Package 'toolStability'

March 13, 2023

```
Type Package
Title Tool for Stability Indices Calculation
Version 0.1.2
Author Tien-Cheng Wang [aut, cre],
            Tsu-Wei Chen [com]
Maintainer Tien-Cheng Wang <wangtien@student.hu-berlin.de>
Description Tools to calculate stability indices with parametric.
            non-parametric and probabilistic approaches. The basic data format requirement for 'toolStabil-
            ity' is a data frame with 3 columns including numeric trait values, genotype, and environmen-
            tal labels. Output format of each function is the dataframe with chosen stability in-
            dex for each genotype.
            Function ``table_stability" offers the summary table of all stability indices in this package.
            This R package toolStability is part of the main publication:
            Wang, Casadebaig and Chen (2023) < doi:10.1007/s00122-023-04264-7>.
            Analysis pipeline for main publication can be found on github: <a href="https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://exampl
            //github.com/Illustratien/Wang_2023_TAAG/tree/V1.0.0>.
            Sample dataset in this package is derived from another publication:
            Casadebaig P, Zheng B, Chapman S et al. (2016) <doi:10.1371/journal.pone.0146385>.
            For detailed documentation of dataset, please see on Zenodo <doi:10.5281/zenodo.4729636>.
            Indices used in this package are from:
            Döring TF, Reckling M (2018) <doi:10.1016/j.eja.2018.06.007>.
            Eberhart SA, Russell WA (1966) <doi:10.2135/cropsci1966.0011183X000600010011x>.
            Eskridge KM (1990) <doi:10.2135/cropsci1990.0011183X003000020025x>.
            Finlay KW, Wilkinson GN (1963) <doi:10.1071/AR9630742>.
            Hanson WD (1970) Genotypic stability. <doi:10.1007/BF00285245>.
            Lin CS, Binns MR (1988) <a href="https://cdnsciencepub.com/doi/abs/10.4141/cjps88-018">https://cdnsciencepub.com/doi/abs/10.4141/cjps88-018</a>>.
            Nassar R, Hühn M (1987).
            Pinthus MJ (1973) <doi:10.1007/BF00021563>.
            Römer T (1917).
            Shukla GK (1972).
            Wricke G (1962).
Depends R (>= 3.5.0)
VignetteBuilder knitr
RoxygenNote 7.2.3
```

20

Imports dplyr, data.table, Rdpack, nortest, stats **Suggests** testthat (>= 3.0.0), ggplot2, knitr, rmarkdown, pkgdown, pander, XML, httr, RCurl, covr RdMacros Rdpack URL https://illustratien.github.io/toolStability/, https://link.springer.com/article/10.1007/s00122-023-04264-7, https://github.com/Illustratien/toolStability, https://github.com/Illustratien/Wang_2023_TAAG, https://doi.org/10.5281/zenodo.4729636 BugReports https://github.com/Illustratien/toolStability/issues **License** GPL (>= 3)**Encoding** UTF-8 LazyData true LazyLoad true Config/testthat/edition 3 NeedsCompilation no Repository CRAN **Date/Publication** 2023-03-13 09:10:02 UTC

R topics documented:

Index

adjusted_coefficient_of_variation	3
coefficient_of_determination	4
coefficient_of_regression	5
Data	6
deviation_mean_squares	7
ecovalence	8
environmental_variance	C
genotypic_stability	
genotypic_superiority_measure	2
safety_first_index	3
stability_variance	
table_stability	6
variance_of_rank	8

adjusted_coefficient_of_variation

Adjusted coefficient of variation

Description

adjusted_coefficient_of_variation calculate variance of a genotype across environments.

Usage

adjusted_coefficient_of_variation(data, trait, genotype, environment)

Arguments

data a dataframe containing trait, genotype and environment.

trait colname of a column containing a numeric vector of interested trait to be ana-

lyzed.

genotype colname of a column containing a character or factor vector labeling different

genotypic varieties

environment colname of a column containing a character or factor vector labeling different

environments

Details

Adjusted coefficient of variation (Doering and Reckling, 2018) is calculated based on regression function. Variety with low adjusted coefficient of variation is considered as stable. Equation of adjusted coefficient of variation can be found in vignette file.

Value

a data table with adjusted coefficient of variation

Author(s)

Tien-Cheng Wang

References

DA¶ring TF, Reckling M (2018). "Detecting global trends of cereal yield stability by adjusting the coefficient of variation." *European Journal of Agronomy*, **99**, 30–36. ISSN 1161-0301, doi: 10.1016/j.eja.2018.06.007.

Examples

```
data(Data)
res <- adjusted_coefficient_of_variation(
  data = Data,
  trait = "Yield",
  genotype = "Genotype",
  environment = "Environment")</pre>
```

coefficient_of_determination

Coefficient of determination

Description

coefficient_of_determination calculate variance of a genotype across environments.

Usage

```
coefficient_of_determination(data, trait, genotype, environment)
```

Arguments

data a dataframe containing trait, genotype and environment.

trait colname of a column containing a numeric vector of interested trait to be analy-

sized.

genotype colname of a column containing a character or factor vector labeling different

genotypic varieties

environment colname of a column containing a character or factor vector labeling different

environments

Details

Coefficient of determination (Pinthus, 1976) is calculated based on regression function. Variety with low coefficient of determination is considered as stable. Equation of coefficient of determination can be found in vignette file.

Value

a data table with coefficient of determination

Author(s)

Tien-Cheng Wang

References

Pinthus MJ (1973). "Estimate of genotypic value: A proposed method." *Euphytica*, **22**(1), 121–123. ISSN 1573-5060, doi: 10.1007/BF00021563.

Examples

```
data(Data)
coef.of.determination <- coefficient_of_determination(
  data = Data,
  trait = "Yield",
  genotype = "Genotype",
  environment = "Environment")</pre>
```

coefficient_of_regression

Coefficient of regression

Description

coefficient_of_regression calculate variance of a genotype across environments.

Usage

```
coefficient_of_regression(data, trait, genotype, environment)
```

Arguments

data a dataframe containing trait, genotype and environment.

trait colname of a column containing a numeric vector of interested trait to be analy-

sized.

genotype colname of a column containing a character or factor vector labeling different

genotypic varieties

environment colname of a column containing a character or factor vector labeling different

environments

Details

Coefficient of regression (Finlay and Wilkinson, 1963) is calculated based on regression function. Variety with low coefficient of regression is considered as stable. Under the linear model

$$Y = \mu + b_i e_j + g_i + d_{ij}$$

where Y is the predicted phenotypic values, g_i , e_j and μ denoting genotypic, environmental and overall population mean, respectively.

The effect of GE-interaction may be expressed as:

$$(ge)_{ij} = b_i e_j + d_{ij}$$

where b_i is the coefficient of regression and d_{ij} a deviation.

Coefficient of regression may be expressed as:

$$b_i = 1 + \frac{\sum_{j} (X_{ij} - \bar{X_{i.}} - \bar{X_{.j}} + \bar{X_{..}}) \cdot (\bar{X_{.j}} - \bar{X_{..}})}{\sum_{j} (\bar{X_{.j}} - \bar{X_{..}})^2}$$

6 Data

```
where X_{ij} is the observed phenotypic mean value of genotype i(i=1,..., G) in environment j(j=1,...,E), with \bar{X}_{i.} and \bar{X}_{.j} denoting marginal means of genotype i and environment j,respectively.
```

 $\bar{X}_{..}$ denote the overall mean of X.

Value

a data table with coefficient of regression

Author(s)

Tien Cheng Wang

References

Finlay KW, Wilkinson GN (1963). "The analysis of adaptation in a plant-breeding programme." *Australian Journal of Agricultural Research*, **14**(6), 742–754. doi: 10.1071/AR9630742.

Examples

```
data(Data)
coefficient.of.regression <- coefficient_of_regression(
  data = Data,
  trait = "Yield",
  genotype = "Genotype",
  environment = "Environment")</pre>
```

Data

Wheat APSIM model simulated database

Description

Multi-environment trail evaluating 5 genotypes in 4 locations for 4 years, with 2 nitrogen application rates, 2 sowing dates, and 2 CO2 levels of treatments (Casadebaig et al., 2016).

Usage

data(Data)

Format

A dataframe with 640 observations on the following 8 variables.

- Yield unit: kg*ha^-1.
- Genotype genotypes, 5 varieties.
- Environment 128 unique combination of environments for each genotype.
- Year 4 years.
- Sites 4 locations.

- Nitrogen 2 nitrogen application levels.
- CO2 2 CO2 concentration levels.
- Sowing 2 sowing dates.

References

Casadebaig P, Zheng B, Chapman S, Huth N, Faivre R, Chenu K (2016). "Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis." *PLOS ONE*, **11**(1), e0146385. doi: 10.1371/journal.pone.0146385.

Examples

```
data(Data)
ggplot2::ggplot(Data,ggplot2::aes(x=Sites,y=Yield,col=Genotype))+
    ggplot2::geom_boxplot()+
    ggplot2::facet_grid(Sowing~Nitrogen,labeller =ggplot2::label_both)+
    ggplot2::ylab(bquote('Wheat yield (ton' %.%'ha'^'-1'*')'))
```

deviation_mean_squares

Deviation mean squares

Description

deviation_mean_squares calculate variance of a genotype across environments.

Usage

```
deviation_mean_squares(
  data,
  trait,
  genotype,
  environment,
  unit.correct = FALSE
)
```

Arguments

data a dataframe containing trait, genotype and environment.

trait colname of a column containing a numeric vector of interested trait to be analy-

sized.

genotype colname of a column containing a character or factor vector labeling different

genotypic varieties

environment colname of a column containing a character or factor vector labeling different

environments

8 ecovalence

unit.correct

logical, default is FALSE, returning the stability index with unit equals to squared unit of trait; when TRUE, returning stability index with the unit as same as unit of trait.

Details

Deviation mean squares (Eberhart and Russell, 1966) is calculated based on regression function. Variety with low stability variance is considered as stable. Equation of deviation mean squares can be found in vignette file.

Value

a data table with deviation mean squares

Author(s)

Tien Cheng Wang

References

Eberhart SA, Russell WA (1966). "Stability parameters for comparing varieties." *Crop Science*, **6**(1), 36–40. ISSN 0011-183X, doi: 10.2135/cropsci1966.0011183X000600010011x.

Examples

```
data(Data)
deviation.mean.squares <- deviation_mean_squares(
  data = Data,
  trait = "Yield",
  genotype = "Genotype",
  environment = "Environment",
  unit.correct = FALSE)</pre>
```

ecovalence

Ecovalence

Description

ecovalence calculate genetic and environmental interaction.

Usage

```
ecovalence(
  data,
  trait,
  genotype,
  environment,
  unit.correct = FALSE,
  modify = FALSE
)
```

ecovalence 9

Arguments

data	a dataframe containing trait, genotype and environment.	
trait	colname of a column containing a numeric vector of interested trait to be analysized.	
genotype	colname of a column containing a character or factor vector labeling different genotypic varieties	
environment	colname of a column containing a character or factor vector labeling different environments	
unit.correct	logical, default is FALSE, returning the stability index with unit equals to squared unit of trait; when TRUE, returning stability index with the unit as same as unit of trait.	
modify	logical, default is FALSE, returning the original ecovalence; when TRUE, return-	

Details

Ecovalence (Wricke, 1962) is calcualted based on square and sum up the genotype–environment interaction all over the environment. Variety with low ecovalence is considered as stable. Equation of ecovalence can be found in vignette file.

ing modified ecovalence in consideration of number of environment.

Value

a data table with ecovalence

Author(s)

Tien-Cheng Wang

References

Wricke G (1962). "Über eine Methode zur Erfassung der Ökologischen Streubreite in Feldversuchen." Zeitschrift fÃ $\frac{1}{4}$ r PflanzenzÃ $\frac{1}{4}$ chtung, 47, 92–96.

```
data(Data)
eco.valence <- ecovalence(
  data = Data,
  trait = "Yield",
  genotype = "Genotype",
  environment = "Environment",
  unit.correct = FALSE,
  modify=FALSE)</pre>
```

environmental_variance

Environmental variance

Description

environmental_variance is used to calculate variance of a genotype across environments.

Usage

```
environmental_variance(data, trait, genotype, unit.correct = FALSE)
```

Arguments

data a dataframe containing trait, genotype and environment.

trait colname of a column containing a numeric vector of interested trait to be analy-

sized.

genotype colname of a column containing a character or factor vector labeling different

genotypic varieties

unit.correct logical, default is FALSE, returning the stability index with unit equals to squared

unit of trait; when TRUE, returning stability index with the unit as same as unit

of trait.'

Details

Environmental variance (Roemer, 1917) is calculated by squared and suming up all deviation from genotypic mean for each genotype. The larger the environmental variance of one genotype is, the lower the stability. Equation of environmental variance can be found in vignette file.

Value

a data table with environmental variance

Author(s)

Tien-Cheng Wang

References

Römer T (1917). "Sind die ertragdreichen Sorten ertagissicherer?" *Mitteilungen der Deutschen Landwirtschaftlichen Gesellschaft*, **32**(1), 87–89.

genotypic_stability 11

Examples

```
data(Data)
environmental.variance <- environmental_variance(
  data = Data,
  trait = "Yield",
  genotype = "Genotype",
  unit.correct = FALSE)</pre>
```

genotypic_stability Geno

Genotypic stability

Description

genotypic_stability calculate variance of a genotype across environments.

Usage

```
genotypic_stability(data, trait, genotype, environment, unit.correct = FALSE)
```

Arguments

data a dataframe containing trait, genotype and environment.

trait colname of a column containing a numeric vector of interested trait to be analy-

sized.

genotype colname of a column containing a character or factor vector labeling different

genotypic varieties

environment colname of a column containing a character or factor vector labeling different

environments

unit.correct logical, default is FALSE, returning the stability index with unit equals to squared

unit of trait; when TRUE, returning stability index with the unit as same as unit

of trait.'

Details

Genotypic stability (Hanson, 1970) is calculated based on regression function. Variety with low stability variance is considered as stable. Equation of genotypic stability can be found in vignette file.

Value

a data table with genotypic stability

Author(s)

Tien-Cheng Wang

References

Hanson WD (1970). "Genotypic stability." *Theoretical and Applied Genetics*, **40**(5), 226–231. ISSN 1432-2242, doi: 10.1007/BF00285245.

Examples

```
data(Data)
genotypic.stability <- genotypic_stability(
  data = Data,
  trait = "Yield",
  genotype = "Genotype",
  environment = "Environment",
  unit.correct = FALSE)</pre>
```

```
genotypic_superiority_measure
```

Genotypic superiority measure

Description

genotypic_superiority_measure calculate variance of a genotype across environments.

Usage

```
genotypic_superiority_measure(
  data,
  trait,
  genotype,
  environment,
  unit.correct = FALSE
)
```

Arguments

data a dataframe containing trait, genotype and environment.

trait colname of a column containing a numeric vector of interested trait to be analy-

sized.

genotype colname of a column containing a character or factor vector labeling different

genotypic varieties

environment colname of a column containing a character or factor vector labeling different

environments

unit.correct logical, default is FALSE, returning the stability index with unit equals to squared

unit of trait; when TRUE, returning stability index with the unit as same as unit

of trait.'

safety_first_index 13

Details

Genotypic superiority measure (Lin and Binns, 1988) is calculated based on means square distance between maximum value of environment j and genotype i. Variety with low genotypic superiority measure is considered as stable. Equation of genotypic superiority measure can be found in vignette file.

Value

a data table with genotypic superiority measure

Author(s)

Tien-Cheng Wang

References

Lin CS, Binns MR (1988). "A superiority measure of cultivar performance for cultivar × location data." *Canadian Journal of Plant Science*, **68**(1), 193–198. ISSN 0008-4220, https://cdnsciencepub.com/doi/10.4141/cjps88-018.

Examples

```
data(Data)
res <- genotypic_superiority_measure(
  data = Data,
  trait = "Yield",
  genotype = "Genotype",
  environment = "Environment",
  unit.correct = FALSE)</pre>
```

safety_first_index

Safety-first Index

Description

safety_first_index calculate variance of a genotype across environments.

Usage

```
safety_first_index(data, trait, genotype, environment, lambda)
```

Arguments

data a dataframe containing trait, genotype and environment.

trait colname of a column containing a numeric vector of interested trait to be ana-

lyzed.

genotype colname of a column containing a character or factor vector labeling different

genotypic varieties.

14 stability_variance

environment column containing a character or factor vector labeling different

environments.

lambda the minimal acceptable value of trait that the user expected from crop across

environments. Lambda should between the ranges of trait vlaue.

Details

Safety-first index (Eskridge, 1990) is calculated based on the assumption of that the trait from each genotype follows normal distribution over environments. Among different environments, trait below a given cirtical level λ is defined as failure of trait. The probability of trait failure can be obtained by entering mean and variance of trait and λ into the cumulated density function of normal distribution. Variety with low safety first index is considered as stable. Equation of adjusted coefficient of variation can be found in vignette file.

Value

a data table with coefficient of determination

Author(s)

Tien-Cheng Wang

References

Eskridge KM (1990). "Selection of Stable Cultivars Using a Safety-First Rule." *Crop Science*, **30**(2), 369. ISSN 0011-183X, doi: 10.2135/cropsci1990.0011183X003000020025x.

Examples

```
data(Data)
safety.first.index <- safety_first_index(
  data = Data,
  trait = "Yield",
  genotype = "Genotype",
  environment = "Environment",
  lambda = median(Data$Yield))</pre>
```

stability_variance

Stability variance

Description

stability_variance calculate variance of a genotype across environments.

Usage

```
stability_variance(data, trait, genotype, environment, unit.correct = FALSE)
```

stability_variance 15

Arguments

data a da	taframe containing trait,	genotype and environment.
-----------	---------------------------	---------------------------

trait colname of a column containing a numeric vector of interested trait to be ana-

lyzed.

genotype colname of a column containing a character or factor vector labeling different

genotypic varieties.

environment column containing a character or factor vector labeling different

environments.

unit.correct logical, default is FALSE, returning the stability index with unit equals to squared

unit of trait; when TRUE, returning stability index with the unit as same as unit

of trait.#'

Details

Stability variance (Shukla, 1972) is calculated based on lindear combination of ecovalence and mean square of genotype-environment interaction. Variety with low stability variance is considered as stable. Negative values of stability variance is replaced with 0. Equation of stability variance can be found in vignette file.

Value

a data table with stability variance

Author(s)

Tien-Cheng Wang

References

Shukla GK (1972). "Some statistical aspects of partitioning genotype environmental components of variability." *Heredity*, **29**(2), 237–245.

```
data(Data)
stability.variance <- stability_variance(
data = Data,
    trait = "Yield",
    genotype = "Genotype",
    environment = "Environment")</pre>
```

16 table_stability

table_stability

Table of stability indices

Description

table_stability export all the stability indices in the package.

Usage

```
table_stability(
  data,
  trait,
  genotype,
  environment,
  lambda,
  normalize = FALSE,
  unit.correct = FALSE)
```

Arguments

data a data frame containing trait, genotype and environment.

trait colname of a column containing a numeric vector of interested trait to be ana-

lyzed.

genotype colname of a column containing a character or factor vector labeling different

genotypic varieties.

environment colname(s) of a column containing a character or factor vector labeling different

environments, if input is a vector containing multiple column names, then it will

be merged into single environment column in the function.

lambda the minimal acceptable value of trait that the user expected from crop across

environments. Lambda should between the ranges of trait vlaue.

normalize logical, default is FALSE, indicating whether stability indices should be normal-

ized to the range from 0 to 1, where 1 refer to stable and 0 is unstable.

unit.correct logical, default is FALSE, returning the stability index with unit equals to squared

unit of trait; when TRUE, returning stability index with the unit as same as unit

of trait.

Details

Combine all stability indices in this package and export as a table, including mean trait, normality of the trait across environment.

Value

a data table with multiple stability indices

table_stability 17

Author(s)

Tien-Cheng Wang

References

DĶring TF, Reckling M (2018). "Detecting global trends of cereal yield stability by adjusting the coefficient of variation." European Journal of Agronomy, 99, 30-36. ISSN 1161-0301, doi: 10.1016/j.eja.2018.06.007. Pinthus MJ (1973). "Estimate of genotypic value: A proposed method." Euphytica, 22(1), 121–123. ISSN 1573-5060, doi: 10.1007/BF00021563. Finlay KW, Wilkinson GN (1963). "The analysis of adaptation in a plant-breeding programme." Australian Journal of Agricultural Research, 14(6), 742–754. doi: 10.1071/AR9630742. Eberhart SA, Russell WA (1966). "Stability parameters for comparing varieties." Crop Science, 6(1), 36–40. ISSN 0011-183X, doi: 10.2135/cropsci1966.0011183X000600010011x. Wricke G (1962). "Über eine Methode zur Erfassung der A-kologischen Streubreite in Feldversuchen." Zeitschrift fA/4r PflanzenzA/4chtung, **47**, 92–96. RĶmer T (1917). "Sind die ertragdreichen Sorten ertagissicherer?" *Mitteilungen* der Deutschen Landwirtschaftlichen Gesellschaft, 32(1), 87–89. Hanson WD (1970). "Genotypic stability." Theoretical and Applied Genetics, 40(5), 226-231. ISSN 1432-2242, doi: 10.1007/ BF00285245. Lin CS, Binns MR (1988). "A superiority measure of cultivar performance for cultivar × location data." Canadian Journal of Plant Science, 68(1), 193–198. ISSN 0008-4220, https://cdnsciencepub.com/doi/10.4141/cjps88-018. Shukla GK (1972). "Some statistical aspects of partitioning genotype environmental components of variability." Heredity, 29(2), 237-245. Nassar R, HÃ1/4hn M (1987). "Studies on estimation of phenotypic stability: Tests of significance for nonparametric measures of phenotypic stability." *Biometrics*, 43(1), 45–53. ISSN 0006-341X. Eskridge KM (1990). "Selection of Stable Cultivars Using a Safety-First Rule." Crop Science, 30(2), 369. ISSN 0011-183X, doi: 10.2135/cropsci1990.0011183X003000020025x.

See Also

```
adjusted_coefficient_of_variation
coefficient_of_determination
coefficient_of_regression
deviation_mean_squares
ecovalence
environmental_variance
genotypic_stability
genotypic_superiority_measure
stability_variance
variance_of_rank
safety_first_index
```

```
data(Data)
tb <- table_stability(
  data = Data,
  trait = "Yield",</pre>
```

18 variance_of_rank

```
genotype = "Genotype",
environment = "Environment",
lambda = median(Data$Yield),
normalize = TRUE,
unit.correct=TRUE)
```

variance_of_rank

variance of rank

Description

variance_of_rank calculate variance of a genotype across environments.

Usage

```
variance_of_rank(data, trait, genotype, environment, unit.correct = FALSE)
```

Arguments

data a dataframe containing trait, genotype and environment.

trait colname of a column containing a numeric vector of interested trait to be analy-

sized.

genotype colname of a column containing a character or factor vector labeling different

genotypic varieties

environment colname of a column containing a character or factor vector labeling different

environments

unit.correct logical, default is FALSE, returning the stability index with unit equals to squared

unit of trait; when TRUE, returning stability index with the unit as same as unit

of trait.#'

Details

Variance of rank (Nassar and Huehn, 1987) is calculated based on regression function. Variety with low variance of rank is considered as stable. Equation of variance of rank can be found in vignette file.

Value

a data table with variance of rank

Author(s)

Tien-Cheng Wang

References

Nassar R, Hýhn M (1987). "Studies on estimation of phenotypic stability: Tests of significance for nonparametric measures of phenotypic stability." *Biometrics*, **43**(1), 45–53. ISSN 0006-341X.

variance_of_rank 19

```
data(Data)
variance.of.rank <- variance_of_rank(
data = Data,
    trait = "Yield",
    genotype = "Genotype",
    environment = "Environment",
    unit.correct = FALSE)</pre>
```

Index

```
adjusted_coefficient_of_variation, 3,
* approach
    adjusted_coefficient_of_variation,
                                                coefficient_of_determination, 4, 17
    coefficient_of_determination, 4
                                                coefficient_of_regression, 5, 17
    coefficient_of_regression, 5
    deviation_mean_squares, 7
                                                Data, 6
    genotypic_stability, 11
                                                deviation_mean_squares, 7, 17
    safety_first_index, 13
    variance_of_rank, 18
                                                ecovalence, 8, 17
* datasets
                                                environmental_variance, 10, 17
    Data, 6
* dynamic
                                                genotypic_stability, 11, 17
    ecovalence, 8
                                                genotypic_superiority_measure, 12, 17
    genotypic_superiority_measure, 12
                                                safety_first_index, 13, 17
    stability_variance, 14
                                                stability_variance, 14, 17
    table_stability, 16
* nonparametric
                                                table_stability, 16
    table_stability, 16
    variance_of_rank, 18
                                                variance_of_rank, 17, 18
* probabilistic
    safety_first_index, 13
* probablistic
    table_stability, 16
* regression
    adjusted_coefficient_of_variation,
    coefficient_of_determination, 4
    coefficient_of_regression, 5
    deviation_mean_squares, 7
    genotypic_stability, 11
    table_stability, 16
* stability
    ecovalence, 8
    environmental_variance, 10
    genotypic_superiority_measure, 12
    stability_variance, 14
* static
    environmental_variance, 10
    table_stability, 16
```