... Additional arguments to pass to function with name hettest

Details

The procedure runs as follows. (1) The observed value of the test statistic T_{0} is computed using function with name hettest. (2) A sample $e_{1}^{\star}, e_{2}^{\star}, \ldots, e_{n}^{\star}$ is drawn with replacement from the OLS residuals. (3) Bootstrapped response values are computed as $y_{i}^{\star}=x_{i}^{\prime} \hat{\beta}+e_{i}^{\star}, i=1,2, \ldots, n$. (4) Bootstrapped test statistic value T^{\star} is computed from the regression of y^{\star} on X using function hettest. (5) Steps (2)-(4) are repeated until B bootstrapped test statistic values are computed. (6) Empirical p-value is computed by comparing the bootstrapped test statistic values to the observed test statistic value. Note that, if alternative is set to "two.sided", the one-sided p-value is doubled (twosidedpval cannot be used in this case).

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

Godfrey LG, Orme CD (1999). "The Robustness, Reliability and Power of Heteroskedasticity Tests." Econometric Reviews, 18(2), 169-194.

Godfrey LG, Orme CD, Silva JS (2006). "Simulation-Based Tests for Heteroskedasticity in Linear Regression Models: Some Further Results." Econometrics Journal, 9, 76-97.

Examples

mtcars_lm <- lm(mpg ~wt + qsec + am, data = mtcars)
godfrey_orme(mtcars_lm, hettest = "breusch_pagan")

$$
\begin{array}{ll}
\text { goldfeld_quandt } & \text { Goldfeld-Quandt Tests for Heteroskedasticity in a Linear Regression } \\
& \text { Model }
\end{array}
$$

Description

This function implements the two methods (parametric and nonparametric) of Goldfeld and Quandt (1965) for testing for heteroskedasticity in a linear regression model.

Usage

goldfeld_quandt(mainlm,
method = c("parametric", "nonparametric"),
deflator = NA,
prop_central = 1/3,
group1prop = 1/2,
alternative = c("greater", "less", "two.sided"),
prob = NA,
twosidedmethod = c("doubled", "kulinskaya"),
restype = c("ols", "blus"),
statonly = FALSE,
)

Arguments

mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " x " and " y " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

method	A character indicating which of the two tests derived in Goldfeld and Quandt (1965) should be implemented. Possible values are "parametric" and "nonpara- metric". Default is "parametric". It is acceptable to specify only the first letter.
deflator	Either a character specifying a column name from the design matrix of mainlm
or an integer giving the index of a column of the design matrix. This variable	
is suspected to be related to the error variance under the alternative hypothesis.	
deflator may not correspond to a column of 1's (intercept). Default NA means	
the data will be left in its current order (e.g. in case the existing index is believed	
to be associated with error variance).	
prop_central	A double specifying the proportion of central observations to exclude from the F test (when method is "parametric" only). round is used to ensure the number of central observations is an integer. The value must be small enough to allow the two auxiliary regressions to be fit; otherwise an error is thrown. Defaults to
1 / 3.	
group1propA double specifying the proportion of remaining observations (after excluding central observations) to allocate to the first group. The default value of $1 / 2$	
means that an equal number of observations is assigned to the first and second	
groups.	
Alternative	
A character specifying the form of alternative hypothesis. If it is suspected that	
the error variance is positively associated with the deflator variable, "greater".	
If it is suspected that the error variance is negatively associated with deflator	
variable, "less". If no information is available on the suspected direction of the	

Details

The parametric test entails putting the data rows in increasing order of some specified deflator (one of the explanatory variables). A specified proportion of the most central observations (under this ordering) is removed, leaving a subset of lower observations and a subset of upper observations. Separate OLS regressions are fit to these two subsets of observations (using all variables from the original model). The test statistic is the ratio of the sum of squared residuals from the 'upper' model to the sum of squared residuals from the 'lower' model. Under the null hypothesis, the test statistic is exactly F-distributed with numerator and denominator degrees of freedom equal to $(n-c) / 2-p$ where n is the number of observations in the original regression model, c is the number of central observations removed, and p is the number of columns in the design matrix (number of parameters to be estimated, including intercept).

The nonparametric test entails putting the residuals of the linear model in increasing order of some specified deflator (one of the explanatory variables). The test statistic is the number of peaks, with the j th absolute residual $\left|e_{j}\right|$ defined as a peak if $\left|e_{j}\right| \geq\left|e_{i}\right|$ for all $i<j$. The first observation does not constitute a peak. If the number of peaks is large relative to the distribution of peaks under the null hypothesis, this constitutes evidence for heteroskedasticity.

Value

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

References

Goldfeld SM, Quandt RE (1965). "Some Tests for Homoscedasticity." Journal of the American Statistical Association, 60(310), 539-547.

See Also

lmtest:: gqtest, another implementation of the Goldfeld-Quandt Test (parametric method only).

Examples

```
mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
goldfeld_quandt(mtcars_lm, deflator = "qsec", prop_central = 0.25)
# This is equivalent to lmtest::gqtest(mtcars_lm, fraction = 0.25, order.by = mtcars$qsec)
goldfeld_quandt(mtcars_lm, deflator = "qsec", method = "nonparametric",
restype = "blus")
goldfeld_quandt(mtcars_lm, deflator = "qsec", prop_central = 0.25, alternative = "two.sided")
goldfeld_quandt(mtcars_lm, deflator = "qsec", method = "nonparametric",
restype = "blus", alternative = "two.sided")
``` Closed Interval

\section*{Description}

Golden Section Search (GSS) is a useful algorithm for minimising a continuous univariate function \(f(x)\) over an interval \([a, b]\) in instances where the first derivative \(f^{\prime}(x)\) is not easily obtainable, such as with loss functions that need to be minimised under cross-validation to tune a hyperparameter in a machine learning model. The method is described by Fox (2021).

\section*{Usage}

GSS(f, a, b, tol = 1e-08, maxitgss = 100L, ...)

\section*{Arguments}
f
a
b
tol
maxitgss

A function of one variable that returns a numeric value
A numeric of length 1 representing the lower endpoint of the search interval
A numeric of length 1 representing the upper endpoint of the search interval; must be greater than a
A numeric of length 1 representing the tolerance used to determine when the search interval has been narrowed sufficiently for convergence
An integer of length 1 representing the maximum number of iterations to use in the search
... Additional arguments to pass to \(f\)

\section*{Details}

This function is modelled after a MATLAB function written by (). The method assumes that there is one local minimum in this interval. The solution produced is also an interval, the width of which can be made arbitrarily small by setting a tolerance value. Since the desired solution is a single point, the midpoint of the final interval can be taken as the best approximation to the solution.
The premise of the method is to shorten the interval \([a, b]\) by comparing the values of the function at two test points, \(x_{1}<x_{2}\), where \(x_{1}=a+r(b-a)\) and \(x_{2}=b-r(b-a)\), and \(r=(\sqrt{5}-1) / 2 \approx\) 0.618 is the reciprocal of the golden ratio. One compares \(f\left(x_{1}\right)\) to \(f\left(x_{2}\right)\) and updates the search interval \([a, b]\) as follows:
- If \(f\left(x_{1}\right)<f\left(x_{2}\right)\), the solution cannot lie in \(\left[x_{2}, b\right]\); thus, update the search interval to
\[
\left[a_{\text {new }}, b_{\text {new }}\right]=\left[a, x_{2}\right]
\]
- If \(f\left(x_{1}\right)>f\left(x_{2}\right)\), the solution cannot lie in \(\left[a, x_{1}\right]\); thus, update the search interval to
\[
\left[a_{\text {new }}, b_{\text {new }}\right]=\left[x_{1}, b\right]
\]

One then chooses two new test points by replacing \(a\) and \(b\) with \(a_{\text {new }}\) and \(b_{\text {new }}\) and recalculating \(x_{1}\) and \(x_{2}\) based on these new endpoints. One continues iterating in this fashion until \(b-a<\tau\), where \(\tau\) is the desired tolerance.

\section*{Value}

A list object containing the following:
- argmin, the argument of \(f\) that minimises \(f\)
- funmin, the minimum value of \(f\) achieved at argmin
- converged, a logical indicating whether the convergence tolerance was satisfied
- iterations, an integer indicating the number of search iterations used

\section*{References}
(????). Golden Section Method Algorithm, author=Katarzyna Zarnowiec, organization=MATLAB Central File Exchange, url=https://www.mathworks.com/matlabcentral/fileexchange/25919-golden-section-method-algorithm, urldate \(=2022-10-19\), year \(=2022\), .

Fox WP (2021). Nonlinear Optimization: Models and Applications, 1st edition. Chapman and Hall/CRC, Boca Raton, FL.

\section*{See Also}
goldsect is similar to this function, but does not allow the user to pass additional arguments to \(f\)

\section*{Examples}
```

f <- function(x) (x - 1) ^ 2

```
\(\operatorname{GSS}(f, a=0, b=2)\)
```

harrison_mccabe Harrison and McCabe's Test for Heteroskedasticity in a Linear Re-

``` gression Model

\section*{Description}

This function implements the method of Harrison and McCabe (1979) for testing for heteroskedasticity in a linear regression model.
```

Usage
harrison_mccabe(
mainlm,
deflator = NA,
m = 0.5,
alternative = c("less", "greater", "two.sided"),
twosidedmethod = c("doubled", "kulinskaya"),
qfmethod = "imhof",
statonly = FALSE
)

```

\section*{Arguments}
mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " \(x\) " and " \(y\) " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
deflator Either a character specifying a column name from the design matrix of mainlm or an integer giving the index of a column of the design matrix. This variable is suspected to be related to the error variance under the alternative hypothesis. deflator may not correspond to a column of 1's (intercept). Default NA means the data will be left in its current order (e.g. in case the existing index is believed to be associated with error variance).
\(\mathrm{m} \quad\) Either a double giving the proportion of the \(n\) diagonal elements of \(A\) that are ones, or an integer giving the index \(m\) up to which the diagonal elements are ones. Defaults to 0.5.
alternative A character specifying the form of alternative hypothesis. If it is suspected that the error variance is positively associated with the deflator variable, "less". If it is suspected that the error variance is negatively associated with deflator variable, "greater". If no information is available on the suspected direction of the association, "two.sided". Defaults to "less".
twosidedmethod A character indicating the method to be used to compute two-sided \(p\)-values for the parametric test when alternative is "two.sided". The argument is passed to twosidedpval as its method argument.
qfmethod A character, either "imhof", "davies", or "integrate", corresponding to the algorithm argument of PRQF. The default is "imhof".
statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

\section*{Details}

The test assumes that heteroskedasticity, if present, is monotonically related to one of the explanatory variables (known as the deflator). The OLS residuals \(e\) are placed in increasing order of the deflator variable and we let \(A\) be an \(n \times n\) selector matrix whose first \(m\) diagonal elements are 1 and all other elements are 0 . The alternative hypothesis posits that the error variance changes around index \(m\). Under the null hypothesis of homoskedasticity, the ratio of quadratic forms \(Q=\frac{e^{\prime} A e}{e^{\prime} e}\) should be close to \(\frac{m}{n}\). Since the test statistic \(Q\) is a ratio of quadratic forms in the errors, the Imhof algorithm is used to compute \(p\)-values (with normality of errors assumed).

\section*{Value}

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

\section*{References}

Harrison MJ, McCabe BPM (1979). "A Test for Heteroscedasticity Based on Ordinary Least Squares Residuals." Journal of the American Statistical Association, 74(366), 494-499.

\section*{See Also}
lmtest: :hmctest, another implementation of the Harrison-McCabe Test. Note that the \(p\)-values from that function are simulated rather than computed from the distribution of a ratio of quadratic forms in normal random vectors.

\section*{Examples}
```

mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
harrison_mccabe(mtcars_lm, deflator = "qsec")

```

\section*{Description}

This function implements the method of Harvey (1976) for testing for "multiplicative" heteroskedasticity in a linear regression model. Mittelhammer et al. (2000) gives the formulation of the test used here.

\section*{Usage}
harvey(mainlm, auxdesign = NA, statonly = FALSE)

\section*{Arguments}
mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " \(X\) " and " \(y\) " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
auxdesign A data.frame or matrix representing an auxiliary design matrix of containing exogenous variables that (under alternative hypothesis) are related to error variance, or a character "fitted.values" indicating that the fitted \(\hat{y}_{i}\) values from OLS should be used. If set to NA (the default), the design matrix of the original regression model is used. An intercept is included in the auxiliary regression even if the first column of auxdesign is not a vector of ones.
statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

\section*{Details}

Harvey's Test entails fitting an auxiliary regression model in which the response variable is the log of the vector of squared residuals from the original model and the design matrix \(Z\) consists of one or more exogenous variables that are suspected of being related to the error variance. In the absence of prior information on a possible choice of \(Z\), one would typically use the explanatory variables from the original model. Under the null hypothesis of homoskedasticity, the distribution of the test statistic is asymptotically chi-squared with parameter degrees of freedom. The test is right-tailed.

\section*{Value}

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

\section*{References}

Harvey AC (1976). "Estimating Regression Models with Multiplicative Heteroscedasticity." Econometrica, 44(3), 461-465.

Mittelhammer RC, Judge GG, Miller DJ (2000). Econometric Foundations. Cambridge University Press, Cambridge.

\section*{See Also}
the description of the test in SHAZAM software (which produces identical results).

\section*{Examples}
```

mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
harvey(mtcars_lm)
harvey(mtcars_lm, auxdesign = "fitted.values")

```
\begin{tabular}{ll}
hccme & Heteroskedasticity-Consistent Covariance Matrix Estimators for Lin- \\
ear Regression Models
\end{tabular}

\section*{Description}

Computes an estimate of the \(n \times n\) covariance matrix \(\Omega\) (assumed to be diagonal) of the random error vector of a linear regression model, using a specified method

\section*{Usage}
hccme(mainlm, hcnum = c("3", "0", "1", "2", "4", "5", "6", "7", "4m", "5m", "const"), sandwich = FALSE, as_matrix = TRUE
)

\section*{Arguments}
\[
\begin{aligned}
& \text { mainlm } \begin{array}{l}
\text { Either an object of class "lm" (e.g., generated by lm), or a list of two objects: } \\
\text { a response vector and a design matrix. The objects are assumed to be in that } \\
\text { order, unless they are given the names " } X \text { " and " } \mathrm{y} \text { " to distinguish them. The } \\
\text { design matrix passed in a list must begin with a column of ones if an intercept } \\
\text { is to be included in the linear model. The design matrix passed in a list should } \\
\text { not contain factors, as all columns are treated 'as is'. For tests that use ordinary } \\
\text { least squares residuals, one can also pass a vector of residuals in the list, which } \\
\text { should either be the third object or be named "e". } \\
\text { Achum }
\end{array} \text { A character corresponding to a subscript in the name of an HCCME according }
\end{aligned}
\] to the usual nomenclature \(\mathrm{HC} \#\). Possible values are:
- "3", the default, corresponding to HC3 (MacKinnon and White 1985)
- "0", corresponding to HC0 (White 1980)
- "1", corresponding to HC1 (MacKinnon and White 1985)
- "2", corresponding to HC1 (MacKinnon and White 1985)
- "4", corresponding to HC4 (Cribari-Neto 2004)
- "5", corresponding to HC5 (Cribari-Neto et al. 2007)
- "6", corresponding to HC6 (Aftab and Chand 2016)
- "7", corresponding to HC7 (Aftab and Chand 2018)
- "4m", corresponding to HC4m (Cribari-Neto and da Silva 2011)
- "5m", corresponding to HC5m (Li et al. 2017)
- "const", corresponding to the homoskedastic estimator, \((n-p)^{-1} \sum_{i=1}^{n} e_{i}^{2}\)
sandwich A logical, defaulting to FALSE, indicating whether or not the sandwich estimator
\[
\operatorname{Cov} \hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} \hat{\Omega} X\left(X^{\prime} X\right)^{-1}
\]
should be returned instead of \(\operatorname{Cov}(\epsilon)=\hat{\Omega}\)
as_matrix A logical, defaulting to TRUE, indicating whether a covariance matrix estimate should be returned rather than a vector of variance estimates

\section*{Value}

A numeric matrix (if as_matrix is TRUE) or else a numeric vector

\section*{References}

Aftab N, Chand S (2016). "A New Heteroskedastic Consistent Covariance Matrix Estimator Using Deviance Measure." Pakistan Journal of Statistics and Operations Research, 12(2), 235-244.

Aftab N, Chand S (2018). "A Simulation-Based Evidence on the Improved Performance of a New Modified Leverage Adjusted Heteroskedastic Consistent Covariance Matrix Estimator in the Linear Regression Model." Kuwait Journal of Science, 45(3), 29-38.

Cribari-Neto F (2004). "Asymptotic Inference under Heteroskedasticity of Unknown Form." Computational Statistics \& Data Analysis, 45, 215-233.

Cribari-Neto F, Souza TC, Vasconcellos KLP (2007). "Inference under Heteroskedasticity and Leveraged Data." Communications in Statistics - Theory and Methods, 36(10), 1877-1888.

Cribari-Neto F, da Silva WB (2011). "A New Heteroskedasticity-Consistent Covariance Matrix Estimator for the Linear Regression Model." Advances in Statistical Analysis, 95(2), 129-146.

Li S, Zhang N, Zhang X, Wang G (2017). "A New Heteroskedasticity-Consistent Covariance Matrix Estimator and Inference under Heteroskedasticity." Journal of Statistical Computation and Simulation, 87(1), 198-210.

MacKinnon JG, White H (1985). "Some Heteroskedasticity-Consistent Covariance Matrix Estimators with Improved Finite Sample Properties." Journal of Econometrics, 29(3), 305-325.

White H (1980). "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity." Econometrica, 48(4), 817-838.

\section*{See Also}
vcovHC

\section*{Examples}
```

mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
Omega_hat <- hccme(mtcars_lm, hcnum = "4")
Cov_beta_hat <- hccme(mtcars_lm, hcnum = "4", sandwich = TRUE)

```
```

hetplot

```

Graphical Methods for Detecting Heteroskedasticity in a Linear Regression Model

\section*{Description}

This function creates various two-dimensional scatter plots that can aid in detecting heteroskedasticity in a linear regression model.
```

Usage
hetplot(
mainlm,
horzvar = "index",
vertvar = "res",
vertfun = "identity",
filetype = NA,
values = FALSE,
)

```

\section*{Arguments}
mainlm
horzvar
vertvar
vertfun
filetype
values

Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " \(x\) " and " \(y\) " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".

A character vector describing the variable(s) to plot on horizontal axes ("index" for the data index \(i\), "fitted.values" for the OLS predicted values \(\hat{y}_{i}\), "fitted.values2" for transformed OLS predicted values \(m_{i i} \hat{y}_{i}\), and/or names of explanatory variable columns). "explanatory" passes all explanatory variable columns. "log_" concatenated with names of explanatory variable columns passes logs of those explanatory variables. "log_explanatory" passes logs of all explanatory variables. If more than one variable is specified, a separate plot is created for each.

A character vector describing the variable to plot on the vertical axis ("res" for OLS residuals [the default], "res_blus" for BLUS residuals, "res_stand" for standardised OLS residuals: \(e_{i} / \sqrt{\hat{\omega}}\), "res_constvar" for OLS residuals transformed to have constant variance: \(e_{i} / \sqrt{m_{i i}}\), "res_stud" for studentised OLS residuals: \(e_{i} /\left(s \sqrt{m_{i i}}\right)\). If more than one value is specified, a separate plot is created for each.

A character vector giving the name of a function to apply to the vertvar variable. Values that can be coerced to numeric such as " 2 " are taken to be powers to which vertvar should be set. If multiple values are specified, they are all applied to each element of vertvar. Common choices might be "identity" (the default), "abs" (absolute value), and "2" (squaring).

A character giving the type of image file to which the plot(s) should be written. Values can be "png", "bmp", "jpeg", or "tiff". Image files are written to a subdirectory called "hetplot" within the R session's temporary directory, which can be located using tempdir(). The files should be moved or copied to another location if they are needed after the R session is ended. Default filenames contain timestamps for uniqueness. If NA (the default), no image files are written, and in this case, if there are multiple plots, they are plotted on a single device using the "mfrow" graphical parameter. If many plots are requested at once, it is advisable to write them to image files.

A logical. Should the sequences corresponding to the horizontal and vertical variable(s) be returned in a list object?

Arguments to be passed to methods, such as graphical parameters (see par), parameters for plot, for graphics devices, and/or the omit argument for function blus, if BLUS residuals are being plotted. If it is desired to pass the type argument to a graphics device, use gtype \(=\), since a type argument will be passed to plot.

\section*{Details}

The variable plotted on the horizontal axis could be the original data indices, one of the explanatory variables, the OLS predicted (fitted) values, or any other numeric vector specified by the user. The variable plotted on the vertical axis is some function of the OLS residuals or transformed version thereof such as the BLUS residuals Theil (1968) or standardised or studentised residuals as discussed in Cook and Weisberg (1983). A separate plot is created for each (horzvar, vertvar, vertfun) combination.

\section*{Value}

A list containing two data frames, one for vectors plotted on horizontal axes and one for vectors plotted on vertical axes.

\section*{References}

Cook RD, Weisberg S (1983). "Diagnostics for Heteroscedasticity in Regression." Biometrika, 70(1), 1-10.

Theil H (1968). "A Simplification of the BLUS Procedure for Analyzing Regression Disturbances." Journal of the American Statistical Association, 63(321), 242-251.

\section*{See Also}
plot.lm

\section*{Examples}
```

mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)

# Generates 2 x 2 matrix of plots in console

hetplot(mtcars_lm, horzvar = c("index", "fitted.values"),
vertvar = c("res_blus"), vertfun = c("2", "abs"), filetype = NA)

# Generates 84 png files in tempdir() folder

## Not run: hetplot(mainlm = mtcars_lm, horzvar = c("explanatory", "log_explanatory",

"fitted.values2"), vertvar = c("res", "res_stand", "res_stud",
"res_constvar"), vertfun = c("identity", "abs", "2"), filetype = "png")

## End(Not run)

```
honda Honda's Test for Heteroskedasticity in a Linear Regression Model

\section*{Description}

This function implements the two-sided LM Test of Honda (1989) for testing for heteroskedasticity in a linear regression model.

\section*{Usage}
```

honda(
mainlm,
deflator = NA,
alternative = c("two.sided", "greater", "less"),
twosidedmethod = c("doubled", "kulinskaya"),
qfmethod = "imhof",
statonly = FALSE
)

```

\section*{Arguments}
mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " \(x\) " and " \(y\) " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
deflator Either a character specifying a column name from the design matrix of mainlm or an integer giving the index of a column of the design matrix. This variable is suspected to be related to the error variance under the alternative hypothesis. deflator may not correspond to a column of 1's (intercept). Default NA means the data will be left in its current order (e.g. in case the existing index is believed to be associated with error variance).
alternative A character specifying the form of alternative hypothesis. If it is suspected that the error variance is positively associated with the deflator variable, "greater". If it is suspected that the error variance is negatively associated with deflator variable, "less". If no information is available on the suspected direction of the association, "two.sided". Defaults to "greater".
twosidedmethod A character indicating the method to be used to compute two-sided \(p\)-values for the parametric test when alternative is "two.sided". The argument is passed to twosidedpval as its method argument.
qfmethod A character, either "imhof", "davies", or "integrate", corresponding to the algorithm argument of pRQF. The default is "imhof".
statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

\section*{Details}

The test assumes that heteroskedasticity, if present, would be either of the form \(\omega_{i}=\omega\left(1+\theta z_{i}\right)\) or of the form \(\omega_{i}=\omega e^{\theta z_{i}}\), where where \(z_{i}\) is a deflator (a nonstochastic variable suspected of being related to the error variance), \(\omega\) is some unknown constant, and \(\theta\) is an unknown parameter representing the degree of heteroskedasticity. Since the test statistic \(Q=\frac{e^{\prime} A_{0} e}{e^{\prime} e}\) is a ratio of quadratic forms in the errors, the Imhof algorithm is used to compute \(p\)-values. Since the null distribution
is in general asymmetrical, the two-sided \(p\)-value is computed using the conditional method of Kulinskaya (2008), setting \(A=1\).

\section*{Value}

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

\section*{References}

Honda Y (1989). "On the Optimality of Some Tests of the Error Covariance Matrix in the Linear Regression Model." Journal of the Royal Statistical Society. Series B (Statistical Methodology), 51(1), 71-79.

Kulinskaya E (2008). "On Two-Sided p-Values for Non-Symmetric Distributions." 0810.2124, 0810.2124.

\section*{Examples}
```

mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)

# In this example, only the test statistic is returned, to save time

honda(mtcars_lm, deflator = "qsec", statonly = TRUE)

```
```

horn Horn's Test for Heteroskedasticity in a Linear Regression Model

```

\section*{Description}

This function implements the nonparametric test of Horn (1981) for testing for heteroskedasticity in a linear regression model.

\section*{Usage}
horn \((\) mainlm, deflator = NA, restype = c("ols", "blus"),
 alternative = c("two.sided", "greater", "less"),
 exact = (nres <= 10),
 statonly = FALSE,
)

\section*{Arguments}
mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " \(x\) " and " \(y\) " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
deflator Either a character specifying a column name from the design matrix of mainlm or an integer giving the index of a column of the design matrix. This variable is suspected to be related to the error variance under the alternative hypothesis. deflator may not correspond to a column of 1's (intercept). Default NA means the data will be left in its current order (e.g. in case the existing index is believed to be associated with error variance).
restype A character specifying which residuals to use: "ols" for OLS residuals (the default) or the "blus" for BLUS residuals. The advantage of using BLUS residuals is that, under the null hypothesis, the assumption that the random series is independent and identically distributed is met (whereas with OLS residuals it is not). The disadvantage of using BLUS residuals is that only \(n-p\) residuals are used rather than the full \(n\).
alternative A character specifying the form of alternative hypothesis; one of "two.sided" (default), "greater", or "less". "two.sided" corresponds to any trend in the absolute residuals when ordered by deflator. "greater" corresponds to a negative trend in the absolute residuals when ordered by deflator. "less" corresponds to a positive trend in the absolute residuals when ordered by deflator. (Notice that \(D\) tends to be small when there is a positive trend.)
exact A logical. Should exact \(p\)-values be computed? If FALSE, a normal approximation is used. Defaults to TRUE only if the number of absolute residuals being ranked is \(\leq 10\).
statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.
Optional further arguments to pass to blus.

\section*{Details}

The test entails specifying a 'deflator', an explanatory variable suspected of being related to the error variance. Residuals are ordered by the deflator and the nonparametric trend statistic \(D=\) \(\sum\left(R_{i}-i\right)^{2}\) proposed by Lehmann (1975) is then computed on the absolute residuals and used to test for an increasing or decreasing trend, either of which would correspond to heteroskedasticity. Exact probabilities for the null distribution of \(D\) can be obtained from functions dDtrend and pDtrend, but since computation time increases rapidly with \(n\), use of a normal approximation is recommended for \(n>10\). Lehmann (1975) proves that \(D\) is asymptotically normally distributed and the approximation of the statistic \(Z=(D-E(D)) / \sqrt{V(D)}\) to the standard normal distribution is already quite good for \(n=11\).

The expectation and variance of \(D\) (when ties are absent) are respectively \(E(D)=\frac{n^{3}-n}{6}\) and \(V(D)=\frac{n^{2}(n+1)^{2}(n-1)}{36}\); see Lehmann (1975) for \(E(D)\) and \(V(D)\) when ties are present. When ties are absent, a continuity correction is used to improve the normal approximation. When exact distribution is used, two-sided \(p\)-value is computed by doubling the one-sided \(p\)-value, since the distribution of \(D\) is symmetric. The function does not support the exact distribution of \(D\) in the presence of ties, so in this case the normal approximation is used regardless of \(n\).

\section*{Value}

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

\section*{References}

Horn P (1981). "Heteroscedasticity of Residuals: A Non-Parametric Alternative to the GoldfeldQuandt Peak Test." Communications in Statistics - Theory and Methods, 10(8), 795-808.

Lehmann EL (1975). Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San Francisco.

\section*{Examples}
```

mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
horn(mtcars_lm, deflator = "qsec")
horn(mtcars_lm, deflator = "qsec", restype = "blus")

```
li_yao \begin{tabular}{l}
Li-Yao ALRT and CVT Tests for Heteroskedasticity in a Linear Regres- \\
sion Model
\end{tabular}

\section*{Description}

This function implements the two methods of Li and Yao (2019) for testing for heteroskedasticity in a linear regression model.

\section*{Usage}
li_yao(mainlm, method = c("cvt", "alrt"), baipanyin = TRUE, statonly = FALSE)

\section*{Arguments}
mainlm
Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " \(x\) " and " \(y\) " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary
least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
method A character indicating which of the two tests derived in Li and Yao (2019) should be implemented. Possible values are "alrt" (approximate likelihood-ratio test) and "cvt" (coefficient-of-variation test). Default is "cvt". Partial matching is used.
baipanyin A logical. Should the central limit theorem of Bai et al. (2016) be used to determine the \(p\)-value for the coefficient-of-variation test (assuming normally distributed errors)? If FALSE, the asymptotic null distribution in Li and Yao (2019) is used, which requires the assumption that the design variables are random and normally distributed. This argument is ignored if method is "alrt".
statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

\section*{Details}

These two tests are straightforward to implement; in both cases the test statistic is a function only of the residuals of the linear regression model. Furthermore, in both cases the test statistic is asymptotically normally distributed under the null hypothesis of homoskedasticity. Both tests are right-tailed. These tests are designed to be especially powerful in high-dimensional regressions, i.e. when the number of explanatory variables is large.

\section*{Value}

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

\section*{References}

Bai Z, Pan G, Yin Y (2016). "Homoscedasticity Tests for Both Low and High-Dimensional Fixed Design Regressions." 1603.03830, 1603.03830.

Li Z, Yao J (2019). "Testing for Heteroscedasticity in High-Dimensional Regressions." Econometrics and Statistics, 9, 122-139.

\section*{Examples}
```

mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
li_yao(mtcars_lm, method = "alrt")
li_yao(mtcars_lm, method = "cvt")
li_yao(mtcars_lm, method = "cvt", baipanyin = FALSE)

# Same as first example

li_yao(list("e" = mtcars_lm\$residuals), method = "alrt")

```

\section*{Description}

This function computes \(\operatorname{Pr}(D \leq k)(\operatorname{Pr}(D \geq k))\), i.e. lower (upper) cumulative probabilities for \(D=\sum_{i=1}^{n}\left(R_{i}-i\right)^{2}\), the nonparametric trend statistic proposed by Lehmann (1975), under the assumption that the ranks \(R_{i}\) are computed on a series of \(n\) independent and identically distributed random variables with no ties. The function may be used to compute one-sided \(p\)-values for the nonparametric test for heteroskedasticity of Horn (1981). Computation time is extremely slow for \(n>10\) if usedata is set to FALSE; thus a normal approximation is implemented, including a continuity correction.

\section*{Usage}
```

    pDtrend(
        k,
        n,
        lower.tail = TRUE,
        exact = (n <= 10),
        tiefreq = NA,
        override = FALSE
    )
    ```

\section*{Arguments}
k
n
lower.tail A logical. Should lower tailed cumulative probability be calculated? Defaults to TRUE. Note that both lower- and upper- tailed cumulative probabilities are computed inclusive of \(k\).
exact A logical. Should exact distribution of \(D\) be used by calling dDtrend? If FALSE, a normal approximation is used. If tiefreq is not NA (ties are present), normal approximation is used regardless of the value of exact. By default, exact is set to TRUE provided that \(\mathrm{n}<=10\). Setting exact to TRUE for \(\mathrm{n}>11\) results in an error unless override is set to TRUE.
tiefreq A double vector corresponding to the value of \(d_{i}\) in Lehmann (1975). These are the frequencies of the various tied ranks. If ties are absent, NA (the default).
override A logical. By default, the dDtrend function aborts if \(n>11\) due to the prohibitively slow computation (which may cause some systems to crash). Setting this argument to TRUE overrides the abort. Ignored unless exact is TRUE.

\section*{Value}

A double between 0 and 1 representing the probability/ies of \(D\) taking on at least (at most) the value(s) in the names attribute.

\section*{References}

Horn P (1981). "Heteroscedasticity of Residuals: A Non-Parametric Alternative to the GoldfeldQuandt Peak Test." Communications in Statistics - Theory and Methods, 10(8), 795-808.

Lehmann EL (1975). Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San Francisco.

\section*{See Also}
dDtrend, horn

\section*{Examples}
```


# For an independent sample of size 6, the probability that D is <= 50 is

# 0.8222

pDtrend(k = 50, n = 6)

# Normal approximation of the above with continuity correction is

# 0.8145

pDtrend(k = 50, n = 6, exact = FALSE)

```
```

ppeak

```

Cumulative distribution function of number of peaks in an i.i.d. random sequence

\section*{Description}

This function computes \(\sum_{k} P(n, k)\), i.e. the probability that a sequence of \(n\) independent and identically distributed random variables contains \(\geq k(\leq k)\) peaks, with peaks as defined in Goldfeld and Quandt (1965). The function may be used to compute \(p\)-values for the Goldfeld-Quandt nonparametric test for heteroskedasticity in a linear model. Computation time is very slow for \(n>170\) if usedata is set to FALSE.

\section*{Usage}
ppeak(k, n, lower.tail = FALSE, usedata \(=\) TRUE \()\)

\section*{Arguments}
k
An integer or a sequence of integers strictly incrementing by 1 , with all values between 0 and \(n-1\) inclusive. Represents the number of peaks in the sequence.
n A positive integer representing the number of observations in the sequence.
lower.tail A logical. Should lower tailed cumulative probability be calculated? Defaults to FALSE due to function being designed primarily for calculating \(p\)-values for the peaks test, which is by default an upper-tailed test. Note that both upper and lower tailed cumulative probabilities are computed inclusive of \(k\).
usedata A logical. Should probability mass function values be read from dpeakdat rather than computing them from dpeak? This option will save significantly on computation time if \(n<170\) but is currently only available for \(n \leq 1000\).

\section*{Value}

A double between 0 and 1 representing the probability of at least (at most) k peaks occurring in a sequence of \(n\) independent and identically distributed continuous random variables. The double has a names attribute with the values corresponding to the probabilities.

\section*{References}

Goldfeld SM, Quandt RE (1965). "Some Tests for Homoscedasticity." Journal of the American Statistical Association, 60(310), 539-547.

\section*{See Also}
dpeak, goldfeld_quandt

\section*{Examples}
```


# For an independent sample of size 250, the probability of at least 10

# peaks is 0.02650008

ppeak(k = 10, n = 250, lower.tail = FALSE, usedata = TRUE)

# For an independent sample of size 10, the probability of at most 2 peaks

# is 0.7060615

ppeak(k = 2, n = 10, lower.tail = TRUE, usedata = FALSE)

```
```

pRQF

```

Probabilities for a Ratio of Quadratic Forms in a Normal Random Vector

\section*{Description}

This function computes cumulative probabilities (lower or upper tail) on a ratio of quadratic forms in a vector of normally distributed random variables.

\section*{Usage}
pRQF (
\(r\),
A,
B,
```

    Sigma = diag(nrow(A)),
    algorithm = c("imhof", "davies", "integrate"),
    lower.tail = TRUE,
    usenames = FALSE
    )

```

\section*{Arguments}
\(r \quad\) A double representing the value(s) for which \(\operatorname{Pr}(R \leq r)\) or \(\operatorname{Pr}(R \geq r)\) should be computed.
A A numeric, symmetric matrix that is symmetric
B A numeric, symmetric, non-negative definite matrix having the same dimensions as A.
Sigma A numeric, symmetric matrix with the same dimensions as A and B, denoting the covariance matrix of the normal random vector. Defaults to the identity matrix, corresponding to the case in which the normal random variables are independent and identically distributed.
algorithm A character, either "imhof", "davies", or "integrate". Values "imhof" and "integrate" both implement the Imhof algorithm. The difference is that "imhof" means that imhof is used, whereas "integrate" means that integrate is used (which is slower). The Imhof algorithm is more precise than the Davies algorithm.
lower. tail A logical. If TRUE, the cumulative distribution function \(\operatorname{Pr}(R \leq r)\) is computed; if FALSE, the survival function \(\operatorname{Pr}(R \geq r)\) is computed.
usenames A logical. If TRUE, the function value has a names attribute corresponding to \(r\).

\section*{Details}

Most of the work is done by other functions, namely imhof, davies, or integrate (depending on the algorithm argument). It is assumed that the ratio of quadratic forms can be expressed as
\[
R=\frac{x^{\prime} A x}{x^{\prime} B x}
\]
where \(x\) is an \(n\)-dimensional normally distributed random variable with mean vector \(\mu\) and covariance matrix \(\Sigma\), and \(A\) and \(B\) are real-valued, symmetric \(n \times n\) matrices. Matrix \(B\) must be non-negative definite to ensure that the denominator of the ratio of quadratic forms is nonzero.
The function makes use of the fact that a probability statement involving a ratio of quadratic forms can be rewritten as a probability statement involving a quadratic form. Hence, methods for computing probabilities for a quadratic form in normal random variables, such as the Imhof algorithm (Imhof 1961) or the Davies algorithm (Davies 1980) can be applied to the rearranged expression to obtain the probability for the ratio of quadratic forms. Note that the Ruben-Farebrother algorithm (as implemented in farebrother) cannot be used here because the \(A\) matrix within the quadratic form (after rearrangement of the probability statement involving a ratio of quadratic forms) is not in general positive semi-definite.

\section*{Value}

A double denoting the probability/ies corresponding to the value(s) \(r\).

\section*{References}

Davies RB (1980). "Algorithm AS 155: The Distribution of a Linear Combination of \(\chi^{2}\) Random Variables." Journal of the Royal Statistical Society. Series C (Applied Statistics), 29, 323-333.

Imhof JP (1961). "Computing the Distribution of Quadratic Forms in Normal Variables." Biometrika, 48(3/4), 419-426.

\section*{See Also}

Duchesne and de Micheaux (2010), the article associated with the imhof and davies functions.

\section*{Examples}
```

n<- 20
A <- matrix(data = 1, nrow = n, ncol = n)
B <- diag(n)
pRQF(r = 1, A = A, B = B)
pRQF(r = 1, A = A, B = B, algorithm = "integrate")
pRQF(r = 1:3, A = A, B = B, algorithm = "davies")

```
rackauskas_zuokas Rackauskas-Zuokas Test for Heteroskedasticity in a Linear Regression Model

\section*{Description}

This function implements the two methods of Rackauskas and Zuokas (2007) for testing for heteroskedasticity in a linear regression model.

\section*{Usage}
rackauskas_zuokas(mainlm, alpha = 0, pvalmethod = c("data", "sim"), R = 2^14, \(m=2 \wedge 17\), sqZ = FALSE, seed \(=1234\), statonly = FALSE
)

\section*{Arguments}

\section*{Details}

Rackauskas and Zuokas propose a class of tests that entails determining the largest weighted difference in variance of estimated error. The asymptotic behaviour of their test statistic \(T_{n, \alpha}\) is studied using the empirical polygonal process constructed from partial sums of the squared residuals. The test is right-tailed.

\section*{Value}

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

\section*{References}

Rackauskas A, Zuokas D (2007). "New Tests of Heteroskedasticity in Linear Regression Model." Lithuanian Mathematical Journal, 47(3), 248-265.

\section*{Examples}
```

mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
rackauskas_zuokas(mtcars_lm)
rackauskas_zuokas(mtcars_lm, alpha = 7 / 16)
n <- length(mtcars_lm\$residuals)
rackauskas_zuokas(mtcars_lm, pvalmethod = "sim", m = n, sqZ = TRUE)

```
simonoff_tsai Simonoff-Tsai Tests for Heteroskedasticity in a Linear Regression Model

\section*{Description}

This function implements the modified profile likelihood ratio test and score test of Simonoff and Tsai (1994) for testing for heteroskedasticity in a linear regression model.

\section*{Usage}
```

simonoff_tsai(
mainlm,
auxdesign = NA,
method = c("mlr", "score"),
hetfun = c("mult", "add", "logmult"),
basetest = c("koenker", "cook_weisberg"),
bartlett = TRUE,
optmethod = "Nelder-Mead",
statonly = FALSE,
)

```

\section*{Arguments}
mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " \(X\) " and " \(y\) " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
\begin{tabular}{|c|c|}
\hline auxdesign & A data.frame or matrix representing an auxiliary design matrix of containing exogenous variables that (under alternative hypothesis) are related to error variance, or a character "fitted.values" indicating that the fitted \(\hat{y}_{i}\) values from OLS should be used. If set to NA (the default), the design matrix of the original regression model is used. An intercept is included in the auxiliary regression even if the first column of auxdesign is not a vector of ones. \\
\hline method & A character specifying which of the tests proposed in Simonoff and Tsai (1994) to implement. "mlr" corresponds to the modified profile likelihood ratio test, and "score" corresponds to the score test. \\
\hline hetfun & A character describing the form of \(w(\cdot)\), the error variance function under the heteroskedastic alternative. Possible values are "mult" (the default), corresponding to \(w\left(Z_{i}, \lambda\right)=\exp \left\{\sum_{j=1}^{q} \lambda_{j} Z_{i j}\right\}\), "add", corresponding to \(w\left(Z_{i}, \lambda\right)=\) \(\left(1+\sum_{j=1}^{q} \lambda_{j} Z_{i j}\right)^{2}\), and "logmult", corresponding to \(w\left(Z_{i}, \lambda\right)=\exp \left\{\sum_{j=1}^{q} \lambda_{j} \log Z_{i j}\right\}\). The multiplicative and log-multiplicative cases are considered in Cook and Weisberg (1983); the additive case is discussed, inter alia, by Griffiths and Surekha (1986). Results for the additive and multiplicative models are identical for this test. Partial matching is used. \\
\hline basetest & A character specifying the base test statistic which is robustified using the added term described in Details. "koenker" corresponds to the test statistic produced by breusch_pagan with argument koenker set to TRUE, while "cook_weisberg" corresponds to the test statistic produced by cook_weisberg. Partial matching is used. This argument is only used if method is "score". \\
\hline bartlett & A logical specifying whether a Bartlett correction should be made, as per Ferrari et al. (2004), to improve the fit of the test statistic to the asymptotic null distribution. This argument is only applicable where method is "mlr", and is implemented only where hetfun is "mult" or "logmult". \\
\hline optmethod & A character specifying the optimisation method to use with optim, if method is "mlr". The default, "Nelder-Mead", corresponds to the default method value in optim. Warnings about Nelder-Mead algorithm being unreliable for onedimensional optimization have been suppressed, since the algorithm does appear to work for the three implemented choices of hetfun. \\
\hline statonly & A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE. \\
\hline & Optional arguments to pass to optim, such as par (initial value of \(\lambda\)) and maxit (maximum number of iterations to use in optimisation algorithm), and trace (to provide detailed output on optimisation algorithm). Default initial value of \(\lambda\) is \(\operatorname{rep}(1 e-3, q)\). \\
\hline
\end{tabular}

\section*{Details}

The Simonoff-Tsai Likelihood Ratio Test involves a modification of the profile likelihood function so that the nuisance parameter will be orthogonal to the parameter of interest. The maximum likelihood estimate of \(\lambda\) (called \(\delta\) in Simonoff and Tsai (1994)) is computed from the modified profile log-likelihood function using the Nelder-Mead algorithm in optim. Under the null hypothesis of homoskedasticity, the distribution of the test statistic is asymptotically chi-squared with \(q\) degrees of freedom. The test is right-tailed.

The Simonoff-Tsai Score Test entails adding a term to either the score statistic of Cook and Weisberg (1983) (a test implemented in cook_weisberg) or to that of Koenker (1981) (a test implemented in breusch_pagan with argument koenker set to TRUE), in order to improve the robustness of these respective tests in the presence of non-normality. This test likewise has a test statistic that is asymptotically \(\chi^{2}(q)\)-distributed and the test is likewise right-tailed.
The assumption of underlying both tests is that \(\operatorname{Cov}(\epsilon)=\omega W\), where \(W\) is an \(n \times n\) diagonal matrix with \(i\) th diagonal element \(w_{i}=w\left(Z_{i}, \lambda\right)\). Here, \(Z_{i}\) is the \(i\) th row of an \(n \times q\) nonstochastic auxiliary design matrix \(Z\). Note: \(Z\) as defined here does not have a column of ones, but is concatenated to a column of ones when used in an auxiliary regression. \(\lambda\) is a \(q\)-vector of unknown parameters, and \(w(\cdot)\) is a real-valued, twice-differentiable function having the property that there exists some \(\lambda_{0}\) for which \(w\left(Z_{i}, \lambda_{0}\right)=0\) for all \(i=1,2, \ldots, n\). Thus, the null hypothesis of homoskedasticity may be expressed as \(\lambda=\lambda_{0}\).
In the score test, the added term in the test statistic is of the form
\[
\sum_{j=1}^{q}\left(\sum_{i=1}^{n} h_{i i} t_{i j}\right) \tau_{j}
\]
, where \(t_{i j}\) is the \((i, j)\) th element of the Jacobian matrix \(J\) evaluated at \(\lambda=\lambda_{0}\) :
\[
t_{i j}=\left.\frac{\partial w\left(Z_{i}, \lambda\right)}{\partial \lambda_{j}}\right|_{\lambda=\lambda_{0}}
\]
, and \(\tau=\left(\bar{J}^{\prime} \bar{J}\right)^{-1} \bar{J}^{\prime} d\), where \(d\) is the \(n\)-vector whose \(i\) th element is \(e_{i}^{2} \bar{\omega}^{-1}, \bar{\omega}=n^{-1} e^{\prime} e\), and \(\bar{J}=\left(I_{n}-1_{n} 1_{n}^{\prime} / n\right) J\).

\section*{Value}

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

\section*{References}

Cook RD, Weisberg S (1983). "Diagnostics for Heteroscedasticity in Regression." Biometrika, 70(1), 1-10.

Ferrari SL, Cysneiros AH, Cribari-Neto F (2004). "An Improved Test for Heteroskedasticity Using Adjusted Modified Profile Likelihood Inference." Journal of Statistical Planning and Inference, 124, 423-437.

Griffiths WE, Surekha K (1986). "A Monte Carlo Evaluation of the Power of Some Tests for Heteroscedasticity." Journal of Econometrics, 31(1), 219-231.

Koenker R (1981). "A Note on Studentizing a Test for Heteroscedasticity." Journal of Econometrics, 17, 107-112.

Simonoff JS, Tsai C (1994). "Use of Modified Profile Likelihood for Improved Tests of Constancy of Variance in Regression." Journal of the Royal Statistical Society. Series C (Applied Statistics), 43(2), 357-370.

\section*{Examples}
```

mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
simonoff_tsai(mtcars_lm, method = "score")
simonoff_tsai(mtcars_lm, method = "score", basetest = "cook_weisberg")
simonoff_tsai(mtcars_lm, method = "mlr")
simonoff_tsai(mtcars_lm, method = "mlr", bartlett = FALSE)

## Not run: simonoff_tsai(mtcars_lm, auxdesign = data.frame(mtcars$wt, mtcars$qsec),

    method = "mlr", hetfun = "logmult")
    
## End(Not run)

```
szroeter Szroeter's Test for Heteroskedasticity in a Linear Regression Model

\section*{Description}

This function implements the method of Szroeter (1978) for testing for heteroskedasticity in a linear regression model.

\section*{Usage}
szroeter (mainlm, deflator \(=\) NA, h = SKH, qfmethod = "imhof", statonly = FALSE)

\section*{Arguments}
\begin{tabular}{ll}
mainlm & \begin{tabular}{l}
Either an object of class "lm" (e.g., generated by lm), or a list of two objects: \\
a response vector and a design matrix. The objects are assumed to be in that \\
order, unless they are given the names " \(X\) " and " y " to distinguish them. The \\
design matrix passed in a list must begin with a column of ones if an intercept \\
is to be included in the linear model. The design matrix passed in a list should \\
not contain factors, as all columns are treated 'as is'. For tests that use ordinary \\
least squares residuals, one can also pass a vector of residuals in the list, which \\
should either be the third object or be named "e".
\end{tabular} \\
deflator & \begin{tabular}{l}
Either a character specifying a column name from the design matrix of mainlm \\
or an integer giving the index of a column of the design matrix. This variable \\
is suspected to be related to the error variance under the alternative hypothesis. \\
deflator may not correspond to a column of 1 's (intercept). Default NA means \\
the data will be left in its current order (e.g. in case the existing index is believed \\
to be associated with error variance).
\end{tabular} \\
h \begin{tabular}{l}
A non-decreasing function taking as its argument the index i of observations
\end{tabular} \\
from 1 to \(n\). Defaults to SKH, which is equivalent to \(h(i)=2\left(1-\cos \frac{\pi i}{n+1}\right)\). The \\
function must be able to take a vector argument of length \(n\).
\end{tabular}

\section*{Details}

The test entails putting the data rows in increasing order of some specified deflator (e.g., one of the explanatory variables) that is believed to be related to the error variance by some non-decreasing function. The test statistic is a ratio of quadratic forms in the OLS residuals. It is a right-tailed test.

\section*{Value}

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

\section*{References}

Szroeter J (1978). "A Class of Parametric Tests for Heteroscedasticity in Linear Econometric Models." Econometrica, 46(6), 1311-1327.

\section*{Examples}
```

mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
szroeter(mtcars_lm, deflator = "qsec")

```
twosidedpval Computation of Conditional Two-Sided p-Values

\section*{Description}

Computes the conditional \(p\)-value \(P_{C}\) for a continuous or discrete test statistic, as defined in Kulinskaya (2008). This provides a method for computing a two-sided \(p\)-value from an asymmetric null distribution.

\section*{Usage}
```

twosidedpval(
q,
CDF,
continuous,
method = c("doubled", "kulinskaya", "minlikelihood"),
locpar,
supportlim = c(-Inf, Inf),
)

```

\section*{Arguments}
q

CDF A function representing the cumulative distribution function of the test statistic under the null hypothesis, i.e. \(\operatorname{Pr}\left(T \leq q \mid \mathrm{H}_{0}\right)\).
continuous A logical indicating whether the test statistic is a continuous (TRUE) or discrete (FALSE) random variable. Defaults to TRUE.
method A character specifying the method to use to calculate two-sided \(p\)-value; one of "doubled" (representing doubling of the one-sided \(p\)-value), "kulinskaya" (representing the method of Kulinskaya (2008)), or "minlikelihood" (representing the sum of probabilities for values with probability less than or equal to that of the observed value. Partial matching is used. Note that the "minlikelihood" method is available only for discrete distributions.
locpar a double representing a generic location parameter chosen to separate the tails of the distribution. Note that if locpar corresponds to the median of CDF, there is no difference between the two methods, in the continuous case. If locpar is not specified, the function attempts to compute the expectation of CDF using numerical integration and, if successful, uses this as locpar. However, this may yield unexpected results, especially if CDF is not one of the cumulative distribution functions of well-known distributions included in the stats package.
supportlim A numeric vector of length 2, giving the minimum and maximum values in the support of the distribution whose cumulative distribution function is CDF. This argument is only used if the distribution is discrete (i.e. if continuous is FALSE) and if method is "minlikelihood" or locpar is not specified. If supportlim is not supplied, the function assumes that the support is \(-1 \mathrm{e} 6: 1 \mathrm{e} 6\). Values of -Inf and Inf may be supplied, but if so, the support is truncated at -1 e 6 and 1e6 respectively.
Optional arguments to pass to CDF .

\section*{Details}

Let \(T\) be a statistic that, under the null hypothesis, has cumulative distribution function \(F\) and probability density or mass function \(f\). Denote by \(A\) a generic location parameter chosen to separate the two tails of the distribution. Particular examples include the mean \(E\left(T \mid \mathrm{H}_{0}\right)\), the mode \(\arg \sup _{t} f(t)\), or the median \(F^{-1}\left(\frac{1}{2}\right)\). Let \(q\) be the observed value of \(T\).
In the continuous case, the conditional two-sided \(p\)-value centered at \(A\) is defined as
\[
P_{C}^{A}(q)=\frac{F(q)}{F(A)} 1_{q \leq A}+\frac{1-F(q)}{1-F(A)} 1_{q>A}
\]
where 1. is the indicator function. In the discrete case, \(P_{C}^{A}\) depends on whether \(A\) is an attainable value within the support of \(T\). If \(A\) is not attainable, the conditional two-sided \(p\)-value centred at \(A\) is defined as
\[
P_{C}^{A}(q)=\frac{\operatorname{Pr}(T \leq q)}{\operatorname{Pr}(T<A)} 1_{q<A}+\frac{\operatorname{Pr}(T \geq q)}{\operatorname{Pr}(T>A)} 1_{q>A}
\]

If \(A\) is attainable, the conditional two-sided \(p\)-value centred at \(A\) is defined as
\[
P_{C}^{A}(q)=\frac{\operatorname{Pr}(T \leq q)}{\operatorname{Pr}(T \leq A) /(1+\operatorname{Pr}(T=A))} 1_{q<A}+1_{q=A}+\frac{\operatorname{Pr}(T \geq q)}{\operatorname{Pr}(T \geq A) /(1+\operatorname{Pr}(T=A))} 1_{q>A}
\]

\section*{Value}

A double.

\section*{References}

Kulinskaya E (2008). "On Two-Sided p-Values for Non-Symmetric Distributions." 0810.2124, 0810.2124.

\section*{Examples}
```


# Computation of two-sided p-value for F test for equality of variances

n1 <- 10
n2 <- 20
set.seed(1234)
x1 <- stats::rnorm(n1, mean = 0, sd = 1)
x2 <- stats::rnorm(n2, mean = 0, sd = 3)

# 'Conventional' two-sided p-value obtained by doubling one-sided p-value:

stats::var.test(x1, x2, alternative = "two.sided")\$p.value

# This is replicated in `twosidedpval` by setting `method` argument to `"doubled"`

twosidedpval(q = var(x1) / var(x2), CDF = stats::pf, continuous = TRUE,
method = "doubled", locpar = 1, df1 = n1 - 1, df2 = n2 - 1)

# Conditional two-sided p-value centered at df (mean of chi-squared r.v.):

twosidedpval(q = var(x1) / var(x2), CDF = stats::pf, continuous = TRUE,
method = "kulinskaya", locpar = 1, df1 = n1 - 1, df2 = n2 - 1)

```
T_alpha Pseudorandom numbers from Asymptotic Null Distribution of Test Statistic for Method of Rackauskas and Zuokas (2007)

\section*{Description}

A matrix of \(2^{1} 4\) rows and 16 columns. Each column contains \(2^{1} 4\) Monte Carlo replicates from the distribution of \(T_{\alpha}\) for a particular value of \(\alpha, \alpha=i / 32, i=0,1, \ldots, 15\). The values were generated by first generating a Brownian Bridge using \(m=2^{1} 7\) standard normal variates and then applying Equation (11) from Rackauskas and Zuokas (2007). It can be used to compute empirical approximate \(p\)-values for implementation of the Rackauskas-Zuokas Test for heteroskedasticity. This is a time-saving measure because, while rackauskas_zuokas contains an option for simulating the \(p\)-value directly, this would be computationally intensive for the authors' recommended \(m\) of \(2^{1} 7\). Passing the argument pvalmethod = "data" to rackauskas_zuokas instructs the function to use the pre-generated values in this data set to compute the empirical approximate \(p\)-value for the test.

\section*{Usage}

T_alpha

\section*{Format}

An object of class matrix (inherits from array) with 16384 rows and 16 columns.
verbyla Verbyla's Test for Heteroskedasticity in a Linear Regression Model

\section*{Description}

This function implements the residual maximum likelihood test of Verbyla (1993) for testing for heteroskedasticity in a linear regression model.

\section*{Usage}
verbyla(mainlm, auxdesign = NA, statonly = FALSE)

\section*{Arguments}
mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " \(x\) " and " \(y\) " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
auxdesign A data.frame or matrix representing an auxiliary design matrix of containing exogenous variables that (under alternative hypothesis) are related to error variance, or a character "fitted.values" indicating that the fitted \(\hat{y}_{i}\) values from OLS should be used. If set to NA (the default), the design matrix of the original regression model is used. An intercept is included in the auxiliary regression even if the first column of auxdesign is not a vector of ones.
statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

\section*{Details}

Verbyla's Test entails fitting a generalised auxiliary regression model in which the response variable is the vector of standardised squared residuals \(e_{i}^{2} / \hat{\omega}\) from the original OLS model and the design matrix is some function of \(Z\), an \(n \times q\) matrix consisting of \(q\) exogenous variables, appended to a column of ones. The test statistic is half the residual sum of squares from this generalised auxiliary regression. Under the null hypothesis of homoskedasticity, the distribution of the test statistic is asymptotically chi-squared with \(q\) degrees of freedom. The test is right-tailed.

\section*{Value}

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

\section*{References}

Verbyla AP (1993). "Modelling Variance Heterogeneity: Residual Maximum Likelihood and Diagnostics." Journal of the Royal Statistical Society. Series B (Statistical Methodology), 55(2), 493-508.

\section*{Examples}
```

mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
verbyla(mtcars_lm)
verbyla(mtcars_lm, auxdesign = "fitted.values")

```
white White's Test for Heteroskedasticity in a Linear Regression Model

\section*{Description}

This function implements the popular method of White (1980) for testing for heteroskedasticity in a linear regression model.

\section*{Usage}
white(mainlm, interactions \(=\) FALSE, statonly = FALSE)

\section*{Arguments}
mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " \(x\) " and " \(y\) " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
interactions A logical. Should two-way interactions between explanatory variables be included in the auxiliary regression? Defaults to FALSE, since when interaction terms are present the test is not a pure test of heteroskedasticity but also of model specification.
statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

\section*{Details}

White's Test entails fitting an auxiliary regression model in which the response variable is the vector of squared residuals from the original model and the design matrix includes the original explanatory variables, their squares, and (optionally) their two-way interactions. The test statistic is the number of observations multiplied by the coefficient of determination from the auxiliary regression model:
\[
T=n r_{\mathrm{aux}}^{2}
\]

White's Test is thus a special case of the method of Breusch and Pagan (1979). Under the null hypothesis of homoskedasticity, the distribution of the test statistic is asymptotically chi-squared with parameter degrees of freedom. The test is right-tailed.

\section*{Value}

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

\section*{References}

Breusch TS, Pagan AR (1979). "A Simple Test for Heteroscedasticity and Random Coefficient Variation." Econometrica, 47(5), 1287-1294.

White H (1980). "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity." Econometrica, 48(4), 817-838.

\section*{See Also}

This function should not be confused with tseries: :white.test, which does not implement the method of White (1980) for testing for heteroskedasticity in a linear model.

\section*{Examples}
```

mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
white(mtcars_lm)
white(mtcars_lm, interactions = TRUE)

```
wilcox_keselman \begin{tabular}{l}
Wilcox and Keselman's Test for Heteroskedasticity in a Linear Regres- \\
sion Model
\end{tabular}

\section*{Description}

This function implements the nonparametric test of Wilcox and Keselman (2006) for testing for heteroskedasticity in a simple linear regression model, and extends it to the multiple linear regression model.

\section*{Usage}
```

wilcox_keselman(
mainlm,
gammapar = 0.2,
$B=500 \mathrm{~L}$,
p.adjust.method = "none",
seed $=$ NA,
rqwarn $=$ FALSE,
matchWRS = FALSE,
statonly = FALSE
)

```

\section*{Arguments}
mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " \(x\) " and " \(y\) " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
gammapar A double value between 0 and 0.5 exclusive specifying the quantile value gamma. Defaults to 0.2 .
B
An integer specifying the number of nonparametric bootstrap samples to use to estimate standard error(s) of the quantile difference(s). Defaults to 500L.
p.adjust.method

A character specifying the family-wise error rate method to use in adjusting \(p\)-values (if it is a multiple linear regression model). The value is passed to p.adjust. By default no adjustment is made.
seed An integer specifying a seed to pass to set. seed for random number generation. This allows reproducibility of bootstrap results. The value NA results in not setting a seed.
rqwarn A logical specifying whether warnings generated by rq.fit (such as 'Solution may be nonunique') should be printed (TRUE) or suppressed (FALSE). Defaults to FALSE.
matchWRS A logical specifying whether bootstrap samples should be generated in the exact same manner as in the qhomtv2 function in WRS package. If TRUE, and seed is set to 2 and B to 100 and p.adjust. method to "none", results will be identical to those of the default settings of qhomtv2.
statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

\section*{Value}

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

\section*{References}

Wilcox RR, Keselman HJ (2006). "Detecting Heteroscedasticity in a Simple Regression Model via Quantile Regression Slopes." Journal of Statistical Computation and Simulation, 76(8), 705-712.

\section*{See Also}

Rand R. Wilcox's package WRS on Github; in particular the functions qhomt and qhomtv2, which implement this method for simple and multiple linear regression respectively.

\section*{Examples}
```

mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
wilcox_keselman(mtcars_lm)

```
yuce Yüce's Test for Heteroskedasticity in a Linear Regression Model

\section*{Description}

This function implements the two methods of Yüce (2008) for testing for heteroskedasticity in a linear regression model.

\section*{Usage}
yuce(mainlm, method = c("A", "B"), statonly = FALSE)

\section*{Arguments}
mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " \(x\) " and " \(y\) " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
method A character indicating which of the two tests presented in Yüce (2008) should be implemented. Possible values are "A" (the chi-squared test) and "B" (the \(t\)-test). Partial matching is used and the argument is not case-sensitive.
statonly A logical. If TRUE, only the test statistic value is returned, instead of an object of class "htest". Defaults to FALSE.

\section*{Details}

These two tests are straightforward to implement; in both cases the test statistic is a function only of the residuals of the linear regression model. The first test statistic has an asymptotic chi-squared distribution and the second has an asymptotic \(t\)-distribution. In both cases the degrees of freedom are \(n-p\). The chi-squared test is right-tailed whereas the \(t\)-test is two-tailed.

\section*{Value}

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

\section*{References}

Yüce M (2008). "An Asymptotic Test for the Detection of Heteroskedasticity." Istanbul University Econometrics and Statistics e-Journal, 8, 33-44.

\section*{Examples}
```

mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
yuce(mtcars_lm, method = "A")
yuce(mtcars_lm, method = "B")

```
zhou_etal Zhou, Song, and Thompson's Test for Heteroskedasticity in a Linear Regression Model

\section*{Description}

This function implements the methods of Zhou et al. (2015) for testing for heteroskedasticity in a linear regression model.

\section*{Usage}
```

    zhou_etal(
        mainlm,
        auxdesign = NA,
        method = c("pooled", "covariate-specific", "hybrid"),
        Bperturbed = 500L,
        seed = 1234,
        statonly = FALSE
    )
    ```

\section*{Arguments}
mainlm Either an object of class "lm" (e.g., generated by lm), or a list of two objects: a response vector and a design matrix. The objects are assumed to be in that order, unless they are given the names " \(X\) " and " \(y\) " to distinguish them. The design matrix passed in a list must begin with a column of ones if an intercept is to be included in the linear model. The design matrix passed in a list should not contain factors, as all columns are treated 'as is'. For tests that use ordinary least squares residuals, one can also pass a vector of residuals in the list, which should either be the third object or be named "e".
\begin{tabular}{ll}
auxdesign & \begin{tabular}{l}
A data.frame or matrix representing an auxiliary design matrix of contain- \\
ing exogenous variables that (under alternative hypothesis) are related to error \\
variance, or a character "fitted.values" indicating that the fitted \(\hat{y}_{i}\) values from
\end{tabular} \\
OLS should be used. If set to NA (the default), the design matrix of the original \\
regression model is used. An intercept is included in the auxiliary regression \\
even if the first column of auxdesign is not a vector of ones. \\
method & \begin{tabular}{l}
A character specifying which of the three test methods to implement; one of \\
"pooled", "covariate-specific", or "hybrid" (which combines the other \\
two). Partial matching is used.
\end{tabular} \\
Bperturbed & \begin{tabular}{l}
An integer specifying the number of perturbation samples to generate when es- \\
timating the p-value. Defaults to 500 L.
\end{tabular} \\
seed & \begin{tabular}{l}
An integer specifying a seed to pass to set. seed for random number generation. \\
This allows for reproducibility of perturbation sampling. A value of NA results
\end{tabular} \\
in not setting a seed.
\end{tabular}

\section*{Details}

Zhou et al. (2015) The authors propose three variations based on comparisons between sandwich and model-based estimators for the variances of individual regression coefficient esimators. The covariate-specific method computes a test statistic and \(p\)-value for each column of the auxiliary design matrix (which is, by default, the original design matrix with intercept omitted). The \(p\)-values undergo a Bonferroni correction to control overall test size. When the null hypothesis is rejected in this case, it also provides information about which auxiliary design variable is associated with the error variance. The pooled method computes a single test statistic and \(p\)-value and is thus an omnibus test. The hybrid method returns the minimum \(p\)-value between the Bonferroni-corrected covariate-specific \(p\)-values and the pooled \(p\)-value, multiplying it by 2 for a further Bonferroni correction. The test statistic returned is that which corresponds to the minimum \(p\)-value. The covariate-specific and pooled test statistics have null distributions that are asymptotically normal with mean 0 . However, the variance is intractable and thus perturbation sampling is used to compute \(p\)-values empirically.

\section*{Value}

An object of class "htest". If object is not assigned, its attributes are displayed in the console as a tibble using tidy.

\section*{References}

Zhou QM, Song PX, Thompson ME (2015). "Profiling Heteroscedasticity in Linear Regression Models." The Canadian Journal of Statistics, 43(3), 358-377.

\section*{Examples}
```

mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
zhou_etal(mtcars_lm, method = "pooled")
zhou_etal(mtcars_lm, method = "covariate-specific")

```
zhou_etal(mtcars_lm, method = "hybrid")

\section*{Index}
```

* datasets
dpeakdat, 38
T_alpha,74
alvm.fit, 4, 8, 12, 17-19, 26
anlvm.fit, 9, 17-19, 26
anscombe, 13
avm.ci, 8, 12, 14
avm.fwls, 17, 19
avm.vcov, 18, 19
bamset, 20
bickel, 13, 14, 22
BLUS, 46, 55, 59
blus, 20, 24, 46, 55, 59
BLUS residuals,21
bootlm, 15, 26
breusch_pagan, 7, 11, 28, 69, 70
buildQP, }
car::ncvTest, 29, 32
carapeto_holt, 29
class, 5, 9, 13, 18, 20-24, 28-32, 35, 36,
39-47, 50-53, 55, 57-61, 67-72,
75-81
coeftest, 19
cook_weisberg, 29, 31, 69, 70
countpeaks, }3
data.frame, 28, 32, 42, 51, 69, 75, 81
davies, 65, }6
dDtrend, 34, 59, 62, }6
diblasi_bowman, 35
dist,7,11
dpeak, 37, 38, 64
dpeakdat, 37, 38, 46, 64
dufour_etal,38
evans_king,40
expand.grid,10
* datasets
dpeakdat, 38
T_alpha, 74
alvm.fit, 4, 8, 12, 17-19, 26
anlvm.fit, 9, 17-19, 26
anscombe, 13
avm.ci, $8,12,14$
avm.fwls, 17, 19
avm. vcov, 18, 19
bamset, 20
bickel, 13, 14, 22
BLUS, 46, 55, 59
blus, 20, 24, 46, 55, 59
BLUS residuals, 21
bootlm, 15, 26
breusch_pagan, 7, 11, 28, 69, 70
buildQP, 6
car: :ncvTest, 29, 32
carapeto_holt, 29
class, 5, 9, 13, 18, 20-24, 28-32, 35, 36, 39-47, 50-53, 55, 57-61, 67-72, 75-81
coeftest, 19
cook_weisberg, 29, 31, 69, 70
countpeaks, 33
data. frame, 28, 32, 42, 51, 69, 75, 81
davies, 65, 66
dDtrend, 34, 59, 62, 63
diblasi_bowman, 35
dist, 7, 11
dpeak, 37, 38, 64
dpeakdat, 37, 38, 46, 64
dufour_etal, 38
evans_king, 40
expand.grid, 10

```
farebrother, 65
gamObject, 8
glejser, 42
godfrey_orme, 43
goldfeld_quandt, 33, 37, 38, 45, 64
goldsect, 49
GSS, 48
harrison_mccabe, 49
harvey, 51
hccme, 16, 26, 52
hclust, 7, 11
hetplot, 54
honda, 56
horn, 34, 58, 63
identity, 22
imhof, 65, 66
integrate, 65
li_yao, 60
lm, 5, 9, 13, 18, 20, 22, 24, 26, 28, 30, 31, 35, \(39,41,42,44,45,50,51,53,55,57\), \(59,60,67,68,71,75,76,78-80\)
lm.fit, 26, 27
lm.wfit, 18
lmtest::bptest, 29
lmtest: :gqtest, 47
lmtest::hmctest, 51
matrix, 28, 32, 42, 51, 69, 75, 81
model.matrix, 5, 10
optim, 69
p.adjust, 78
paired.boot, 27
par, 55
pDtrend, 59, 62
plot, 55
plot.lm, 56
ppeak, 37, 38, 63
pRQF, 30, 41, 50, 57, 64, 71
quantile, 16
rackauskas_zuokas, 66, 74
rlm, 22, 23
rnorm, 39
ROI_solve, 6
round, 30,46
rq.fit, 78
seq, 10
set. seed, \(24,36,39,44,78,81\)
simonoff_tsai, 68
solve.QP. compact, 6
solve_osqp, 6
szroeter, 71
T_alpha, 67, 74
tibble, 13, 21, 23, 29, 31, 32, 36, 40, 41, 43, \(44,47,50,52,58,60,61,67,70,72\), 75, 77, 78, 80, 81
tidy, 13, 21, 23, 29, 31, 32, 36, 40, 41, 43, 44, \(47,50,52,58,60,61,67,70,72,75\), 77, 78, 80, 81
tseries: white.test, 77
twosidedpval, 30, 40, 44, 46, 50, 57, 72
vcovHC, 54
verbyla, 75
white, 29, 76
wilcox_keselman, 77
wild.boot, 27
yuce, 79
zhou_etal, 80```

