Package 'matlib'

July 25, 2024
Type Package
Title Matrix Functions for Teaching and Learning Linear Algebra and Multivariate Statistics
Version 0.9.8
Date 2024-07-22
Maintainer Michael Friendly friendly@yorku.ca
Description A collection of matrix functions for teaching and learning matrix linear algebra as used in multivariate statistical methods. These functions are mainly for tutorial purposes in learning matrix algebra ideas using R. In some cases, functions are provided for concepts available elsewhere in R, but where the function call or name is not obvious. In other cases, functions are provided to show or demonstrate an algorithm. In addition, a collection of functions are provided for drawing vector diagrams in 2D and 3D.
License GPL (>=2)
Language en-US
URL https://github.com/friendly/matlib, http://friendly.github.io/matlib/

BugReports https://github.com/friendly/matlib/issues
LazyData TRUE
Suggests knitr, rmarkdown, carData, webshot2, markdown
Imports xtable, MASS, rgl, car, methods, dplyr
VignetteBuilder knitr
RoxygenNote 7.3.2
Encoding UTF-8
NeedsCompilation no
Author Michael Friendly [aut, cre] (https://orcid.org/0000-0002-3237-0941), John Fox [aut] (https://orcid.org/0000-0002-1196-8012),
Phil Chalmers [aut] (https://orcid.org/0000-0001-5332-2810), Georges Monette [ctb] (https://orcid.org/0000-0003-0076-5532), Gaston Sanchez [ctb]

Repository CRAN
Date/Publication 2024-07-25 18:40:02 UTC

Contents

matlib-package 3
adjoint 4
angle 5
arc 6
arrows3d 8
buildTmat 9
cholesky 10
circle 11
circle3d 13
class 13
cofactor 14
cone3d 15
corner 16
Det 17
echelon 18
Eigen 19
gaussianElimination 20
getYmult 22
Ginv 22
GramSchmidt 23
gsorth 24
Inverse 25
J 26
len 27
LU 28
matrix2latex 29
minor 30
MoorePenrose 31
mpower 32
plot.regvec3d 33
plotEqn 35
plotEqn3d 37
pointOnLine 38
powerMethod 39
printMatEqn 41
printMatrix 42
Proj 43
QR 44
R. 45
regvec3d 46
rowadd 49
rowCofactors 50matlib-package3
rowMinors 51
rowmult 52
rowswap 53
showEig 54
showEqn 55
Solve 57
SVD 59
svdDemo 60
swp 61
symMat 62
therapy 63
tr 64
vandermode 64
vec 65
vectors 65
vectors3d 67
workers 69
xprod 70
Index 71
matlib-package matlib: Matrix Functions for Teaching and Learning Linear Algebra and Multivariate Statistics.

Description

These functions are designed mainly for tutorial purposes in teaching \& learning matrix algebra ideas and applications to statistical methods using R.

Details

In some cases, functions are provided for concepts available elsewhere in R, but where the function call or name is not obvious. In other cases, functions are provided to show or demonstrate an algorithm, sometimes providing a verbose argument to print the details of computations.
In addition, a collection of functions are provided for drawing vector diagrams in 2D and 3D.
These are not meant for production uses. Other methods are more efficient for larger problems.

Topics

The functions in this package are grouped under the following topics

- Convenience functions: tr, R, J, len, vec, Proj, mpower, vandermode
- Determinants: functions for calculating determinants by cofactor expansion minor, cofactor, rowMinors, rowCofactors
- Elementary row operations: functions for solving linear equations "manually" by the steps used in row echelon form and Gaussian elimination rowadd, rowmult, rowswap
- Linear equations: functions to illustrate linear equations of the form $\$ \mathrm{~A} x=\mathrm{b} \$$ showEqn, plotEqn
- Gaussian elimination: functions for illustrating Gaussian elimination for solving systems of linear equations of the form $\$ \mathrm{Ax}=\mathrm{b} \$$.
gaussianElimination, Inverse, inv, echelon, Ginv, LU, cholesky, swp
- Eigenvalues: functions to illustrate the algorithms for calculating eigenvalues and eigenvectors eigen, SVD, powerMethod, showEig
- Vector diagrams: functions for drawing vector diagrams in 2D and 3D arrows3d, corner, arc, pointOnLine, vectors, vectors3d, regvec3d

Most of these ideas and implementations arose in courses and books by the authors. [Psychology 6140](http://friendly.apps01.yorku.ca/psy6140/) was a starting point. Fox (1984) introduced illustrations of vector geometry.

macOS Installation Note

The functions that draw 3D graphs use the rgl package. On macOS, the rgl package requires that XQuartz be installed. After installing XQuartz, it's necessary either to \log out of and back into your macOS account or to reboot your Mac.

References

Fox, J. Linear Statistical Models and Related Methods. John Wiley and Sons, 1984
Fox, J. and Friendly, M. (2016). "Visualizing Simultaneous Linear Equations, Geometric Vectors, and Least-Squares Regression with the matlib Package for R". useR Conference, Stanford, CA, June 27 - June 30, 2016.

```
adjoint Calculate the Adjoint of a matrix
```


Description

This function calculates the adjoint of a square matrix, defined as the transposed matrix of cofactors of all elements.

Usage

adjoint(A)

Arguments

A a square matrix

Value

a matrix of the same size as A

Author(s)

Michael Friendly

See Also

Other determinants: Det(), cofactor(), minor(), rowCofactors(), rowMinors()

Examples

```
A <- J(3, 3) + 2*diag(3)
adjoint(A)
```

angle Angle between two vectors

Description

angle calculates the angle between two vectors.

Usage

angle(x, y, degree = TRUE)

Arguments

x
y
degree
a numeric vector
degree logical; should the angle be computed in degrees? If FALSE the result is returned in radians

Value

a scalar containing the angle between the vectors

See Also

len

Examples

```
x <- c(2,1)
y <- c(1,1)
angle(x, y) # degrees
angle(x, y, degree = FALSE) # radians
# visually
xlim <- c(0,2.5)
ylim <- c(0,2)
# proper geometry requires asp=1
plot( xlim, ylim, type="n", xlab="X", ylab="Y", asp=1,
    main = expression(theta == 18.4))
abline(v=0, h=0, col="gray")
vectors(rbind(x,y), col=c("red", "blue"), cex.lab=c(2, 2))
text(.5, .37, expression(theta))
####
x <- c(-2,1)
y<-c(1,1)
angle(x, y) # degrees
angle(x, y, degree = FALSE) # radians
# visually
xlim <- c(-2,1.5)
ylim <- c(0,2)
# proper geometry requires asp=1
plot( xlim, ylim, type="n", xlab="X", ylab="Y", asp=1,
    main = expression(theta == 108.4))
abline(v=0, h=0, col="gray")
vectors(rbind(x,y), col=c("red", "blue"), cex.lab=c(2, 2))
text(0, .4, expression(theta), cex=1.5)
```

arc

Draw an arc showing the angle between vectors

Description

A utility function for drawing vector diagrams. Draws a circular arc to show the angle between two vectors in 2D or 3D.

Usage

$\operatorname{arc}(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{~d}=0.1$, absolute $=$ TRUE, ...)

Arguments

p1
Starting point of first vector
p2
End point of first vector, and also start of second vector

p3	End point of second vector
d	The distance from p2 along each vector for drawing their corner
absolute	logical; if TRUE, d is taken as an absolute distance along the vectors; otherwise it is calculated as a relative distance, i.e., a fraction of the length of the vectors.
\ldots	Arguments passed to link[graphics]\{lines\} or to link[rgl]\{lines3d\}

Details

In this implementation, the two vectors are specified by three points, $\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3$, meaning a line from p 1 to p 2 , and another line from p 2 to p 3 .

Value

none

References

https://math.stackexchange.com/questions/1507248/find-arc-between-two-tips-of-vectors-in-3d

See Also

Other vector diagrams: Proj(), arrows3d(), circle3d(), corner(), plot.regvec3d(), pointOnLine(), regvec3d(), vectors(), vectors3d()

Examples

```
library(rgl)
vec <- rbind(diag(3), c(1,1,1))
rownames(vec) <- c("X", "Y", "Z", "J")
open3d()
aspect3d("iso")
vectors3d(vec, col=c(rep("black",3), "red"), lwd=2)
# draw the XZ plane, whose equation is Y=0
planes3d(0, 0, 1, 0, col="gray", alpha=0.2)
# show projections of the unit vector J
segments3d(rbind( c(1,1,1), c(1, 1, 0)))
segments3d(rbind( c(0,0,0), c(1, 1, 0)))
segments3d(rbind( c(1,0,0), c(1, 1, 0)))
segments3d(rbind( c(0,1,0), c(1, 1, 0)))
segments3d(rbind( c(1,1,1), c(1, 0, 0)))
# show some orthogonal vectors
p1 <- c(0,0,0)
p2 <- c(1,1,0)
p3 <- c(1,1,1)
p4 <- c(1,0,0)
# show some angles
arc(p1, p2, p3, d=.2)
arc(p4, p1, p2, d=.2)
arc(p3, p1, p2, d=.2)
```

```
arrows3d Draw 3D arrows
```


Description

Draws nice 3D arrows with cone3ds at their tips.

Usage

arrows3d(coords, headlength $=0.035$, head = "end", scale = NULL, radius = NULL, ref.length = NULL, draw = TRUE,
)

Arguments

$$
\left.\begin{array}{ll}
\text { coords } & \begin{array}{l}
\text { A } 2 \mathrm{n} x 3 \text { matrix giving the start and end }(\mathrm{x}, \mathrm{y}, \mathrm{z}) \text { coordinates of } \mathrm{n} \text { arrows, in pairs. } \\
\text { The first vector in each pair is taken as the starting coordinates of the arrow, the } \\
\text { second as the end coordinates. }
\end{array} \\
\text { headlength } & \begin{array}{l}
\text { Length of the arrow heads, in device units } \\
\text { Position of the arrow head. Only head="end" is presently implemented. }
\end{array} \\
\text { head } & \begin{array}{l}
\text { Scale factor for base and tip of arrow head, a vector of length 3, giving relative } \\
\text { scale factors for X, Y, Z }
\end{array} \\
\text { scadius } & \begin{array}{l}
\text { radius of the base of the arrow head } \\
\text { ref.length }
\end{array} \\
\text { length of vector to be used to scale all of the arrow heads (permits drawing arrow } \\
\text { heads of the same size as in a previous call); if NULL, arrows are scaled relative } \\
\text { to the longest vector } \\
\text { if TRUE (the default) draw the arrow(s) }
\end{array}\right] \begin{aligned}
& \text { rgl arguments passed down to segments3d and cone3d, for example, col and } \\
& \text { draw }
\end{aligned}
$$

Details

This function is meant to be analogous to arrows, but for 3D plots using rgl. headlength, scale and radius set the length, scale factor and base radius of the arrow head, a 3D cone. The units of these are all in terms of the ranges of the current rgl 3D scene.

Value

invisibly returns the length of the vector used to scale the arrow heads

Author(s)

January Weiner, borrowed from the pca3d package, slightly modified by John Fox

See Also

vectors3d
Other vector diagrams: $\operatorname{Proj}(), \operatorname{arc}(), \operatorname{circle3d}()$, corner(), plot. regvec3d(), pointOnLine(), regvec3d(), vectors(), vectors3d()

Examples

```
#none yet
```

buildTmat
Build/Get transformation matrices

Description

Recover the history of the row operations that have been performed. This function combines the transformation matrices into a single transformation matrix representing all row operations or may optionally print all the individual operations which have been performed.

Usage

buildTmat(x, all = FALSE)
\#\# S3 method for class 'trace'
as.matrix (x, ...)
\#\# S3 method for class 'trace'
print(x, ...)

Arguments

$x \quad$ a matrix A, joined with a vector of constants, b, that has been passed to gaussianElimination or the row operator matrix functions
all logical; print individual transformation ies?
... additional arguments

Value

the transformation matrix or a list of individual transformation matrices

Author(s)

Phil Chalmers

See Also

echelon, gaussianElimination

Examples

```
A <- matrix(c(2, 1, -1,
            -3, -1, 2,
            -2, 1, 2), 3, 3, byrow=TRUE)
b <- c(8, -11, -3)
# using row operations to reduce below diagonal to 0
Abt <- Ab <- cbind(A, b)
Abt <- rowadd(Abt, 1, 2, 3/2)
Abt <- rowadd(Abt, 1, 3, 1)
Abt <- rowadd(Abt, 2, 3, -4)
Abt
# build T matrix and multiply by original form
(T <- buildTmat(Abt))
T %*% Ab # same as Abt
# print all transformation matrices
buildTmat(Abt, TRUE)
# invert transformation matrix to reverse operations
inv(T) %*% Abt
# gaussian elimination
(soln <- gaussianElimination(A, b))
T <- buildTmat(soln)
inv(T) %*% soln
```

cholesky Cholesky Square Root of a Matrix

Description

Returns the Cholesky square root of the non-singular, symmetric matrix X. The purpose is mainly to demonstrate the algorithm used by Kennedy \& Gentle (1980).

Usage

cholesky (X, tol = sqrt(.Machine\$double.eps))

Arguments

X
a square symmetric matrix
tol
tolerance for checking for 0 pivot
circle

Value

the Cholesky square root of X

Author(s)

John Fox

References

Kennedy W.J. Jr, Gentle J.E. (1980). Statistical Computing. Marcel Dekker.

See Also

chol for the base R function
gsorth for Gram-Schmidt orthogonalization of a data matrix

Examples

```
C <- matrix(c(1,2,3,2,5,6,3,6,10), 3, 3) # nonsingular, symmetric
C
cholesky(C)
cholesky(C) %*% t(cholesky(C)) # check
```

```
circle Draw circles on an existing plot.
```


Description

Draw circles on an existing plot.

Usage

circle(
x ,
y,
radius,
$n v=60$, border = NULL, col = NA, lty = 1, density = NULL, angle $=45$, lwd = 1
)

Arguments

$x, y \quad$ Coordinates of the center of the circle. If x is a vector of length $2, y$ is ignored and the center is taken as $x[1], x[2]$.
radius Radius (or radii) of the circle(s) in user units.
$\mathrm{nv} \quad$ Number of vertices to draw the circle.
border Color to use for drawing the circumference. polygon
col Color to use for filling the circle.
lty Line type for the circumference.
density Density for patterned fill. See polygon.
angle Angle of patterned fill. See polygon.
lwd Line width for the circumference.

Details

Rather than depending on the aspect ratio par("asp") set globally or in the call to plot, circle uses the dimensions of the current plot and the x and y coordinates to draw a circle rather than an ellipse. Of course, if you resize the plot the aspect ratio can change.

This function was copied from draw. circle

Value

Invisibly returns a list with the x and y coordinates of the points on the circumference of the last circle displayed.

Author(s)

Jim Lemon, thanks to David Winsemius for the density and angle args

See Also

polygon

Examples

```
plot(1:5,seq(1,10,length=5),
    type="n",xlab="",ylab="",
    main="Test draw.circle")
# draw three concentric circles
circle(2, 4, c(1, 0.66, 0.33),border="purple",
    col=c("#ff00ff","#ff77ff","#ffccff"),lty=1,lwd=1)
# draw some others
circle(2.5, 8, 0.6,border="red",lty=3,1wd=3)
circle(4, 3, 0.7,border="green",col="yellow",lty=1,
    density=5,angle=30,lwd=10)
circle(3.5, 8, 0.8,border="blue",lty=2,lwd=2)
```


Description

A utility function for drawing a horizontal circle in the (x, y) plane in a 3D graph

Usage

circle3d(center, radius, segments $=100$, fill = FALSE, ...)

Arguments

center A vector of length 3.
radius A positive number.
segments An integer specifying the number of line segments to use to draw the circle (default, 100).
fill logical; if TRUE, the circle is filled (the default is FALSE).
$\ldots \quad$ rgl material properties for the circle.

See Also

Other vector diagrams: $\operatorname{Proj}(), \operatorname{arc}(), \operatorname{arrows3d}(), \operatorname{corner}()$, plot.regvec3d(), pointOnLine(), regvec3d(), vectors(), vectors3d()

Examples

```
ctr=c(0,0,0)
    circle3d(ctr, 3, fill = TRUE)
    circle3d(ctr - c(-1,-1,0), 3, col="blue")
    circle3d(ctr + c(1,1,0), 3, col="red")
```

class Class Data Set

Description

A small artificial data set used to illustrate statistical concepts.

Usage

```
    data("class")
```


Format

A data frame with 15 observations on the following 4 variables.
sex a factor with levels F M
age a numeric vector
height a numeric vector
weight a numeric vector

Examples

```
data(class)
plot(class)
```

 cofactor \(\quad\) Cofactor of \(A[i, j]\)

Description

Returns the cofactor of element (i, j) of the square matrix A, i.e., the signed minor of the sub-matrix that results when row i and column j are deleted.

Usage

cofactor (A, i, j)

Arguments

A	a square matrix
i	row index
j	column index

Value

the cofactor of $A[i, j]$

Author(s)

Michael Friendly

See Also

rowCofactors for all cofactors of a given row
Other determinants: Det(), adjoint(), minor(), rowCofactors(), rowMinors()

Examples

```
M <- matrix \((c(4,-12,-4\),
                                    2, 1, 3,
    \(-1,-3,2), 3,3\), byrow=TRUE)
cofactor (M, 1, 1)
cofactor (M, 1, 2)
cofactor (M, 1, 3)
```

 cone3d Draw a \(3 D\) cone

Description

Draws a cone in 3D from a base point to a tip point, with a given radius at the base. This is used to draw nice arrow heads in arrows3d.

Usage

cone3d(base, tip, radius $=10$, col = "grey", scale = NULL, ...)

Arguments

base	coordinates of base of the cone
tip	coordinates of tip of the cone
radius	radius of the base
col	color
scale	scale factor for base and tip
\ldots	rgl arguments passed down; see rgl.material

Value

returns the integer object ID of the shape that was added to the scene

Author(s)

January Weiner, borrowed from from the pca3d package

See Also

arrows3d

Examples

\# none yet

Description

A utility function for drawing vector diagrams. Draws two line segments to indicate the angle between two vectors, typically used for indicating orthogonal vectors are at right angles in 2D and 3D diagrams.

Usage

corner (p1, p2, p3, d = 0.1, absolute = TRUE, ...)

Arguments

p1 Starting point of first vector
p2 End point of first vector, and also start of second vector
p3 End point of second vector
d The distance from p2 along each vector for drawing their corner
absolute logical; if TRUE, d is taken as an absolute distance along the vectors; otherwise it is calculated as a relative distance, i.e., a fraction of the length of the vectors. See pointOnLine for the precise definition.
$\ldots \quad$... Arguments passed to link[graphics]\{lines\} or to link[rgl]\{lines3d\}

Details

In this implementation, the two vectors are specified by three points, $\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3$, meaning a line from p 1 to p 2 , and another line from p 2 to p 3 .

Value

none

See Also

Other vector diagrams: $\operatorname{Proj}(), \operatorname{arc}(), \operatorname{arrows3d}()$, circle3d(), plot.regvec3d(), pointOnLine(), regvec3d(), vectors(), vectors3d()

Examples

\# none yet

Description

Returns the determinant of a square matrix X, computed either by Gaussian elimination, expansion by cofactors, or as the product of the eigenvalues of the matrix. If the latter, X must be symmetric.

Usage

```
    Det(
        X,
        method = c("elimination", "eigenvalues", "cofactors"),
        verbose = FALSE,
        fractions = FALSE,
        )
```


Arguments

X	a square matrix
method	one of ‘"elimination"‘ (the default), ‘"eigenvalues"‘, or ‘"cofactors"‘ (for com- putation by minors and cofactors)
verbose	logical; if TRUE, print intermediate steps
fractions	logical; if TRUE, try to express non-integers as rational numbers, using the fractions function; if you require greater accuracy, you can set the cycles (default 10) and/or max. denominator (default 2000) arguments to fractions as a global
	option, e.g., options(fractions=list(cycles=100, max.denominator=10^4)). \ldots
	arguments passed to gaussianElimination or Eigen

Value

the determinant of X

Author(s)

John Fox

See Also

det for the base R function
gaussianElimination, Eigen
Other determinants: adjoint(), cofactor(), minor(), rowCofactors(), rowMinors()

Examples

```
A <- matrix(c(1,2,3,2,5,6,3,6,10), 3, 3) # nonsingular, symmetric
A
Det(A)
Det(A, verbose=TRUE, fractions=TRUE)
B <- matrix(1:9, 3, 3) # a singular matrix
B
Det(B)
C <- matrix(c(1, . 5, . 5, 1), 2, 2) # square, symmetric, nonsingular
Det(C)
Det(C, method="eigenvalues")
Det(C, method="cofactors")
```

echelon
Echelon Form of a Matrix

Description

Returns the (reduced) row-echelon form of the matrix A, using gaussianElimination.

Usage

echelon(A, B, reduced = TRUE, ...)

Arguments

A
coefficient matrix
B right-hand side vector or matrix. If B is a matrix, the result gives solutions for each column as the right-hand side of the equations with coefficients in A.
reduced logical; should reduced row echelon form be returned? If FALSE a non-reduced row echelon form will be returned
... other arguments passed to gaussianElimination

Details

When the matrix A is square and non-singular, the reduced row-echelon result will be the identity matrix, while the row-echelon from will be an upper triangle matrix. Otherwise, the result will have some all-zero rows, and the rank of the matrix is the number of not all-zero rows.

Value

the reduced echelon form of X.

Author(s)

John Fox

Examples

```
A <- matrix(c(2, 1, -1,
                -3, -1, 2,
    -2, 1, 2), 3, 3, byrow=TRUE)
b <- c(8, -11, -3)
echelon(A, b, verbose=TRUE, fractions=TRUE) # reduced row-echelon form
echelon(A, b, reduced=FALSE, verbose=TRUE, fractions=TRUE) # row-echelon form
A <- matrix(c(1, 2, 3,4,5,6,7,8,10), 3, 3) # a nonsingular matrix
A
echelon(A, reduced=FALSE) # the row-echelon form of A
echelon(A) # the reduced row-echelon form of A
b <- 1:3
echelon(A, b) # solving the matrix equation Ax = b
echelon(A, diag(3)) # inverting A
B <- matrix(1:9, 3, 3) # a singular matrix
B
echelon(B)
echelon(B, reduced=FALSE)
echelon(B, b)
echelon(B, diag(3))
```

Eigen Eigen Decomposition of a Square Symmetric Matrix

Description

Eigen calculates the eigenvalues and eigenvectors of a square, symmetric matrix using the iterated QR decomposition

Usage

Eigen(X, tol $=$ sqrt(.Machine\$double.eps), max.iter $=100$, retain.zeroes $=$ TRUE)

Arguments

X	a square symmetric matrix
tol	tolerance passed to QR
max.iter	maximum number of QR iterations
retain.zeroes	logical; retain 0 eigenvalues?

Value

a list of two elements: values- eigenvalues, vectors- eigenvectors

Author(s)

John Fox and Georges Monette

See Also

eigen
SVD

Examples

```
C <- matrix(c(1,2,3,2,5,6,3,6,10), 3, 3) # nonsingular, symmetric
C
EC <- Eigen(C) # eigenanalysis of C
EC$vectors %*% diag(EC$values) %*% t(EC$vectors) # check
```

```
gaussianElimination Gaussian Elimination
```


Description

gaussianElimination demonstrates the algorithm of row reduction used for solving systems of linear equations of the form $A x=B$. Optional arguments verbose and fractions may be used to see how the algorithm works.

Usage

gaussianElimination(
A,
B,
tol $=$ sqrt(.Machine\$double.eps),
verbose = FALSE,
latex = FALSE, fractions = FALSE
)
\#\# S3 method for class 'enhancedMatrix'
print(x, ...)

Arguments

A
coefficient matrix
B
tol tolerance for checking for 0 pivot
verbose
logical; if TRUE, print intermediate steps
right-hand side vector or matrix. If B is a matrix, the result gives solutions for each column as the right-hand side of the equations with coefficients in A.

latex	logical; if TRUE, and verbose is TRUE, print intermediate steps using LaTeX equa- tion outputs rather than R output
fractions	logical; if TRUE, try to express non-integers as rational numbers, using the fractions function; if you require greater accuracy, you can set the cycles (default 10) and/or max. denominator (default 2000) arguments to fractions as a global option, e.g., options(fractions=list(cycles=100, max. denominator=10^4)).
x	matrix to print
\ldots	arguments to pass down

Value

If B is absent, returns the reduced row-echelon form of A. If B is present, returns the reduced rowechelon form of A, with the same operations applied to B.

Author(s)

John Fox

Examples

```
A <- matrix(c(2, 1, -1,
            -3, -1, 2,
            -2, 1, 2), 3, 3, byrow=TRUE)
b <- c(8, -11, -3)
gaussianElimination(A, b)
gaussianElimination(A, b, verbose=TRUE, fractions=TRUE)
gaussianElimination(A, b, verbose=TRUE, fractions=TRUE, latex=TRUE)
    # determine whether matrix is solvable
    gaussianElimination(A, numeric(3))
    # find inverse matrix by elimination: A = I -> A^-1 A = A^-1 I -> I = A^-1
    gaussianElimination(A, diag(3))
    inv(A)
    # works for 1-row systems (issue # 30)
    A2 <- matrix(c(1, 1), nrow=1)
    b2 = 2
    gaussianElimination(A2, b2)
    showEqn(A2, b2)
    # plotEqn works for this case
    plotEqn(A2, b2)
```

getYmult
Correct for aspect and coordinate ratio

Description

Calculate a multiplication factor for the Y dimension to correct for unequal plot aspect and coordinate ratios on the current graphics device.

Usage

getYmult()

Details

getYmult retrieves the plot aspect ratio and the coordinate ratio for the current graphics device, calculates a multiplicative factor to equalize the X and Y dimensions of a plotted graphic object.

Value

The correction factor for the Y dimension.

Author(s)

Jim Lemon

Ginv
Generalized Inverse of a Matrix

Description

Ginv returns an arbitrary generalized inverse of the matrix A, using gaussianElimination.

Usage

Ginv(A, tol = sqrt(.Machine\$double.eps), verbose = FALSE, fractions = FALSE)

Arguments

A
numerical matrix
tol tolerance for checking for 0 pivot
verbose logical; if TRUE, print intermediate steps
fractions logical; if TRUE, try to express non-integers as rational numbers, using the fractions function; if you require greater accuracy, you can set the cycles (default 10) and/or max. denominator (default 2000) arguments to fractions as a global option, e.g., options(fractions=list(cycles=100, max. denominator=10^4)).

Details

A generalized inverse is a matrix \mathbf{A}^{-}satisfying $\mathbf{A} \mathbf{A}^{-} \mathbf{A}=\mathbf{A}$.
The purpose of this function is mainly to show how the generalized inverse can be computed using Gaussian elimination.

Value

the generalized inverse of A, expressed as fractions if fractions=TRUE, or rounded

Author(s)

John Fox

See Also

ginv for a more generally usable function

Examples

```
A <- matrix(c(1,2,3,4,5,6,7,8,10), 3, 3) # a nonsingular matrix
A
Ginv(A, fractions=TRUE) # a generalized inverse of A = inverse of A
round(Ginv(A) %*% A, 6) # check
B <- matrix(1:9, 3, 3) # a singular matrix
B
Ginv(B, fractions=TRUE) # a generalized inverse of B
B %*% Ginv(B) %*% B # check
```

 GramSchmidt Gram-Schmidt Orthogonalization of a Matrix

Description

Carries out simple Gram-Schmidt orthogonalization of a matrix. Treating the columns of the matrix X in the given order, each successive column after the first is made orthogonal to all previous columns by subtracting their projections on the current column.

Usage

GramSchmidt (
X,
normalize = TRUE,
verbose = FALSE,
tol = sqrt(.Machine\$double.eps),
omit_zero_columns = TRUE
)

Arguments

X	a matrix
normalize	logical; should the resulting columns be normalized to unit length? The default is TRUE
verbose	logical; if TRUE, print intermediate steps. The default is FALSE tol
the tolerance for detecting linear dependencies in the columns of a. The default is sqrt (.Machine\$double.eps)	
omit_zero_columns	
if TRUE (the default), remove linearly dependent columns from the result	

Value

A matrix of the same size as X, with orthogonal columns (but with 0 columns removed by default)

Author(s)

Phil Chalmers, John Fox

Examples

```
(xx <- matrix(c( 1:3, 3:1, 1, 0, -2), 3, 3))
crossprod(xx)
(zz <- GramSchmidt(xx, normalize=FALSE))
zapsmall(crossprod(zz))
# normalized
(zz <- GramSchmidt(xx))
zapsmall(crossprod(zz))
# print steps
GramSchmidt(xx, verbose=TRUE)
# A non-invertible matrix; hence, it is of deficient rank
(xx <- matrix(c( 1:3, 3:1, 1, 0, -1), 3, 3))
R(xx)
crossprod(xx)
# GramSchmidt finds an orthonormal basis
(zz <- GramSchmidt(xx))
zapsmall(crossprod(zz))
```

gsorth

Description

Calculates a matrix with uncorrelated columns using the Gram-Schmidt process

Usage

gsorth(y, order, recenter $=$ TRUE, rescale $=$ TRUE, adjnames $=$ TRUE)

Arguments

y
order
recenter logical; if TRUE, the result has same means as the original y, else means $=0$ for cols 2:p
rescale logical; if TRUE, the result has same sd as original, else, $\mathrm{sd}=$ residual sd adjnames logical; if TRUE, colnames are adjusted to Y1, Y2.1, Y3.12, ...

Details

This function, originally from the heplots package has now been deprecated in matlib. Use GramSchmidt instead.

Value

a matrix/data frame with uncorrelated columns

Examples

```
## Not run:
    set.seed(1234)
    A <- matrix(c(1:60 + rnorm(60)), 20, 3)
    cor(A)
    G <- gsorth(A)
    zapsmall(cor(G))
    ## End(Not run)
```

 Inverse
 Inverse of a Matrix

Description

Uses gaussianElimination to find the inverse of a square, non-singular matrix, X.

Usage

Inverse(X, tol $=$ sqrt(.Machine\$double.eps), verbose $=$ FALSE, ...)

Arguments

X	a square numeric matrix
tol	tolerance for checking for 0 pivot
verbose	logical; if TRUE, print intermediate steps
\ldots	other arguments passed on

Details

The method is purely didactic: The identity matrix, I, is appended to X, giving $X \mid I$. Applying Gaussian elimination gives $I \mid X^{-1}$, and the portion corresponding to X^{-1} is returned.

Value

the inverse of X

Author(s)

John Fox

Examples

```
    A <- matrix(c(2, 1, -1,
            -3, -1, 2,
    -2, 1, 2), 3, 3, byrow=TRUE)
    Inverse(A)
    Inverse(A, verbose=TRUE, fractions=TRUE)
```

 J
 Create a vector, matrix or array of constants

Description

This function creates a vector, matrix or array of constants, typically used for the unit vector or unit matrix in matrix expressions.

Usage

$J(\ldots$, constant $=1$, dimnames $=$ NULL $)$

Arguments

\ldots.	One or more arguments supplying the dimensions of the array, all non-negative integers
constant	The value of the constant used in the array
dimnames	Either NULL or the names for the dimensions.

Details

The "dimnames" attribute is optional: if present it is a list with one component for each dimension, either NULL or a character vector of the length given by the element of the "dim" attribute for that dimension. The list can be named, and the list names will be used as names for the dimensions.

Examples

$J(3)$
$J(2,3)$
$J(2,3,2)$
$J(2,3$, constant=2, dimnames=list(letters[1:2], LETTERS[1:3]))
X <- matrix(1:6, nrow=2, ncol=3)
dimnames(X) <- list(sex=c("M", "F"), day=c("Mon", "Wed", "Fri"))
$J(2) \% * X \quad$ \# column sums
$\mathrm{X} \% * \% \mathrm{~J}(3) \quad$ \# row sums
len
Length of a Vector or Column Lengths of a Matrix

Description

len calculates the Euclidean length (also called Euclidean norm) of a vector or the length of each column of a numeric matrix.

Usage

$\operatorname{len}(X)$

Arguments

$X \quad$ a numeric vector or matrix

Value

a scalar or vector containing the length(s)

See Also

norm for more general matrix norms

Examples

```
len(1:3)
len(matrix(1:9, 3, 3))
# distance between two vectors
len(1:3 - c(1,1,1))
```


Description

LU computes the LU decomposition of a matrix, A, such that $P A=L U$, where L is a lower triangle matrix, U is an upper triangle, and P is a permutation matrix.

Usage

$\operatorname{LU}(A, b$, tol $=\operatorname{sqrt}($. Machine\$double.eps), verbose $=$ FALSE, ...)

Arguments

A
b right-hand side vector. When supplied the returned object will also contain the solved d and x elements
tol tolerance for checking for 0 pivot
verbose logical; if TRUE, print intermediate steps
.. additional arguments passed to showEqn

Details

The LU decomposition is used to solve the equation $A x=b$ by calculating $L(U x-d)=0$, where $L d=b$. If row exchanges are necessary for A then the permutation matrix P will be required to exchange the rows in A; otherwise, P will be an identity matrix and the LU equation will be simplified to $A=L U$.

Value

A list of matrix components of the solution, P, L and U . If b is supplied, the vectors d and x are also returned.

Author(s)

Phil Chalmers

Examples

```
    A <- matrix(c(2, 1, -1,
            -3, -1, 2,
            -2, 1, 2), 3, 3, byrow=TRUE)
b <- c(8, -11, -3)
(ret <- LU(A)) # P is an identity; no row swapping
with(ret, L %*% U) # check that A = L * U
LU(A, b)
```

```
LU(A, b, verbose=TRUE)
LU(A, b, verbose=TRUE, fractions=TRUE)
# permutations required in this example
A <- matrix(c(1, 1, -1,
    2, 2, 4,
    1, -1, 1), 3, 3, byrow=TRUE)
b <- c(1, 2, 9)
(ret <- LU(A, b))
with(ret, P %*% A)
with(ret, L %*% U)
```

matrix2latex Convert matrix to LaTeX equation

Description

This function provides a soft-wrapper to xtable: :xtableMatharray () with additional support for fractions output and brackets.

Usage

matrix2latex
x,
fractions = FALSE,
brackets = TRUE,
show.size = FALSE,
digits = NULL,
)

Arguments

brackets logical or a character in " p ", "b", " B ", " V ". If TRUE, uses square brackets

x

fractions

show.size
digits
a matrix
logical; if TRUE, try to express non-integers as rational numbers, using the fractions function; if you require greater accuracy, you can set the cycles (default 10) and/or max. denominator (default 2000) arguments to fractions as a global option, e.g., options(fractions=list(cycles=100, max. denominator=10^4)). around the matrix, FALSE produces no brackets. Otherwise " p ") uses parentheses, (); "b") uses square brackets [], "B") uses braces \{ \}, "V") uses vertical bars | \mid.
logical; if TRUE shows the size of the matrix as an appended subscript.
Number of digits to display. If digits $==$ NULL (the default), the function sets digits $=0$ if the elements of x are all integers
... additional arguments passed to xtable::xtableMatharray()
minor

Details

The code for brackets matches some of the options from the AMS matrix LaTeX package: \pmatrix\{\}, \bmatrix\{\}, \Bmatrix\{\},

Author(s)

Phil Chalmers

Examples

```
A <- matrix(c(2, 1, -1,
    -3, -1, 2,
    -2, 1, 2), 3, 3, byrow=TRUE)
b <- c(8, -11, -3)
matrix2latex(cbind(A,b))
matrix2latex(cbind(A,b), digits = 0)
matrix2latex(cbind(A/2,b), fractions = TRUE)
matrix2latex(A, digits=0, brackets="p", show.size = TRUE)
```

minor \quad Minor of $A[i, j]$

Description

Returns the minor of element (i, j) of the square matrix A, i.e., the determinant of the sub-matrix that results when row i and column j are deleted.

Usage

minor(A, i, j)

Arguments

A
a square matrix
i row index
j
column index

Value

the minor of $A[i, j]$

Author(s)

Michael Friendly

See Also

rowMinors for all minors of a given row
Other determinants: Det(), adjoint(), cofactor(), rowCofactors(), rowMinors()

Examples

$M<-\operatorname{matrix}(c(4,-12,-4$,

$$
2, \quad 1,3,
$$

$$
-1, \quad-3,2), 3,3, \text { byrow=TRUE) }
$$

minor (M, 1, 1)
minor (M, 1, 2)
minor (M, 1, 3)

MoorePenrose Moore-Penrose inverse of a matrix

Description

The Moore-Penrose inverse is a generalization of the regular inverse of a square, non-singular, symmetric matrix to other cases (rectangular, singular), yet retain similar properties to a regular inverse.

Usage

```
MoorePenrose(X, tol = sqrt(.Machine$double.eps))
```


Arguments

X	A numeric matrix
tol	Tolerance for a singular (rank-deficient) matrix

Value

The Moore-Penrose inverse of X

Examples

```
X <- matrix(rnorm(20), ncol=2)
# introduce a linear dependency in X[,3]
X <- cbind(X, 1.5*X[, 1] - pi*X[, 2])
Y <- MoorePenrose(X)
# demonstrate some properties of the M-P inverse
# X Y X = X
round(X %*% Y %*% X - X, 8)
# Y X Y = Y
round(Y %*% X %*% Y - Y, 8)
# X Y = t(X Y)
```

```
round(X %*% Y - t(X %*% Y), 8)
# Y X = t(Y X)
round(Y %*% X - t(Y %*% X), 8)
```

mpower Matrix Power

Description

A simple function to demonstrate calculating the power of a square symmetric matrix in terms of its eigenvalues and eigenvectors.

Usage

mpower(A, p, tol = sqrt(.Machine\$double.eps))

Arguments

A
a square symmetric matrix
p
matrix power, not necessarily a positive integer
tol tolerance for determining if the matrix is symmetric

Details

The matrix power p can be a fraction or other non-integer. For example, $p=1 / 2$ and $p=1 / 3$ give a square-root and cube-root of the matrix.
Negative powers are also allowed. For example, $p=-1$ gives the inverse and $p=-1 / 2$ gives the inverse square-root.

Value

A raised to the power $p: A^{\wedge} p$

See Also

The $\{\% \wedge \%\}$ operator in the expm package is far more efficient

Examples

```
C <- matrix(c(1,2,3,2,5,6,3,6,10), 3, 3) # nonsingular, symmetric
C
mpower(C, 2)
zapsmall(mpower(C, -1))
solve(C) # check
```

```
plot.regvec3d Plot method for regvec3d objects
```


Description

The plot method for regvec3d objects uses the low-level graphics tools in this package to draw 3D and 3D vector diagrams reflecting the partial and marginal relations of y to $x 1$ and $x 2$ in a bivariate multiple linear regression model, $\operatorname{lm}(y \sim x 1+x 2)$.

The summary method prints the vectors and their vector lengths, followed by the summary for the model.

Usage

```
## S3 method for class 'regvec3d'
plot(
        x,
        y,
        dimension = 3,
        col = c("black", "red", "blue", "brown", "lightgray"),
        col.plane = "gray",
        cex.lab = 1.2,
        show.base = 2,
        show.marginal = FALSE,
        show.hplane = TRUE,
        show.angles = TRUE,
        error.sphere = c("none", "e", "y.hat"),
        scale.error.sphere = x$scale,
        level.error.sphere = 0.95,
        grid = FALSE,
        add = FALSE,
        ..
    )
    ## S3 method for class 'regvec3d'
    summary(object, ...)
    ## S3 method for class 'regvec3d'
    print(x, ...)
```


Arguments

x
y
dimension

A "regvec3d" object
Ignored; only included for compatibility with the S3 generic
Number of dimensions to plot: 3 (default) or 2

```
col A vector of 5 colors. col[1] is used for the y and residual (e) vectors, and for
        x1 and x2; col[2] is used for the vectors y -> yhat and y -> e; col[3] is used
        for the vectors yhat -> b1 and yhat -> b2;
col.plane Color of the base plane in a 3D plot or axes in a 2D plot
cex.lab character expansion applied to vector labels. May be a number or numeric vector
        corresponding to the the rows of X, recycled as necessary.
show.base If show.base > 0, draws the base plane in a 3D plot; if show.base > 1, the plane
        is drawn thicker
show.marginal If TRUE also draws lines showing the marginal relations of y on x1 and on x2
show.hplane If TRUE, draws the plane defined by y, yhat and the origin in the 3D
show.angles If TRUE, draw and label the angle between the x1 and x2 and between y and yhat,
        corresponding respectively to the correlation between the xs and the multiple
        correlation
error.sphere Plot a sphere (or in 2D, a circle) of radius proportional to the length of the
        residual vector, centered either at the origin ("e") or at the fitted-values vector
        ("y.hat"; the default is "none".)
scale.error.sphere
    Whether to scale the error sphere if error.sphere="y.hat"; defaults to TRUE
        if the vectors representing the variables are scaled, in which case the oblique
        projections of the error spheres can represent confidence intervals for the coef-
        ficients; otherwise defaults to FALSE.
level.error.sphere
    The confidence level for the error sphere, applied if scale.error.sphere=TRUE.
grid If TRUE, draws a light grid on the base plane
add If TRUE, add to the current plot; otherwise start a new rgl or plot window
... Parameters passed down to functions [unused now]
object A regvec3d object for the summary method
```


Details

A 3D diagram shows the vector y and the plane formed by the predictors, x 1 and x 2 , where all variables are represented in deviation form, so that the intercept need not be included.
A 2D diagram, using the first two columns of the result, can be used to show the projection of the space in the $\times 1, \times 2$ plane.
The drawing functions vectors and link\{vectors3d\} used by the plot. regvec3d method only work reasonably well if the variables are shown on commensurate scales, i.e., with either scale=TRUE or normalize=TRUE.

Value

None

References

Fox, J. (2016). Applied Regression Analysis and Generalized Linear Models, 3rd ed., Sage, Chapter 10.

See Also

regvec3d, vectors3d, vectors
Other vector diagrams: Proj(), arc(), arrows3d(), circle3d(), corner(), pointOnLine(), regvec3d(), vectors(), vectors3d()

Examples

```
if (require(carData)) {
    data("Duncan", package="carData")
    dunc.reg <- regvec3d(prestige ~ income + education, data=Duncan)
    plot(dunc.reg)
    plot(dunc.reg, dimension=2)
    plot(dunc.reg, error.sphere="e")
    summary(dunc.reg)
    # Example showing Simpson's paradox
    data("States", package="carData")
    states.vec <- regvec3d(SATM ~ pay + percent, data=States, scale=TRUE)
    plot(states.vec, show.marginal=TRUE)
    plot(states.vec, show.marginal=TRUE, dimension=2)
    summary(states.vec)
}
```

plotEqn Plot Linear Equations

Description

Shows what matrices A, b look like as the system of linear equations, $A x=b$ with two unknowns, $\mathrm{x} 1, \mathrm{x} 2$, by plotting a line for each equation.

Usage

```
    plotEqn(
    A,
    b,
    vars,
    xlim,
    ylim,
    col = 1:nrow(A),
    lwd = 2,
    lty = 1,
    axes = TRUE,
    labels = TRUE,
    solution = TRUE
)
```


Arguments

A
b
vars a numeric or character vector of names of the variables. If supplied, the length must be equal to the number of unknowns in the equations, i.e., 2 . The default is c (expression $(x[1])$, expression($x[2])$).
$x \lim \quad$ horizontal axis limits for the first variable
ylim vertical axis limits for the second variable; if missing, ylim is calculated from the range of the set of equations over the xlim.
col scalar or vector of colors for the lines, recycled as necessary
lwd scalar or vector of line widths for the lines, recycled as necessary
lty scalar or vector of line types for the lines, recycled as necessary
axes logical; draw horizontal and vertical axes through $(0,0)$?
labels logical, or a vector of character labels for the equations; if TRUE, each equation is labeled using the character string resulting from showEqn, modified so that the xs are properly subscripted.
solution logical; should the solution points for pairs of equations be marked?

Value

nothing; used for the side effect of making a plot

Author(s)

Michael Friendly

References

Fox, J. and Friendly, M. (2016). "Visualizing Simultaneous Linear Equations, Geometric Vectors, and Least-Squares Regression with the matlib Package for R". useR Conference, Stanford, CA, June 27 - June 30, 2016.

See Also

showEqn

Examples

```
# consistent equations
A<- matrix(c(1,2,3, -1, 2, 1),3,2)
b <- c(2,1,3)
showEqn(A, b)
plotEqn(A,b)
```

\# inconsistent equations
b <- c $(2,1,6)$
showEqn(A, b)
plotEqn(A, b)
plotEqn3d
Plot Linear Equations in 3D

Description

Shows what matrices A, b look like as the system of linear equations, $A x=b$ with three unknowns, x 1 , x 2 , and x 3 , by plotting a plane for each equation.

Usage

plotEqn3d(
A,
b,
vars,
$x \lim =c(-2,2)$,
ylim $=c(-2,2)$,
zlim,
col $=2:(\operatorname{nrow}(A)+1)$,
alpha = 0.9,
labels = FALSE,
solution = TRUE,
axes = TRUE,
lit = FALSE
)

Arguments

A
b if supplied, the vector of constants on the right hand side of the equations, of length matching the number of rows of A.
vars a numeric or character vector of names of the variables. If supplied, the length must be equal to the number of unknowns in the equations. The default is paste0("x", 1:ncol(A).
$x \lim \quad$ axis limits for the first variable
ylim axis limits for the second variable
zlim horizontal axis limits for the second variable; if missing, zlim is calculated from the range of the set of equations over the xlim and ylim
col scalar or vector of colors for the lines, recycled as necessary
alpha
either the matrix of coefficients of a system of linear equations, or the matrix cbind (A, b) The A matrix must have three columns.

labels	logical, or a vector of character labels for the equations; not yet implemented.
solution	logical; should the solution point for all equations be marked (if possible)
axes	logical; whether to frame the plot with coordinate axes
lit	logical, specifying if lighting calculation should take place on geometry; see rgl.material

Value

nothing; used for the side effect of making a plot

Author(s)

Michael Friendly, John Fox

References

Fox, J. and Friendly, M. (2016). "Visualizing Simultaneous Linear Equations, Geometric Vectors, and Least-Squares Regression with the matlib Package for R". useR Conference, Stanford, CA, June 27 - June 30, 2016.

Examples

```
# three consistent equations in three unknowns
A <- matrix(c(13, -4, 2, -4, 11, -2, 2, -2, 8), 3,3)
b <- c(1,2,4)
plotEqn3d(A,b)
```

pointOnLine

Position of a point along a line

Description

A utility function for drawing vector diagrams. Find position of an interpolated point along a line from $\times 1$ to $\times 2$.

Usage

pointOnLine(x1, x2, d, absolute = TRUE)

Arguments

x 1
d
absolute
$x 2 \quad$ A vector of length 2 or 3 , representing the ending point of a line in 2 D or 3 D space
A vector of length 2 or 3 , representing the starting point of a line in 2 D or 3D space

The distance along the line from $\times 1$ to $\times 2$ of the point to be found.
logical; if TRUE, d is taken as an absolute distance along the line; otherwise it is calculated as a relative distance, i.e., a fraction of the length of the line.

Details

The function takes a step of length d along the line defined by the difference between the two points, $x 2-x 1$. When absolute=FALSE, this step is proportional to the difference, while when absolute=TRUE, the difference is first scaled to unit length so that the step is always of length d. Note that the physical length of a line in different directions in a graph depends on the aspect ratio of the plot axes, and lines of the same length will only appear equal if the aspect ratio is one (asp=1 in 2D, or aspect3d("iso") in 3D).

Value

The interpolated point, a vector of the same length as $\times 1$

See Also

Other vector diagrams: $\operatorname{Proj}(), \operatorname{arc}(), \operatorname{arrows3d}(), \operatorname{circle} 3 d(), \operatorname{corner}()$, plot.regvec3d(), regvec3d(), vectors(), vectors3d()

Examples

```
x1 <- c(0, 0)
x2 <- c(1, 4)
pointOnLine(x1, x2, 0.5)
pointOnLine(x1, x2, 0.5, absolute=FALSE)
pointOnLine(x1, x2, 1.1)
y1 <- c(1, 2, 3)
y2 <- c(3, 2, 1)
pointOnLine(y1, y2, 0.5)
pointOnLine(y1, y2, 0.5, absolute=FALSE)
```

powerMethod Power Method for Eigenvectors

Description

Finds a dominant eigenvalue, λ_{1}, and its corresponding eigenvector, v_{1}, of a square matrix by applying Hotelling's (1933) Power Method with scaling.

Usage

powerMethod(A, v = NULL, eps $=1 \mathrm{e}-06$, maxiter $=100$, plot $=$ FALSE)

Arguments

A
v optional starting vector; if not supplied, it uses a unit vector of length equal to the number of rows / columns of x.
eps convergence threshold for terminating iterations
maxiter maximum number of iterations
plot logical; if TRUE, plot the series of iterated eigenvectors?

Details

The method is based upon the fact that repeated multiplication of a matrix A by a trial vector $v_{1}^{(k)}$ converges to the value of the eigenvector,

$$
v_{1}^{(k+1)}=A v_{1}^{(k)} /\left\|A v_{1}^{(k)}\right\|
$$

The corresponding eigenvalue is then found as

$$
\lambda_{1}=\frac{v_{1}^{T} A v_{1}}{v_{1}^{T} v_{1}}
$$

In pre-computer days, this method could be extended to find subsequent eigenvalue - eigenvector pairs by "deflation", i.e., by applying the method again to the new matrix. $A-\lambda_{1} v_{1} v_{1}^{T}$.

This method is still used in some computer-intensive applications with huge matrices where only the dominant eigenvector is required, e.g., the Google Page Rank algorithm.

Value

a list containing the eigenvector (vector), eigenvalue (value), iterations (iter), and iteration history (vector_iterations)

Author(s)

Gaston Sanchez (from matrixkit)

References

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417-441, and 498-520.

Examples

```
A <- cbind(c(7, 3), c(3, 6))
powerMethod(A)
eigen(A)$values[1] # check
eigen(A)$vectors[,1]
# demonstrate how the power method converges to a solution
powerMethod(A, v = c(-.5, 1), plot = TRUE)
B <- cbind(c(1, 2, 0), c(2, 1, 3), c(0, 3, 1))
(rv <- powerMethod(B))
# deflate to find 2nd latent vector
l <- rv$value
```

```
v <- c(rv$vector)
B1 <- B - l * outer(v, v)
powerMethod(B1)
eigen(B)$vectors # check
# a positive, semi-definite matrix, with eigenvalues 12, 6, 0
C <- matrix(c(7, 4, 1, 4, 4, 4, 1, 4, 7), 3, 3)
eigen(C)$vectors
powerMethod(C)
```

printMatEqn Print Matrices or Matrix Operations Side by Side

Description

This function is designed to print a collection of matrices, vectors, character strings and matrix expressions side by side. A typical use is to illustrate matrix equations in a compact and comprehensible way.

Usage

printMatEqn(..., space $=1$, tol $=$ sqrt(.Machine\$double.eps), fractions $=$ FALSE)

Arguments

	matrices and character operations to be passed and printed to the console. These can include named arguments, character string operation symbols (e.g., "+")
space	amount of blank spaces to place around operations such as "+", "-", "=", etc
tol	tolerance for rounding
fractions	logical; if TRUE, try to express non-integers as rational numbers, using the fractions function; if you require greater accuracy, you can set the cycles (default 10) and/or max.denominator (default 2000) arguments to fractions as a global option, e.g., options(fractions=list(cycles=100, max.denominator=10^4)).

Value

NULL; A formatted sequence of matrices and matrix operations is printed to the console

Author(s)

Phil Chalmers

See Also

showEqn

Examples

A <- matrix (c(2, 1, -1,

$$
-3,-1,2,
$$

$$
-2,1,2), 3,3 \text {, byrow=TRUE) }
$$

$x<-c(2,3,-1)$
\# provide implicit or explicit labels
printMatEqn(AA $=A, \quad " * ", x x=x, \quad=', b=A \% * \% x$)
printMatEqn(A, "*", x, '=', b = A \% $\% \%$ x)
printMatEqn(A, "*", x, '=', A \%*\% x)
\# compare with showEqn
$\mathrm{b}<-\mathrm{c}(4,2,1)$
printMatEqn(A, x=paste0("x", 1:3),"=", b)
showEqn(A, b)
\# decimal example
A <- matrix $(c(0.5,1,3,0.75,2.8,4)$, nrow $=2$)
$x<-c(0.5,3.7,2.3)$
$y<-c(0.7,-1.2)$
b <- A \%*\% $x-y$
printMatEqn(A, "*", x, "-", y, "=", b)
printMatEqn(A, "*", x, "-", y, "=", b, fractions=TRUE)
printMatrix Print a matrix, allowing fractions or LaTeX output

Description

Print a matrix, allowing fractions or LaTeX output

Usage

```
printMatrix(
        A,
        parent = TRUE,
        fractions = FALSE,
        latex = FALSE,
        tol = sqrt(.Machine$double.eps)
)
```


Arguments

A
parent

A numeric matrix
flag used to search in the parent envir for suitable definitions of other arguments. Set to TRUE (the default) if you want to only use the inputs provided.

fractions	If TRUE, print numbers as rational fractions, using the fractions function; if you require greater accuracy, you can set the cycles (default 10) and/or max. denominator (default 2000) arguments to fractions as a global option,
	e.g., options(fractions=list (cycles=100, max. denominator $\left.=10^{\wedge} 4\right)$).
latex	If TRUE, print the matrix in LaTeX format
tol	Tolerance for rounding small numbers to 0

Value

The formatted matrix

See Also

fractions

Examples

```
A <- matrix(1:12, 3, 4) / 6
printMatrix(A, fractions=TRUE)
printMatrix(A, latex=TRUE)
```


Description

Fitting a linear model, $\operatorname{lm}(y \sim X)$, by least squares can be thought of geometrically as the orthogonal projection of y on the column space of X. This function is designed to allow exploration of projections and orthogonality.

Usage

$\operatorname{Proj}(y, X$, list $=$ FALSE)

Arguments

$y \quad$ a vector, treated as a one-column matrix
$X \quad$ a vector or matrix. Number of rows of y and X must match
list logical; if FALSE, return just the projected vector; otherwise returns a list

Details

The projection is defined as $P y$ where $P=X\left(X^{\prime} X\right)^{-} X^{\prime}$ and X^{-}is a generalized inverse.

Value

the projection of y on X (if list=FALSE) or a list with elements y and P

Author(s)

Michael Friendly

See Also

Other vector diagrams: $\operatorname{arc}(), \operatorname{arrows} 3 d(), \operatorname{circle} 3 d(), \operatorname{corner}()$, plot.regvec3d(), pointOnLine(), regvec3d(), vectors(), vectors3d()

Examples

```
X <- matrix( c(1, 1, 1, 1, 1, -1, 1, -1), 4,2, byrow=TRUE)
y <- 1:4
Proj(y, X[,1]) # project y on unit vector
Proj(y, X[,2])
Proj(y, X)
# project unit vector on line between two points
y <- c(1,1)
p1<- c(0,0)
p2 <- c(1,0)
Proj(y, cbind(p1, p2))
# orthogonal complements
y <- 1:4
yp <-Proj(y, X, list=TRUE)
yp$y
P <- yp$P
IP <- diag(4) - P
yc <- c(IP %*% y)
crossprod(yp$y, yc)
# P is idempotent: P P = P
P %*% P
all.equal(P, P %*% P)
```


Description

QR computes the QR decomposition of a matrix, X, that is an orthonormal matrix, Q and an upper triangular matrix, R, such that $X=Q R$.

Usage

QR(X, tol = sqrt(.Machine\$double.eps))

Arguments

X	a numeric matrix
tol	tolerance for detecting linear dependencies in the columns of X

Details

The QR decomposition plays an important role in many statistical techniques. In particular it can be used to solve the equation $A x=b$ for given matrix A and vector b. The function is included here simply to show the algorithm of Gram-Schmidt orthogonalization. The standard qr function is faster and more accurate.

Value

a list of three elements, consisting of an orthonormal matrix Q, an upper triangular matrix R, and the rank of the matrix X

Author(s)

John Fox and Georges Monette

See Also

qr

Examples

```
A <- matrix(c(1, 2, 3,4,5,6,7,8,10), 3, 3) # a square nonsingular matrix
res <- QR(A)
res
q <- res$Q
zapsmall( t(q) %*% q) # check that q' q = I
r <- res$R
q %*% r # check that q r = A
# relation to determinant: det(A) = prod(diag(R))
det(A)
prod(diag(r))
B <- matrix(1:9, 3, 3) # a singular matrix
QR(B)
```

R

Description

Returns the rank of a matrix X, using the $Q R$ decomposition, $Q R$. Included here as a simple function, because rank does something different and it is not obvious what to use for matrix rank.

Usage

$R(X)$

Arguments

$X \quad$ a matrix

Value

rank of X

See Also

qr

Examples

```
M <- outer(1:3, 3:1)
```

M
R(M)
M <- matrix $(1: 9,3,3)$
M
R(M)
\# why rank=2?
echelon(M)
set.seed(1234)
M <- matrix(sample(1:9), 3, 3)
M
R(M)
regvec3d Vector space representation of a two-variable regression model

Description

regvec3d calculates the 3D vectors that represent the projection of a two-variable multiple regression model from n-D observation space into the 3D mean-deviation variable space that they span, thus showing the regression of y on $x 1$ and $x 2$ in the model $\operatorname{lm}(y \sim x 1+x 2)$. The result can be used to draw 2D and 3D vector diagrams accurately reflecting the partial and marginal relations of y to $x 1$ and $x 2$ as vectors in this representation.

Usage

```
    regvec3d(x1, ...)
    ## S3 method for class 'formula'
    regvec3d(
        formula,
        data = NULL,
        which = 1:2,
        name.x1,
        name.x2,
        name.y,
        name.e,
        name.y.hat,
        name.b1.x1,
        name.b2.x2,
        abbreviate = 0,
    )
    ## Default S3 method:
    regvec3d(
        x1,
        x2,
        y,
        scale = FALSE,
        normalize = TRUE,
        name.x1 = deparse(substitute(x1)),
        name.x2 = deparse(substitute(x2)),
        name.y = deparse(substitute(y)),
        name.e = "residuals",
        name.y.hat = paste0(name.y, "hat"),
        name.b1.x1 = paste0("b1", name.x1),
        name.b2.x2 = paste0("b2", name.x2),
        name.y1.hat = paste0(name.y, "hat 1"),
        name.y2.hat = paste0(name.y, "hat 2"),
    )
```


Arguments

x1
... Arguments passed to methods
formula
data A data frame in which the variables in the model are found

which	Indices of predictors variables in the model taken as $\times 1$ and $\times 2$
name. x 1	Name for x 1 to be used in the result and plots. By default, this is taken as the name of the $\times 1$ variable in the formula, possibly abbreviated according to abbreviate.
name.x2	Ditto for the name of $x 2$
name.y	Ditto for the name of y
name.e	Name for the residual vector. Default: "residuals"
name.y.hat	Name for the fitted vector
name.b1.x1	Name for the vector corresponding to the partial coefficient of $\times 1$
name.b2.x2	Name for the vector corresponding to the partial coefficient of $\times 2$
abbreviate	An integer. If abbreviate >0, the names of $x 1, x 2$ and y are abbreviated to this length before being combined with the other name. $*$ arguments
x2	second predictor variable in the model
y	response variable in the model
scale	logical; if TRUE, standardize each of $\mathrm{y}, \mathrm{x} 1, \mathrm{x} 2$ to standard scores
normalize	logical; if TRUE, normalize each vector relative to the maximum length of all
name.y1.hat	Name for the vector corresponding to the marginal coefficient of $\times 1$
name.y2.hat	Name for the vector corresponding to the marginal coefficient of $\times 2$

Details

If additional variables are included in the model, e.g., $\operatorname{lm}(y \sim x 1+x 2+x 3+\ldots)$, then $y, x 1$ and x 2 are all taken as residuals from their separate linear fits on $\times 3+\ldots$, thus showing their partial relations net of (or adjusting for) these additional predictors.
A 3D diagram shows the vector y and the plane formed by the predictors, x 1 and x 2 , where all variables are represented in deviation form, so that the intercept need not be included.
A 2D diagram, using the first two columns of the result, can be used to show the projection of the space in the $\mathrm{x} 1, \mathrm{x} 2$ plane.
In these views, the ANOVA representation of the various sums of squares for the regression predictors appears as the lengths of the various vectors. For example, the error sum of squares is the squared length of the e vector, and the regression sum of squares is the squared length of the yhat vector.
The drawing functions vectors and link\{vectors3d\} used by the plot.regvec3d method only work reasonably well if the variables are shown on commensurate scales, i.e., with either scale=TRUE or normalize=TRUE.

Value

An object of class "regvec3d", containing the following components
model The "lm" object corresponding to $\operatorname{lm}(y \sim x 1+x 2)$.
vectors A 9×3 matrix, whose rows correspond to the variables in the model, the residual vector, the fitted vector, the partial fits for $\mathrm{x} 1, \mathrm{x} 2$, and the marginal fits of y on $x 1$ and $\times 2$. The columns effectively represent $x 1, x 2$, and y, but are named " x ", " y " and " z ".

Methods (by class)

- regvec3d(formula): Formula method for regvec3d
- regvec3d(default): Default method for regvec3d

References

Fox, J. (2016). Applied Regression Analysis and Generalized Linear Models, 3rd ed., Sage, Chapter 10.

Fox, J. and Friendly, M. (2016). "Visualizing Simultaneous Linear Equations, Geometric Vectors, and Least-Squares Regression with the matlib Package for R". useR Conference, Stanford, CA, June 27 - June 30, 2016.

See Also

```
plot.regvec3d
```

Other vector diagrams: $\operatorname{Proj}(), \operatorname{arc}(), \operatorname{arrows3d}(), \operatorname{circle3d}(), \operatorname{corner}()$, plot.regvec3d(), pointOnLine(), vectors(), vectors3d()

Examples

```
library(rgl)
therapy.vec <- regvec3d(therapy ~ perstest + IE, data=therapy)
therapy.vec
plot(therapy.vec, col.plane="darkgreen")
plot(therapy.vec, dimension=2)
```

rowadd

Add multiples of rows to other rows

Description

The elementary row operation rowadd adds multiples of one or more rows to other rows of a matrix. This is usually used as a means to solve systems of linear equations, of the form $A x=b$, and rowadd corresponds to adding equals to equals.

Usage

rowadd(x, from, to, mult)

Arguments

x
from the index of one or more source rows. If from is a vector, it must have the same length as to.
to the index of one or more destination rows
mult the multiplier(s)
a numeric matrix, possibly consisting of the coefficient matrix, A, joined with a vector of constants, b.

Details

The functions rowmult and rowswap complete the basic operations used in reduction to row echelon form and Gaussian elimination. These functions are used for demonstration purposes.

Value

the matrix x, as modified

See Also

echelon, gaussianElimination
Other elementary row operations: rowmult(), rowswap()

Examples

A <- matrix (c(2, 1, -1,
$-3,-1,2$,
$-2,1,2), 3,3$, byrow=TRUE)
b <- c $(8,-11,-3)$
\# using row operations to reduce below diagonal to 0
Ab <- cbind(A, b)
(Ab <- rowadd(Ab, 1, 2, 3/2)) \# row 2 <- row $2+3 / 2$ row 1
(Ab <- rowadd(Ab, 1, 3, 1)) \# row 3 <- row $3+1$ row 1
(Ab <- rowadd(Ab, 2, 3, -4)) \# row 3 <- row 3 - 4 row 2
\# multiply to make diagonals $=1$
(Ab <- rowmult(Ab, 1:3, c(1/2, 2, -1)))
\# The matrix is now in triangular form
\# Could continue to reduce above diagonal to zero
echelon(A, b, verbose=TRUE, fractions=TRUE)
rowCofactors
Row Cofactors of $A[i$,

Description

Returns the vector of cofactors of row i of the square matrix A. The determinant, $\operatorname{Det}(A)$, can then be found as $M[i] \% * \$,$% rowCofactors(M,i) for any row, i.$

Usage

rowCofactors(A, i)

Arguments

A
a square matrix
i row index

Value

a vector of the cofactors of $A[i$,

Author(s)

Michael Friendly

See Also

Det for the determinant
Other determinants: Det(), adjoint(), cofactor(), minor(), rowMinors()

Examples

M <- matrix (c(4, -12, -4,
2, 1, 3,
$-1,-3,2), 3,3$, byrow=TRUE)
minor (M, 1, 1)
minor (M, 1, 2)
minor (M, 1, 3)
rowCofactors(M, 1)
Det (M)
\# expansion by cofactors of row 1
M[1,] \%*\% rowCofactors(M,1)

```
rowMinors Row Minors of A[i,]
```


Description

Returns the vector of minors of row i of the square matrix A

Usage

```
rowMinors(A, i)
```


Arguments

A a square matrix
i row index

Value

a vector of the minors of $A[i$,

Author(s)

Michael Friendly

See Also

Other determinants: Det(), adjoint(), cofactor(), minor(), rowCofactors()

Examples

```
M <- matrix(c(4, -12, -4,
    2, 1, 3,
    -1, -3, 2), 3, 3, byrow=TRUE)
minor(M, 1, 1)
minor(M, 1, 2)
minor(M, 1, 3)
rowMinors(M, 1)
```

rowmult
Multiply Rows by Constants

Description

Multiplies one or more rows of a matrix by constants. This corresponds to multiplying or dividing equations by constants.

Usage

rowmult(x, row, mult)

Arguments

x	a matrix, possibly consisting of the coefficient matrix, A, joined with a vector of constants, b
row	index of one or more rows.
mult	row multiplier(s)

Value

the matrix x , modified

See Also

echelon, gaussianElimination
Other elementary row operations: rowadd(), rowswap()

Examples

```
A <- matrix(c(2, 1, -1,
    -3, -1, 2,
    -2, 1, 2), 3, 3, byrow=TRUE)
b <- c(8, -11, -3)
# using row operations to reduce below diagonal to 0
Ab <- cbind(A, b)
(Ab <- rowadd(Ab, 1, 2, 3/2)) # row 2 <- row 2 + 3/2 row }
(Ab <- rowadd(Ab, 1, 3, 1)) # row 3 <- row 3 + 1 row 1
(Ab <- rowadd(Ab, 2, 3, -4))
# multiply to make diagonals = 1
(Ab <- rowmult(Ab, 1:3, c(1/2, 2, -1)))
# The matrix is now in triangular form
```

 rowswap
 Interchange two rows of a matrix

Description

This elementary row operation corresponds to interchanging two equations.

Usage

rowswap(x, from, to)

Arguments

x
a matrix, possibly consisting of the coefficient matrix, A, joined with a vector of constants, b .
from source row.
to destination row

Value

the matrix x, with rows from and to interchanged

See Also

echelon, gaussianElimination
Other elementary row operations: rowadd(), rowmult ()

Description

This function is designed for illustrating the eigenvectors associated with the covariance matrix for a given bivariate data set. It draws a data ellipse of the data and adds vectors showing the eigenvectors of the covariance matrix.

Usage

```
    showEig(
        X,
        col.vec = "blue",
        lwd.vec = 3,
        mult = sqrt(qchisq(levels, 2)),
        asp = 1,
        levels = c(0.5, 0.95),
        plot.points = TRUE,
        add = !plot.points,
    )
```


Arguments

X
col.vec color for eigenvectors
lwd.vec line width for eigenvectors
mult length multiplier(s) for eigenvectors
asp aspect ratio of plot, set to asp=1 by default, and passed to dataEllipse
levels
plot.points
add
... other arguments passed to link[car]\{dataEllipse\}

Author(s)

Michael Friendly

See Also

```
    dataEllipse
```


Examples

```
    x <- rnorm(200)
    y <- . 5 * x + . 5 * rnorm(200)
    x <- cbind(x,y)
    showEig(X)
    # Duncan data
    data(Duncan, package="carData")
    showEig(Duncan[, 2:3], levels=0.68)
    showEig(Duncan[,2:3], levels=0.68, robust=TRUE, add=TRUE, fill=TRUE)
```

 showEqn
 Show Matrices (A, b) as Linear Equations

Description

Shows what matrices A, b look like as the system of linear equations, $A x=b$, but written out as a set of equations.

Usage

```
showEqn(
    A,
    b,
    vars,
    simplify = FALSE,
    reduce = FALSE,
    fractions = FALSE,
    latex = FALSE
)
```


Arguments

A
b
vars a numeric or character vector of names of the variables. If supplied, the length must be equal to the number of unknowns in the equations. The default is paste0("x", 1:ncol(A).
simplify logical; try to simplify the equations?
reduce logical; only show the unique linear equations
fractions logical; express numbers as rational fractions, using the fractions function; if you require greater accuracy, you can set the cycles (default 10) and/or max. denominator (default 2000) arguments to fractions as a global option, e.g., options(fractions=list(cycles=100, max. denominator=10^4)).
latex logical; print equations in a form suitable for LaTeX output?
either the matrix of coefficients of a system of linear equations, or the matrix cbind(A, b). Alternatively, can be of class ' 1 m ' to print the equations for the design matrix in a linear regression model

b	if supplied, the vector of constants on the right hand side of the equations. When omitted the values $b 1, b 2, \ldots$, bn will be used as placeholders
vars	a numeric or character vector of names of the variables. If supplied, the length must be equal to the number of unknowns in the equations. The default is paste0 ("x", 1: ncol (A).
simplify	logical; try to simplify the equations? leduce logical; only show the unique linear equations
fractions	logical; express numbers as rational fractions, using the fractions function; if you require greater accuracy, you can set the cycles (default 10) and/or max. denominator (default 2000) arguments to fractions as a global option,
latex	e.g., options(fractions=list (cycles=100, max. denominator=10^4)). logical; print equations in a form suitable for LaTeX output?

Value

a one-column character matrix, one row for each equation

Author(s)

Michael Friendly, John Fox, and Phil Chalmers

References

Fox, J. and Friendly, M. (2016). "Visualizing Simultaneous Linear Equations, Geometric Vectors, and Least-Squares Regression with the matlib Package for R". useR Conference, Stanford, CA, June 27 - June 30, 2016.

See Also

```
plotEqn, plotEqn3d
```


Examples

```
    A <- matrix(c(2, 1, -1,
            -3, -1, 2,
            -2, 1, 2), 3, 3, byrow=TRUE)
    b <- c(8, -11, -3)
    showEqn(A, b)
    # show numerically
    x <- solve(A, b)
    showEqn(A, b, vars=x)
    showEqn(A, b, simplify=TRUE)
    showEqn(A, b, latex=TRUE)
    # lower triangle of equation with zeros omitted (for back solving)
    A <- matrix(c(2, 1, 2,
            -3, -1, 2,
            -2, 1, 2), 3, 3, byrow=TRUE)
    U <- LU(A)$U
    showEqn(U, simplify=TRUE, fractions=TRUE)
    showEqn(U, b, simplify=TRUE, fractions=TRUE)
    ####################
    # Linear models Design Matricies
    data(mtcars)
    ancova <- lm(mpg ~ wt + vs, mtcars)
    summary(ancova)
    showEqn(ancova)
    showEqn(ancova, simplify=TRUE)
    showEqn(ancova, vars=round(coef(ancova),2))
    showEqn(ancova, vars=round(coef(ancova),2), simplify=TRUE)
    twoway_int <- lm(mpg ~ vs * am, mtcars)
    summary(twoway_int)
    car::Anova(twoway_int)
```

```
    showEqn(twoway_int)
    showEqn(twoway_int, reduce=TRUE)
showEqn(twoway_int, reduce=TRUE, simplify=TRUE)
# Piece-wise linear regression
x <- c(1:10, 13:22)
y <- numeric(20)
y[1:10] <- 20:11 + rnorm(10, 0, 1.5)
y[11:20] <- seq(11, 15, len=10) + rnorm(10, 0, 1.5)
plot(x, y, pch = 16)
x2 <- as.numeric(x > 10)
mod <- lm(y ~ x + I ((x - 10) * x2))
summary(mod)
lines(x, fitted(mod))
showEqn(mod)
showEqn(mod, vars=round(coef(mod),2))
showEqn(mod, simplify=TRUE)
```

Solve Solve and Display Solutions for Systems of Linear Simultaneous Equations

Description

Solve the equation system $A x=b$, given the coefficient matrix A and right-hand side vector b, using link\{gaussianElimination\}. Display the solutions using showEqn.

Usage

```
Solve(
    A,
    b = rep(0, nrow(A)),
    vars,
    verbose = FALSE,
    simplify = TRUE,
    fractions = FALSE,
)
```


Arguments

A
b
vars
the matrix of coefficients of a system of linear equations
b the vector of constants on the right hand side of the equations. The default is a vector of zeros, giving the homogeneous equations $A x=0$.
a numeric or character vector of names of the variables. If supplied, the length must be equal to the number of unknowns in the equations. The default is paste0("x", 1:ncol(A).

verbose	logical; show the steps of the Gaussian elimination algorithm?
simplify	logical; try to simplify the equations?
fractions	logical; express numbers as rational fractions, using the fractions function; if you require greater accuracy, you can set the cycles (default 10) and/or max. denominator (default 2000) arguments to fractions as a global option, e.g., options(fractions=list(cycles=100, max.denominator=10^4)).
\ldots	arguments to be passed to link\{gaussianElimination\} and showEqn

Details

This function mimics the base function solve when supplied with two arguments, (A, b), but gives a prettier result, as a set of equations for the solution. The call solve(A) with a single argument overloads this, returning the inverse of the matrix A. For that sense, use the function inv instead.

Value

the function is used primarily for its side effect of printing the solution in a readable form, but it invisibly returns the solution as a character vector

Author(s)

John Fox

See Also

gaussianElimination, showEqn inv, solve

Examples

```
A1 <- matrix(c(2, 1, -1,
            -3, -1, 2,
            -2, 1, 2), 3, 3, byrow=TRUE)
    b1 <- c(8, -11, -3)
    Solve(A1, b1) # unique solution
    A2 <- matrix(1:9, 3, 3)
    b2 <- 1:3
    Solve(A2, b2, fractions=TRUE) # underdetermined
    b3 <- c(1, 2, 4)
    Solve(A2, b3, fractions=TRUE) # overdetermined
```


Description

Compute the singular-value decomposition of a matrix X either by Jacobi rotations (the default) or from the eigenstructure of $X^{\prime} X$ using Eigen. Both methods are iterative. The result consists of two orthonormal matrices, U, and V and the vector d of singular values, such that $X=U \operatorname{diag}(d) V^{\prime}$.

Usage

SVD(
X ,
method = c("Jacobi", "eigen"),
tol $=\operatorname{sqrt}($. Machine\$double.eps),
max.iter $=100$
)

Arguments

X
a square symmetric matrix
method either "Jacobi" (the default) or "eigen"
tol zero and convergence tolerance
max.iter maximum number of iterations

Details

The default method is more numerically stable, but the eigenstructure method is much simpler. Singular values of zero are not retained in the solution.

Value

a list of three elements: $d-$ singular values, $U-$ left singular vectors, V - right singular vectors

Author(s)

John Fox and Georges Monette

See Also

svd, the standard svd function
Eigen

Examples

C <- matrix $(c(1,2,3,2,5,6,3,6,10), 3,3)$ \# nonsingular, symmetric
C
SVD (C)
\# least squares by the SVD
data("workers")
X <- cbind(1, as.matrix(workers[, c("Experience", "Skill")]))
head (X)
y <- workers\$Income
head(y)
(svd <- SVD(X))
VdU <- svd\$V \%*\% diag(1/svd\$d) \%*\%t(svd\$U)
(b <- VdU \%*\% y)
coef(lm(Income ~ Experience + Skill, data=workers))
svdDemo Demonstrate the SVD for a 3 x 3 matrix

Description

This function draws an rgl scene consisting of a representation of the identity matrix and a 3×3 matrix A, together with the corresponding representation of the matrices U, D, and V in the SVD decomposition, A = U D V'.

Usage

svdDemo(A, shape $=c(" c u b e ", " s p h e r e "), ~ a l p h a=0.7, ~ c o l=r a i n b o w(6))$

Arguments

A	A 3×3 numeric matrix
shape	Basic shape used to represent the identity matrix: "cube" or "sphere"
alpha	transparency value used to draw the shape
col	Vector of 6 colors for the faces of the basic cube

Value

Nothing

Author(s)

Original idea from Duncan Murdoch

Examples

```
A <- matrix(c(1,2,0.1, 0.1,1,0.1, 0.1,0.1,0.5), 3,3)
svdDemo(A)
## Not run:
B <- matrix(c( 1, 0, 1, 0, 2, 0, 1, 0, 2), 3, 3)
svdDemo(B)
# a positive, semi-definite matrix with eigenvalues 12, 6, 0
C <- matrix(c(7, 4, 1, 4, 4, 4, 1, 4, 7), 3, 3)
svdDemo(C)
## End(Not run)
```


Description

The swp function "sweeps" a matrix on the rows and columns given in index to produce a new matrix with those rows and columns "partialled out" by orthogonalization. This was defined as a fundamental statistical operation in multivariate methods by Beaton (1964) and expanded by Dempster (1969). It is closely related to orthogonal projection, but applied to a cross-products or covariance matrix, rather than to data.

Usage

swp(M, index)

Arguments

M a numeric matrix
index a numeric vector indicating the rows/columns to be swept. The entries must be less than or equal to the number or rows or columns in M. If missing, the function sweeps on all rows/columns 1:min($\operatorname{dim}(M)$).

Details

If M is the partitioned matrix

$$
\left[\begin{array}{cc}
\mathbf{R} & \mathbf{S} \\
\mathbf{T} & \mathbf{U}
\end{array}\right]
$$

where R is $q \times q$ then $\operatorname{swp}(\mathrm{M}, 1: q)$ gives

$$
\left[\begin{array}{cc}
\mathbf{R}^{-1} & \mathbf{R}^{-1} \mathbf{S} \\
-\mathbf{T} \mathbf{R}^{-1} & \mathbf{U}-\mathbf{T R}^{-1} \mathbf{S}
\end{array}\right]
$$

Value
the matrix M with rows and columns in indices swept.

References

Beaton, A. E. (1964), The Use of Special Matrix Operations in Statistical Calculus, Princeton, NJ: Educational Testing Service.

Dempster, A. P. (1969) Elements of Continuous Multivariate Analysis. Addison-Wesley, Reading, Mass.

See Also

Proj, QR

Examples

```
data(therapy)
mod3 <- lm(therapy ~ perstest + IE + sex, data=therapy)
X <- model.matrix(mod3)
XY <- cbind(X, therapy=therapy$therapy)
XY
M <- crossprod(XY)
swp(M, 1)
swp(M, 1:2)
```

```
symMat Create a Symmetric Matrix from a Vector
```


Description

Creates a square symmetric matrix from a vector.

Usage

symMat $(x$, diag $=$ TRUE, byrow $=$ FALSE, names $=$ FALSE $)$

Arguments

$x \quad$ A numeric vector used to fill the upper or lower triangle of the matrix.
diag Logical. If TRUE (the default), the diagonals of the created matrix are replaced by elements of x; otherwise, the diagonals of the created matrix are replaced by " 1 ".
byrow Logical. If FALSE (the default), the created matrix is filled by columns; otherwise, the matrix is filled by rows.
names Either a logical or a character vector of names for the rows and columns of the matrix. If FALSE, no names are assigned; if TRUE, rows and columns are named $\mathrm{X} 1, \mathrm{X} 2, \ldots$.

Value

A symmetric square matrix based on column major ordering of the elements in x .

Author(s)

Originally from metaSEM: : vec2symMat, Mike W.-L. Cheung mikewlcheung@nus.edu.sg; modified by Michael Friendly

Examples

symMat (1:6)
symMat(1:6, byrow=TRUE)
symMat(5:0, diag=FALSE)
therapy Therapy Data

Description

A toy data set on outcome in therapy in relation to a personality test (perstest) and a scale of internal-external locus of control (IE) used to illustrate linear and multiple regression.

Usage

data("therapy")

Format

A data frame with 10 observations on the following 4 variables.
sex a factor with levels F M
perstest score on a personality test, a numeric vector
therapy outcome in psychotherapy, a numeric vector
IE score on a scale of internal-external locus of control, a numeric vector

Examples

```
data(therapy)
plot(therapy ~ perstest, data=therapy, pch=16)
abline(lm(therapy ~ perstest, data=therapy), col="red")
plot(therapy ~ perstest, data=therapy, cex=1.5, pch=16,
col=ifelse(sex=="M", "red","blue"))
```

tr
Trace of a Matrix

Description

Calculates the trace of a square numeric matrix, i.e., the sum of its diagonal elements

Usage

$\operatorname{tr}(\mathrm{X})$

Arguments

$X \quad$ a numeric matrix

Value

a numeric value, the sum of $\operatorname{diag}(X)$

Examples

```
    X<- matrix(1:9, 3, 3)
    tr(X)
```

vandermode Vandermode Matrix

Description

The function returns the Vandermode matrix of a numeric vector, x, whose columns are the vector raised to the powers $0: n$.

Usage

vandermode (x, n)

Arguments

$x \quad$ a numeric vector
$\mathrm{n} \quad$ a numeric scalar

Value

a matrix of size length(x) $x \mathrm{n}$

Examples

```
vandermode(1:5, 4)
```

vec Vectorize a Matrix

Description

Returns a 1-column matrix, stacking the columns of x, a matrix or vector. Also supports commaseparated inputs similar to the concatenation function c.

Usage

$\operatorname{vec}(x, \ldots)$

Arguments

x
A matrix or vector
... (optional) additional objects to be stacked

Value

A one-column matrix containing the elements of x and \ldots in column order

Examples

```
vec(1:3)
    vec(matrix(1:6, 2, 3))
    vec(c("hello", "world"))
    vec("hello", "world")
    vec(1:3, "hello", "world")
```

 vectors Draw geometric vectors in \(2 D\)

Description

This function draws vectors in a 2D plot, in a way that facilitates constructing vector diagrams. It allows vectors to be specified as rows of a matrix, and can draw labels on the vectors.

Usage

vectors(
X ,
origin $=c(0,0)$,
lwd = 2,
angle $=13$,
length $=0.15$,
labels = TRUE,

```
    cex.lab = 1.5,
    pos.lab = 4,
    frac.lab = 1,
)
```


Arguments

X
origin the origin from which they are drawn, a vector of length 2.
lwd line width(s) for the vectors, a constant or vector of length equal to the number of rows of X.
angle the angle argument passed to arrows determining the angle of arrow heads.
length the length argument passed to arrows determining the length of arrow heads.
labels a logical or a character vector of labels for the vectors. If TRUE and X is a matrix, labels are taken from rownames (X). If NULL, no labels are drawn.
cex.lab character expansion applied to vector labels. May be a number or numeric vector corresponding to the the rows of X, recycled as necessary.
pos.lab label position relative to the label point as in text, recycled as necessary.
frac.lab location of label point, as a fraction of the distance between origin and X, recycled as necessary. Values frac. lab > 1 locate the label beyond the end of the vector.
.. other arguments passed on to graphics functions.

Value

none

See Also

arrows, text
Other vector diagrams: $\operatorname{Proj}(), \operatorname{arc}(), \operatorname{arrows3d}(), \operatorname{circle3d}()$, corner(), plot.regvec3d(), pointOnLine(), regvec3d(), vectors3d()

Examples

```
# shows addition of vectors
u <- c(3,1)
v <- c(1,3)
sum <- u+v
xlim <- c(0,5)
ylim <- c(0,5)
# proper geometry requires asp=1
plot( xlim, ylim, type="n", xlab="X", ylab="Y", asp=1)
abline(v=0, h=0, col="gray")
```

```
vectors(rbind(u,v,`u+v`=sum), col=c("red", "blue", "purple"), cex.lab=c(2, 2, 2.2))
# show the opposing sides of the parallelogram
vectors(sum, origin=u, col="red", lty=2)
vectors(sum, origin=v, col="blue", lty=2)
# projection of vectors
vectors(Proj(v,u), labels="P(v,u)", lwd=3)
vectors(v, origin=Proj(v,u))
corner(c(0,0), Proj(v,u), v, col="grey")
```

vectors3d
Draw 3D vectors

Description

This function draws vectors in a 3D plot, in a way that facilitates constructing vector diagrams. It allows vectors to be specified as rows of a matrix, and can draw labels on the vectors.

Usage

```
vectors3d(
    X,
    origin = c(0, 0, 0),
    headlength = 0.035,
    ref.length = NULL,
    radius = 1/60,
    labels = TRUE,
    cex.lab = 1.2,
    adj.lab = 0.5,
    frac.lab = 1.1,
    draw = TRUE,
    ..
)
```


Arguments

X
origin the origin from which they are drawn, a vector of length 3.
headlength the headlength argument passed to arrows3d determining the length of arrow heads
ref.length vector length to be used in scaling arrow heads so that they are all the same size; if NULL the longest vector is used to scale the arrow heads
radius radius of the base of the arrow heads
labels a logical or a character vector of labels for the vectors. If TRUE and X is a matrix, labels are taken from rownames (X). If FALSE or NULL, no labels are drawn.

cex.lab	character expansion applied to vector labels. May be a number or numeric vector corresponding to the the rows of X, recycled as necessary.
adj.lab	label position relative to the label point as in text3d, recycled as necessary. frac.lab location of label point, as a fraction of the distance between origin and X, re- cycled as necessary. Values frac.lab >1 locate the label beyond the end of the vector.
draw	if TRUE (the default), draw the vector(s).
\ldots	other arguments passed on to graphics functions.

Value

invisibly returns the vector ref. length used to scale arrow heads

Bugs

At present, the color (color=) argument is not handled as expected when more than one vector is to be drawn.

Author(s)

Michael Friendly

See Also

arrows3d, texts3d, rgl.material
Other vector diagrams: $\operatorname{Proj}(), \operatorname{arc}(), \operatorname{arrows3d}(), \operatorname{circle3d}(), \operatorname{corner(),~plot.regvec3d(),~}$ pointOnLine(), regvec3d(), vectors()

Examples

```
vec <- rbind(diag(3), c(1,1,1))
rownames(vec) <- c("X", "Y", "Z", "J")
library(rgl)
open3d()
vectors3d(vec, color=c(rep("black",3), "red"), lwd=2)
# draw the XZ plane, whose equation is Y=0
planes3d(0, 0, 1, 0, col="gray", alpha=0.2)
vectors3d(c(1,1,0), col="green", lwd=2)
# show projections of the unit vector J
segments3d(rbind(c(1,1,1), c(1, 1, 0)))
segments3d(rbind(c(0,0,0), c(1, 1, 0)))
segments3d(rbind(c(1,0,0), c(1, 1, 0)))
segments3d(rbind(c(0,1,0), c(1, 1, 0)))
# show some orthogonal vectors
p1 <- c(0,0,0)
p2 <- c(1,1,0)
p3 <- c(1,1,1)
p4 <- c(1,0,0)
corner(p1, p2, p3, col="red")
corner(p1, p4, p2, col="red")
```

```
corner(p1, p4, p3, col="blue")
rgl.bringtotop()
```

```
workers Workers Data
```


Description

A toy data set comprised of information on workers Income in relation to other variables, used for illustrating linear and multiple regression.

Usage

data("workers")

Format

A data frame with 10 observations on the following 4 variables.
Income income from the job, a numeric vector
Experience number of years of experience, a numeric vector
Skill skill level in the job, a numeric vector
Gender a factor with levels Female Male

Examples

```
data(workers)
plot(Income ~ Experience, data=workers, main="Income ~ Experience", pch=20, cex=2)
# simple linear regression
reg1 <- lm(Income ~ Experience, data=workers)
abline(reg1, col="red", lwd=3)
# quadratic fit?
plot(Income ~ Experience, data=workers, main="Income ~ poly(Experience,2)", pch=20, cex=2)
reg2 <- lm(Income ~ poly(Experience,2), data=workers)
fit2 <-predict(reg2)
abline(reg1, col="red", lwd=1, lty=1)
lines(workers$Experience, fit2, col="blue", lwd=3)
# How does Income depend on a factor?
plot(Income ~ Gender, data=workers, main="Income ~ Gender")
points(workers$Gender, jitter(workers$Income), cex=2, pch=20)
means<-aggregate(workers$Income,list(workers$Gender),mean)
points(means,col="red", pch="+", cex=2)
lines(means,col="red", lwd=2)
```


Description

Given two linearly independent length 3 vectors $* * \mathrm{a}^{* *}$ and ${ }^{* *} \mathrm{~b}^{* *}$, the cross product, $\mathbf{a} \times \mathbf{b}$ (read "a cross b "), is a vector that is perpendicular to both ${ }^{* *} \mathrm{a}^{* *}$ and ${ }^{* *} \mathrm{~b}^{* *}$ thus normal to the plane containing them.

Usage

xprod(...)

Arguments

$\ldots \quad \mathrm{N}-1$ linearly independent vectors of the same length, N .

Details

A generalization of this idea applies to two or more dimensional vectors.
See: [https://en.wikipedia.org/wiki/Cross_product] for geometric and algebraic properties.

Value

Returns the generalized vector cross-product, a vector of length N .

Author(s)

Matthew Lundberg, in a [Stack Overflow post][https://stackoverflow.com/questions/36798301/r-compute-cross-product-of-vectors-physics]

Examples

```
xprod(1:3, 4:6)
# This works for an dimension
xprod(c(0,1)) # 2d
xprod(c(1,0,0), c(0,1,0)) # 3d
xprod(c(1,1,1), c(0,1,0)) # 3d
xprod(c(1,0,0,0), c(0,1,0,0), c(0,0,1,0)) # 4d
```


Index

```
* datasets
    class,13
    therapy,63
    workers,69
* determinants
    adjoint,4
    cofactor,14
    Det, 17
    minor, 30
    rowCofactors, 50
    rowMinors,51
* elementary row operations
    rowadd,49
    rowmult, 52
    rowswap,53
* matrix of elementary row operations
    buildTmat, }
* vector diagrams
    arc,6
    arrows3d, }
    circle3d, 13
    corner, 16
    plot.regvec3d, 33
    pointOnLine, }3
    Proj,43
    regvec3d, 46
    vectors,65
    vectors3d,67
adjoint, 4, 14, 17, 31, 51, 52
angle,5
arc, 4, 6, 9, 13, 16, 35, 39, 44, 49, 66, 68
arrows, 8, 66
arrows3d, 4, 7, 8, 13, 15, 16, 35, 39, 44, 49,
    66-68
as.matrix.trace (buildTmat), 9
buildTmat, }
c, }6
```

chol, 11
cholesky, 4, 10
circle, 11
circle3d, 7, 9, 13, 16, 35, 39, 44, 49, 66, 68
class, 13
cofactor, 3, 5, 14, 17, 31, 51, 52
cone3d, 15
corner, 4, 7, 9, 13, 16, 35, 39, 44, 49, 66, 68
dataEllipse, 54
Det, 5, 14, 17, 31, 51, 52
det, 17
draw.circle, 12
echelon, $4,10,18,50,52,53$
Eigen, 17, 19, 59
eigen, 4, 20
fractions, 17, 21, 22, 29, 41, 43, 55, 58
gaussianElimination, 4, 9, 10, 17, 18, 20, $25,50,52,53,58$
getYmult, 22
Ginv, 4, 22
ginv, 23
GramSchmidt, 23, 25
gsorth, 11, 24
inv, 4, 58
inv (Inverse), 25
Inverse, 4, 25
J, 3, 26
len, 3, 5, 27
LU, 4, 28

```
matlib (matlib-package), 3
matlib-package,3
matrix2latex, 29
minor, 3, 5, 14, 17, 30, 51,52
```

```
MoorePenrose, 31
mpower, 3, 32
norm,27
plot,12
plot.regvec3d, 7, 9, 13, 16, 33, 34, 39, 44,
    48,49,66,68
plotEqn, 4, 35,56
plotEqn3d, 37, 56
pointOnLine, 4, 7, 9, 13, 16, 35, 38, 44, 49,
    66,68
polygon, 12
powerMethod, 4, 39
print.enhancedMatrix
    (gaussianElimination), 20
print.regvec3d(plot.regvec3d), 33
print.trace (buildTmat), }
printMatEqn,41
printMatrix,42
Proj, 3, 7, 9, 13, 16, 35, 39, 43, 49, 62, 66, 68
QR, 19, 44, 45, 62
qr, 45,46
R, 3,45
regvec3d, 4, 7, 9, 13, 16, 35, 39, 44, 46, 66, 68
rgl,8
rgl.material, 15, 38,68
rowadd, 4, 49, 52, 53
rowCofactors, 3, 5, 14, 17, 31, 50, 52
rowMinors, 3, 5, 14, 17, 31, 51,51
rowmult, 4, 50, 52,53
rowswap, 4, 50, 52, 53
segments3d, 8
showEig, 4, 54
showEqn, 4, 28, 36, 41, 55, 57, 58
Solve, 57
solve, 58
summary.regvec3d (plot.regvec3d), 33
SVD, 4, 20, 59
svd, 59
svdDemo, }6
swp, 4, }6
symMat, }6
text,66
text3d,68
texts3d,68
```

MoorePenrose, 31
mpower, 3, 32
norm, 27
plot, 12
plot.regvec3d, 7, 9, 13, 16, 33, 34, 39, 44, $48,49,66,68$
plotEqn, 4, 35, 56
plotEqn3d, 37, 56
pointOnLine, 4, 7, 9, 13, 16, 35, 38, 44, 49, 66, 68
polygon, 12
powerMethod, 4, 39
print.enhancedMatrix
(gaussianElimination), 20
print.regvec3d (plot.regvec3d), 33
print.trace (buildTmat), 9
printMatEqn, 41
printMatrix, 42
Proj, 3, 7, 9, 13, 16, 35, 39, 43, 49, 62, 66, 68
QR, 19, 44, 45, 62
qr, 45, 46
R, 3, 45
regvec $3 \mathrm{~d}, 4,7,9,13,16,35,39,44,46,66,68$
rgl, 8
rgl.material, 15, 38, 68
rowadd, 4, 49, 52, 53
rowCofactors, 3, 5, 14, 17, 31, 50, 52
rowMinors, 3, 5, 14, 17, 31, 51, 51
rowmult, 4, 50, 52, 53
rowswap, 4, 50, 52, 53
segments3d, 8
showEig, 4, 54
showEqn, 4, 28, 36, 41, 55, 57, 58
Solve, 57
solve, 58
summary. regvec3d (plot.regvec3d), 33
svo, 4, 20, 59
svdDemo, 60
swp, 4, 61
symMat, 62
text, 66
texts3d, 68
therapy, 63
tr, 3, 64
vandermode, 3, 64
vec, 3,65
vectors, $4,7,9,13,16,34,35,39,44,48,49$, 65, 68
vectors3d, 4, 7, 9, 13, 16, 35, 39, 44, 49, 66, 67
workers, 69
xprod, 70

