biglasso: Extending Lasso Model Fitting to Big Data

Extend lasso and elastic-net model fitting for ultra high-dimensional, multi-gigabyte data sets that cannot be loaded into memory. Designed to be more memory- and computation-efficient than existing lasso-fitting packages like 'glmnet' and 'ncvreg', thus allowing the user to analyze big data analysis even on an ordinary laptop.

Version: 1.6.0
Depends: R (≥ 3.2.0), bigmemory (≥ 4.5.0), Matrix, ncvreg
Imports: Rcpp (≥ 0.12.1), methods
LinkingTo: Rcpp, RcppArmadillo (≥ 0.8.600), bigmemory, BH
Suggests: parallel, testthat, glmnet, survival, knitr, rmarkdown
Published: 2024-04-21
DOI: 10.32614/CRAN.package.biglasso
Author: Yaohui Zeng [aut], Chuyi Wang [aut], Tabitha Peter [aut], Patrick Breheny ORCID iD [aut, cre]
Maintainer: Patrick Breheny <patrick-breheny at>
License: GPL-3
NeedsCompilation: yes
Citation: biglasso citation info
Materials: NEWS
CRAN checks: biglasso results


Reference manual: biglasso.pdf
Vignettes: biglasso


Package source: biglasso_1.6.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): biglasso_1.6.0.tgz, r-oldrel (arm64): biglasso_1.6.0.tgz, r-release (x86_64): biglasso_1.6.0.tgz, r-oldrel (x86_64): biglasso_1.6.0.tgz
Old sources: biglasso archive

Reverse dependencies:

Reverse suggests: SuperLearner


Please use the canonical form to link to this page.