topicmodels.etm: Topic Modelling in Embedding Spaces

Find topics in texts which are semantically embedded using techniques like word2vec or Glove. This topic modelling technique models each word with a categorical distribution whose natural parameter is the inner product between a word embedding and an embedding of its assigned topic. The techniques are explained in detail in the paper 'Topic Modeling in Embedding Spaces' by Adji B. Dieng, Francisco J. R. Ruiz, David M. Blei (2019), available at <doi:10.48550/arXiv.1907.04907>.

Version: 0.1.0
Depends: R (≥ 2.10)
Imports: graphics, stats, Matrix, torch (≥ 0.5.0)
Suggests: udpipe (≥ 0.8.4), word2vec, uwot, tinytest, textplot (≥ 0.2.0), ggrepel, ggalt
Published: 2021-11-08
DOI: 10.32614/CRAN.package.topicmodels.etm
Author: Jan Wijffels [aut, cre, cph] (R implementation), BNOSAC [cph] (R implementation), Adji B. Dieng [ctb, cph] (original Python implementation in inst/orig), Francisco J. R. Ruiz [ctb, cph] (original Python implementation in inst/orig), David M. Blei [ctb, cph] (original Python implementation in inst/orig)
Maintainer: Jan Wijffels <jwijffels at>
License: MIT + file LICENSE
NeedsCompilation: no
SystemRequirements: LibTorch (
Materials: README NEWS
CRAN checks: topicmodels.etm results


Reference manual: topicmodels.etm.pdf


Package source: topicmodels.etm_0.1.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): topicmodels.etm_0.1.0.tgz, r-oldrel (arm64): topicmodels.etm_0.1.0.tgz, r-release (x86_64): topicmodels.etm_0.1.0.tgz, r-oldrel (x86_64): topicmodels.etm_0.1.0.tgz


Please use the canonical form to link to this page.