rjmcmc: Reversible-Jump MCMC Using Post-Processing

Performs reversible-jump Markov chain Monte Carlo (Green, 1995) <doi:10.2307/2337340>, specifically the restriction introduced by Barker & Link (2013) <doi:10.1080/00031305.2013.791644>. By utilising a 'universal parameter' space, RJMCMC is treated as a Gibbs sampling problem. Previously-calculated posterior distributions are used to quickly estimate posterior model probabilities. Jacobian matrices are found using automatic differentiation. For a detailed description of the package, see Gelling, Schofield & Barker (2019) <doi:10.1111/anzs.12263>.

Version: 0.4.5
Depends: madness, R (≥ 3.2.0)
Imports: utils, coda, mvtnorm
Suggests: FSAdata
Published: 2019-07-09
DOI: 10.32614/CRAN.package.rjmcmc
Author: Nick Gelling [aut, cre], Matthew R. Schofield [aut], Richard J. Barker [aut]
Maintainer: Nick Gelling <nickcjgelling at gmail.com>
License: GPL-3
NeedsCompilation: no
Materials: README
CRAN checks: rjmcmc results


Reference manual: rjmcmc.pdf


Package source: rjmcmc_0.4.5.tar.gz
Windows binaries: r-devel: rjmcmc_0.4.5.zip, r-release: rjmcmc_0.4.5.zip, r-oldrel: rjmcmc_0.4.5.zip
macOS binaries: r-release (arm64): rjmcmc_0.4.5.tgz, r-oldrel (arm64): rjmcmc_0.4.5.tgz, r-release (x86_64): rjmcmc_0.4.5.tgz, r-oldrel (x86_64): rjmcmc_0.4.5.tgz
Old sources: rjmcmc archive

Reverse dependencies:

Reverse imports: BayesOrdDesign


Please use the canonical form https://CRAN.R-project.org/package=rjmcmc to link to this page.