
COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA FOR

STRUCTURAL EQUATION MODELS USING COPULAS

STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

Abstract. This introduction to the R package covsim is a slightly modified

version of Grønneberg, Foldnes & Marcoulides (2022), accepted for publication
in the Journal of Statistical Software. In this version of the paper, references

of code in the online supplementary material should be read as references to

Appendix B on p. 42. When Grønneberg et al. (2022) is assigned a journal
volume, this material will also be available on the website of the Journal of

Statistical Software.

In factor analysis and structural equation modeling non-normal data simu-

lation is traditionally performed by specifying univariate skewness and kurtosis

together with the target covariance matrix. However, this leaves little control
over the univariate distributions and the multivariate copula of the simulated

vector. In this paper we explain how a more flexible simulation method called

vine-to-anything (VITA) may be obtained from copula-based techniques, as
implemented in a new R package, covsim. VITA is based on the concept of

a regular vine, where bivariate copulas are coupled together into a full mul-
tivariate copula. We illustrate how to simulate continuous and ordinal data

for covariance modeling, and how to use the new package discnorm to test

for underlying normality in ordinal data. An introduction to copula and vine
simulation is provided in the appendix.

1. Introduction

Structural equation modeling (SEM) and factor analysis are regularly applied to
data in the psychological, educational, business, behavioral, and medical sciences.
The central component in these methods is the covariance matrix from which the
model parameters are identified. In this article we present software for simulating
from a class of distributions with a fixed covariance matrix, which therefore can
be used in SEM simulation studies. This distributional class is more flexible than
the methods currently in use, and may therefore extend the range of conditions
investigated with simulations.

When the examined data are continuous, the most popular SEM estimation
method used is the normal-theory based maximum likelihood (NTML) method
(Jöreskog, 1967) which is asymptotically efficient when data are normally dis-
tributed. NTML estimation is a special case of a class of moment based estimators
known as minimum discrepancy function estimators (see e.g., Shapiro, 1983), and
is therefore known to be consistent also under non-normality. When using classical
standard errors with NTML, valid inference is attained mainly when the data are
normal. While several standard error and test statistic formulas have been pro-
posed in order to robustify inference with NTML and other minimum discrepancy
estimators under non-normality (e.g., Marcoulides, Foldnes & Grønneberg, 2019;
Satorra & Bentler, 1988; Wu & Lin, 2016), their performance depends heavily on

1

2 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

the distribution and sample size of the data (e.g., Curran, West & Finch, 1996;
Foldnes & Olsson, 2015; Fouladi, 2000; Grønneberg & Foldnes, 2019b). In settings
with ordered-categorical data, least squares estimation based on polychoric corre-
lations is the most prevalent estimation method (Christoffersson, 1977; Muthén,
1984). Polychoric correlations are essentially the correlations among continuous
bivariate normally distributed vectors underlying the observed ordinal data, but
may be heavily biased outside normality (Foldnes & Grønneberg, 2019b,2). Hence,
under both continuous and ordinal data analyses, the normality assumption is a
central starting point for estimation and inference.

Unfortunately, in most empirical research situations data are seldom drawn from
populations in which the normality assumption holds exactly (Cain, Zhang & Yuan,
2017; Micceri, 1989). And while several estimation and inference methods that do
not assume normality have been suggested (for an overview, see Tarka, 2018), it
is in most conditions not feasible to analytical derive results on their performance
as a function of the data generating distribution. Monte Carlo simulation studies
have as a result become essential tools for evaluating the behavior of various as-
pects of SEM techniques, such as parameter and standard error bias, performance
of test statistics, and power calculations, relative to distributional characteristics
(Boomsma, 2013). The external validity of these studies is weakened if the chosen
data generation mechanism does not resemble the real-world distributions encoun-
tered in the relevant field of practice. To be able to model such distributions, we
need simulation methods that can match a given covariance matrix but still offer
distributional flexibility.

The aims of the present paper are twofold. Firstly, to present the R (R Core
Team, 2020) package covsim (Foldnes & Grønneberg, 2020a), which implements
non-normal data simulation methods proposed by Grønneberg & Foldnes (2017)
and Foldnes & Olsson (2016). Both methods generate data with a prescribed covari-
ance matrix. Our emphasis will be on the former method, called vine-to-anything
(VITA), since it offers greater flexibility that we deem particularly useful to SEM
methodologists. For instance, the flexibility of VITA renders it uniquely well-suited
for being employed in simulation studies with ordinal SEM, as further discussed in
Section 6.2.

VITA is a simulation method based on vine copulas. Copulas are multivariate
distributions with uniform marginals, and vine copulas is a special type of copulas.
Since copulas, vines and multivariate simulation theory are not well known to SEM
practitioners and methodologists, the second aim of the paper is to introduce these
topics during our presentation of the VITA method and the covsim package. We also
include a technical appendix with an elementary though mathematically complete
introduction to multivariate simulation theory with vine copulas, as this seems to
be missing from the literature.

We next give an overview of statistical software for drawing data from non-normal
multivariate distributions with a predefined covariance matrix. The classical and
still most frequently used approach is that of Vale & Maurelli (1983), where the
user specifies the univariate skewness and kurtosis. This method is currently the
only option in popular commercial software such as EQS (Bentler, 2006) and LIS-
REL (Jöreskog & Sörbom, 2006), and in the widely used R package lavaan (Rosseel,
2012). Other approaches that also focus on controlling moments have recently

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 3

been proposed. The independent generator approach proposed by Foldnes & Ols-
son (2016) can match pre-specified univariate skewness and kurtosis, and is more
flexible than the Vale-Maurelli method. This method is available in the rIG func-
tion in package covsim, and its use is described in a later section. Recently Qu, Liu
& Zhang (2019) used independent generator variables in a method which controls
multivariate skewness and kurtosis, at the expense of control over univariate skew-
ness and kurtosis. This method is available in package mnonr (Qu & Zhang, 2020).
A method that fully controls the univariate distributions (not only the lower-order
moments) is the NORTA method of Cario & Nelson (1997), which is implemented
in package SimCorMultRes (Touloumis, 2016). The Vale-Maurelli, independent gen-
erator and NORTA approaches have the great benefit of being technically easy
to analyse and implement. For instance, the technical tractability allows the as-
ymptotic covariance matrix of the empirical covariances to be exactly calculated
(Foldnes & Grønneberg, 2017b). The simplicity of the methods also allows for fast
simulation. However, the simplicity and speed of these methods come at a cost:
NORTA always has a normal copula (Cario & Nelson, 1997), while Vale-Maurelli
in most cases has a normal copula (Foldnes & Grønneberg, 2015). This means that
the true multivariate dependence structure does not depart from that of the mul-
tivariate normal distribution. In addition, only NORTA completely controls the
univariate marginals. To the best of our knowledge, besides the approach taken in
the present article, there is only one method that offers some control of the copula
when simulating from distributions with a given covariance matrix. Mair, Satorra
& Bentler (2012) proposed a two-stage data-generation process where a very large
sample is first simulated from a copula combined with marginal specification, whose
distribution we denote by Fpre. Then the inverse of a square root of the sample
covariance matrix from this large sample is computed. To simulate data, in the
second stage a sample of desired size is drawn from Fpre, and multiplied by first
the inverse of the square root matrix from the previous stage and then by a square
root matrix of the target covariance. The two-stage approach guarantees that the
rows are iid, and it follows from construction that the simulated vector has the
correct population covariance matrix. Also, the simulated vector has a non-normal
copula, provided Fpre was chosen to have a non-normal copula. However, both
the margins and the copula are distorted by the post-multiplication of square root
matrices. That is, although Fpre is fully specified in terms of multivariate copula
and univariate distributions, the simulated vector does not inherit this copula nor
the margins and control is lost both in terms of copula and marginal distributions.
Mair et al. (2012) illustrated their code using common multivariate copula families
using Gumbel and Clayton copulas, as implemented in package copula (Hofert, Ko-
jadinovic, Maechler & Yan, 2013). An implementation of this method is available
in package simsem (Pornprasertmanit, Miller, Schoemann & Jorgensen, 2020). The
flexibility of this implementation is presently limited to a rather restricted class of
multivariate copulas, comprising elliptical, Archimedean, extreme-value and some
other copula families available in package copula.

VITA improves upon the approach of Mair et al. (2012) by allowing complete
control of p the marginal distributions, of the bivariate copulas of a chosen set of
p−1 pairs of variables, and of certain conditional bivariate copulas of the remaining
(p − 1)(p − 2)/2 pairs of variables. The increased degree of control and flexibility
of our approach relative to existing methods is made possible by employing the

4 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

powerful multivariate copula-based construction called a regular vine. A primary
aim of the present article is to present and illustrate our approach using the newly
developed covsim package.

The remainder of the article is organized in the following way. First, we ex-
plain the copula in a two-dimensional setting. We then demonstrate a very flexible
copula-based approach to non-normal simulation in the two-dimensional case. An
important advantage of this approach is that the copula class and the exact marginal
distributions of the two-dimensional case may be fully specified by the user. Next,
we develop the full multivariate extension, which still allows for complete control of
the marginal distributions, and considerable flexibility in the dependence structure.
We then detail the implementation of the covsim package, and end the paper with
two additional examples: first we show how to simulate from a non-normal continu-
ous SEM with fixed parameters, and then we show how to simulate data for ordinal
SEM. Example code is provided throughout the paper, and complete replication
code is available in the online supplementary material. The appendix provides
an introduction to implementing the simulations on a computer, and follows the
progression of the paper.

Throughout this article we illustrate the capacity of covsim in the context of sim-
ple structural equation modeling settings. We use only a limited set of non-normal
distributional conditions in each illustration, and we caution that the external va-
lidity of our findings is therefore limited. To enhance the validity a larger range of
distributional and sample size conditions must be included.

2. The bivariate case

We start by considering the bivariate case. Our aim is to introduce the concept
of a copula and how it can be used to simulate non-normal random variables with a
given correlation. In subsequent sections we extend our simulation procedure to the
general multivariate case. For a textbook treatment of copula theory, see Nelsen
(2007). Note that this book, together with most books on copulas, assume that the
reader has a strong mathematical background, including some measure theory, and
that we do not assume such a background in the current presentation. Some useful
introductory papers on copulas which can be read without such a background are
Frees & Valdez (1998); Genest & Favre (2007); Yan et al. (2007).

A copula is a distribution with uniform univariate margins. Copulas are used
to describe the dependency structure between variables, when taking the marginal
distributions out of the equation. There are many classes of copulas, and within
each class there is typically a parameter that controls the strength of dependence.
We start with the normal copula. Let Φ(x) denote the cumulative distribution func-
tion (CDF) of a standard normal distribution, and let Φ2(x, y; ρ) denote the CDF
of the bivariate standard normal distribution with correlation parameter ρ, i.e.,
Φ2(x, y; ρ) = P (Z1 ≤ x, Z2 ≤ y) where Z1, Z2 are bivariate normal and standard-
ized, and have correlation ρ. Then the normal copula with parameter ρ ∈ (−1, 1)
is given by

CN (u1, u2; ρ) = Φ2(Φ−1(u1),Φ−1(u2); ρ).

As an example of a non-normal copula class, consider Clayton copulas, which are
parametrized by the dependence parameter θ ∈ (0,∞):

CCl(u1, u2; θ) = (u−θ1 + u−θ2 − 1)−1/θ.

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 5

Clayton copulas are useful for modeling lower tail dependence, a measure of depen-
dence between two variables in the lower left tail of the joint distribution. Figure 1
depicts random draws of size n = 1000 from each of these copulas. We set ρ = 0.8
for the normal copula and θ = 3.4 for the Clayton copula. In both Figure 1a and
1b we see that the marginal empirical distributions are close to uniform. A notable
difference is the lower tail dependence in Figure 1b which does not appear in Figure
1a.

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
U1

U
2

(a) Normal copula with ρ = 0.8.

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
U1

U
2

(b) Clayton copula with θ = 3.4.

Figure 1. Random samples of size n = 1000 drawn from two
bivariate copulas.

Bivariate copulas are important since they constitute one of two fundamental
building blocks for bivariate distributions. The other building block consists of
the two univariate marginal distributions. A fundamental theorem (Sklar, 1959)
guarantees that any bivariate distribution may be decoupled into a bivariate copula
and the two marginal distributions, and vice versa; given two marginal distributions
F1(x1) and F2(x2) and a copula C(u1, u2; θ), then

(1) F (x1, x2) := C(F1(x1), F2(x2); θ)

is a valid bivariate CDF, whose univariate margins are distributed according to
F1(x1) and F2(x2). For instance, if F1 and F2 are the standard normal distribution,
the bivariate distributions stemming from the normal copula with ρ = 0.8, and from
the Clayton copula with θ = 3.4, will both result in bivariate distributions with
standard normal marginals, and with a Pearson correlation of 0.8. That is, setting
θ = 3.4 yields a Clayton copula such that when combined with standard normal
marginals will yield a distribution with ρ = 0.8. Figure 2 shows random samples
from these two distributions, obtained by applying the standard normal quantile
function to the observations in Figure 1, which will change the marginals of the
simulated data to be standard normal. Figure 2 depicts two very different bivariate
distributions. Although sharing the same standard normal marginal distributions,
and the same correlation coefficient 0.8, it is clear that the distribution in Figure
2b is far from the bivariate normal distribution in Figure 2a.

This illustration hints at the following process for a researcher that wants to sim-
ulate data from a bivariate distribution with pre-specified covariance and univariate
marginals:

(1) Specify marginal distributions F1 and F2 and specify a target covariance.

6 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2

0

2

−2 0 2
Z1

Z
2

(a) Normal distribution with ρ = 0.8.

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2

0

2

−2 0 2
Z1

Z
2

(b) Clayton distribution with θ = 3.4.

Figure 2. Random samples of size n = 1000 drawn from two
bivariate distributions with standard normal marginals and corre-
lation 0.8.

(2) Specify a bivariate copula class C(u1, u2; θ), with dependence parameter θ.
(3) Use a numerical procedure to determine θ0 so that the coupled distribution

C(F1(x1), F2(x2); θ0) has the pre-specified covariance.

For a given set of marginals, and a given copula, the set of attainable covariances
is usually constrained. Then, in step 3 there is no solution θ0. In such a case, the
copula class or the marginal specifications should be adjusted.

The three steps are conducted in the covsim package in R as follows.

R> library("covsim")

R> mnorm <- list(list(distr = "norm"), list(distr = "norm"))

R> sigma.target <- matrix(c(1, 0.8, 0.8, 1), 2)

R> set.seed(1)

R> calibrated.vita <- vita(mnorm, target, family_set = "clayton")

R> summary(calibrated.vita)

R> library("rvinecopulib")

R> cov(rvine(10^5, calibrated.vita))

In the last two lines we verify that the target covariance matrix has been attained,
using the rvine function from package rvinecopulib (Nagler & Vatter, 2019). This
package offers fast simulation from vines.

As indicated above, we may simulate from a distribution of the form C(F1(x1), F2(x2); θ)
by first simulating (U1, U2) from the copula C, and then apply the quantile functions
of the marginals to each coordinate. That is, (F−1

1 (U1), F−1
2 (U2)) has marginals

F1, F2 and copula C, meaning its full distribution equals C(F1(x1), F2(x2); θ). See
the technical appendix for an explanation for why this is so and how to simulate
from a copula.

3. The trivariate case: Introducing vines

In the previous section we studied bivariate copulas, and the calibration of their
dependence parameter so that the coupling of given marginals will meet a target
covariance. There are many classes of bivariate copulas, but few classes of higher-
dimensional copulas. In this section we will circumvent the lack of parametric

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 7

multivariate copula classes by using a statistical construction called a regular vine
(Bedford & Cooke, 2002). Vines allow us to construct multivariate copula dis-
tributions by combining two-dimensional copulas. For the purpose of covariance
modeling and simulation, the procedure detailed here was originally proposed by
Grønneberg & Foldnes (2017).

δ1 δ2 δ3

1 1 1

x1 x2 x3

α β

1 1

0.4 0.4

0.3

1 1 1

1

2

ρ = 0

Figure 3. Linear growth curve population model with correlated
residual errors.

Let us first proceed to the case of three variables. Our goal is to construct
distributions with given marginal univariate distributions for each of the three vari-
ables, and with a given 3× 3 covariance matrix. Imagine a researcher is concerned
with whether non-normal correlated errors in growth curve modeling may affect
the quality of inference for the correlation ρ between the intercept and slope fac-
tors. The default in growth curve modeling is to assume that residual errors are
mutually independent across measurement occasions. However, correlated errors
may be meaningful as they represent carryover effects from previous occasions not
accounted for by the intercept and linear slope latent variable (Grimm & Widaman,
2010; Marcoulides, 2019). The issue of how residual error structures in latent growth
curve modeling should be specified (e.g., as constrained, free, independent, auto-
correlated, homogeneous, or non-homogeneous) is currently of great concern in the
SEM literature, as it is now becoming much more recognized that considerable
bias in the latent variable variance–covariance matrix can arise from the improper
specification of these errors (Dimitrov, 2002; Grimm & Widaman, 2010; Laenen,
Alonso, Molenberghs & Vangeneugden, 2009; Marcoulides, 2019; Van De Schoot,
Sijbrandij, Winter, Depaoli & Vermunt, 2017).

The researcher wants to simulate data with correlated residual errors and sets
up a simple linear growth model, see Figure 3, where the population values are
indicated: There is zero correlation ρ between the slope and the intercept, all
latent variables have unit variance, and the errors δ = (δ1, δ2, δ3)′ are correlated
with covariance matrix

8 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

Σδ =

 1 0.4 0.3
0.4 1 0.4
0.3 0.4 1

 .

The researcher is concerned with non-normality in the error vector δ, and therefore
wants to construct a trivariate non-normal distribution whose covariance is Σδ.

We remark that the illustrations in the present article do not discuss the reasons
behind specific choices of marginal distributions and dependence structure. Such
choices depend on the purpose of the simulation study. Our aim in this and fol-
lowing illustrative analyses is simply to demonstrate how vine constructions work.
However, we note that routines exist to select best-fitting vine structures and bi-
copula families relative to an existing real-world dataset (e.g., function vinecop in
package rvinecopulib). This could be done to increase external validity of simula-
tion studies. For an example of how to construct a VITA distribution based on a
well-known empirical dataset, see Grønneberg & Foldnes (2017, Sec. 3.2). General
papers on the selection and usage of copulas are Embrechts, Lindskog & McNeil
(2001); Genest & Favre (2007); Grønneberg & Hjort (2014); Yan et al. (2007), an
influential paper on vine based modeling is Aas, Czado, Frigessi & Bakken (2009),
and a book with practical issues on vine modeling is Joe & Kurowicka (2011).

First, the researcher considers the three univariate error distributions, and de-
cides that the first error should be standard normally distributed, the second error
should be a scaled chi-squared distribution with one degree of freedom (DF), and
the third error should follow a scaled Student’s t distribution with five DFs. The
scalings are necessary to obtain unit variance in the two latter distributions. Clearly,
it might be questioned whether the case of different error distributions for the same
variable at different measurement occasions is realistic, but since our main purpose
here is to illustrate the flexibility of VITA, we proceed with three different error
distributions.

Even though the marginal distributions in δ have now been specified, there are
still many trivariate distributions with these marginals and with covariance Σδ.
The specification will be complete once the copula of δ is selected, but this must be
done cautiously and in a way that ensures δ has covariance Σδ. Let us denote the
copula as V . The joint distribution of δ will result when we couple together three
marginals using V . That is, the CDF Fδ of δ is given by

Fδ(a, b, c) = V (Φ(a), G1(b), G2(c)),

where G1 and G2 are the CDFs of the scaled chi-square and t distributions, re-
spectively. As in the bivariate case, simulation from the above distribution involves
first simulating (U1, U2, U3) from V , and then applying the quantile functions of
the marginals to each coordinate of this vector. That is, the final simulated vector
will be δ = (Φ−1(U1), G−1

1 (U2), G−1
2 (U3)). To construct the vine V the researcher

decides to couple the uniform marginals U1 and U2 with a Clayton copula, and
U2 and U3 with a Joe copula. The dependence parameters of each of these bivari-
ate copulas is numerically determined as described in the previous section, so that
corr(Φ−1(U1), G−1

2 (U2)) = corr(G−1
2 (U2), G−1

3 (U3)) = 0.4. The hard part is now to
couple U1 with U3 such that corr(δ1, δ3) = corr(Φ−1(U1), G−1

3 (U3)) = 0.3, and to
achieve this we next introduce the concept of a vine.

Vines are convenient graphical tree structure models that can be used to build
up high dimensional distributions from conditional two-dimensional copulas. Vines

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 9

therefore decompose the multivariate copula into a hierarchy of bivariate copulas. A
vine on p variables can be represented as a set of connected trees V = {T1, ..., Tp−1},
where the edges of tree j are the nodes of tree j+1, j = 1, . . . , p−2 and are used to
facilitate the picking out of various distributional characteristics, see Figure 4 for
our current illustration with p = 3. The first tree has the variables as its nodes, and
an edge between two variables means that these two variables are unconditionally
coupled as in the previous section. In our case, we chose at the beginning to couple
U1 with U2 and to couple U2 with U3. This corresponds to the tree at the bottom
of Figure 4. The second tree has the edges of the first tree as its nodes. In our
case the first tree has only two edges: U1, U2 and U2, U3. The second tree must
therefore join U1, U2 and U2, U3. This tree has one single edge, which is denoted
by U1, U3|U2. That is, the second tree specifies the copula between U1 and U3,
conditional on U2. Note that we could have chosen a different tree at the first
level, with edges, say, U1, U2 and U1, U3, which would yield a different distribution.
Also the bivariate copulas chosen for coupling pairs of variables could have been
chosen differently, yielding other types of vine distributions. However, we do not
explore the flexibility of vines in the present paper. We see in Figure 4 that there
are a total of three edges in the vine, and that the edges correspond to the pairwise
correlations among the three variables. This holds also in higher-dimensional vines:
There is an exact correspondence between the edges in the set of trees, and pairs
of variables. So each off-diagonal element in the covariance matrix corresponds to
a unique edge in the vine. The researcher’s goal now is to define the distribution
of U1 and U3. As suggested in Figure 4, this is done by specifying the distribution
of U1 and U3, conditional on U2. The researcher chooses a Frank copula for this
distribution.

In terms of the joint density function f of δ = (δ1, δ2, δ3)′, its general form is:

f(a, b, c) = f1(a)f2(b)f3(c)·c12(F1(a), F2(b))·c13(F1(a), F3(c))·c13|2(F1|2(a|b), F3|2(c|b)),

where f1, f2, f3 are chosen marginal density distributions of δ1, δ2, δ3 respectively,
where c12, c13, c13|2 are the chosen bivariate copulas of (δ1, δ2), (δ1, δ3) and (δ1, δ3)
conditioned on δ2, respectively. Also, F1, F2, F3 are CDFs of δ1, δ2, δ3 respectively,
and F1|2, F3|2 are conditional CDFs of δ1 given δ2, and of δ3 given δ2, respectively.
These CDFs are consequences of the chosen bivariate copulas and marginals. A
full discussion with formulas for these conditional CDFs and of the joint density is
included in the appendix. An advantage of vine distributions, compared to other
multivariate simulation approaches where covariance matrices are specified (e.g,
Qu et al., 2019; Ruscio & Kaczetow, 2008), is the above explicit formula for the
distribution of the simulated vector.

Returning to the illustrative example, we sum up the researcher’s specifications
for the residual error vector δ:

• δ1 follows a standard normal distribution, δ2 follows a scaled chi-square
distribution with one DF, and δ3 follows a scaled t distribution with five
DFs.
• The vine structure is given in Figure 4.
• A Clayton copula density for c12, with dependence parameter calibrated so

that Φ−1(U1) and G−1
2 (U2) have correlation 0.4.

• A Joe copula density for c23, with dependence parameter calibrated so that
G−1

2 (U2) and G−1
3 (U3) have correlation 0.4.

10 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

• A Frank copula density for c13|2, with dependence parameter calibrated so

that Φ−1(U1) and G−1
2 (U3) have correlation 0.3.

δ1 δ2 δ3

1, 2 2, 3

1, 2 2, 3

1, 3 | 2

Figure 4. A three-dimensional regular vine.

To construct multivariate distributions where the marginals and the covariances
are pre-specified, Grønneberg & Foldnes (2017) proposed the use of vines, result-
ing in the VIne-To-Anything (VITA) method. In our illustration, the researcher’s
requests may be fulfilled by constructing a VITA distribution using the covsim
package as follows:

R> sigma.target <- matrix(c(1, 0.4, 0.3, 0.4, 1, 0.4, 0.3, 0.4, 1), 3)

R> margins <- list(list(distr = "norm"), list(distr = "chisq", df = 1),

+ list(distr = "t", df = 5))

R> pcs <- list(list(bicop_dist("clayton"), bicop_dist("joe")),

+ list(bicop_dist("frank")))

R> vine_cop <- vinecop_dist(pcs, structure = dvine_structure(1:3))

R> margin.variances <- c(1, 2, 5/3)

R> pre <- diag(sqrt(margin.variances/diag(sigma.target)))

R> vita.target <- pre %*% sigma.target %*% pre

R> set.seed(1)

R> calibrated.vita <- vita(margins, target.vita, vc = vine_cop, verbose = T)

R> post <- diag(1/diag(pre))

R> vita.sample <- rvine(10^5, calibrated.vita) %*% post

R> round(cov(vita.sample) - sigma.target, 2)

In the last lines of code above, we simulated a n = 105 sample from the calibrated
VITA distribution using the function rvine from the R-package rvinecopulib (Nagler
& Vatter, 2019). The purpose of the last line is to confirm that the covariance matrix
in the simulated sample is close to the target matrix. For the six non-rendundant
elements in the covariance matrix, the mean absolute deviation was 5 · 10−4.

A visualization of n = 1000 randomly drawn error vectors is presented in Figure
5. Note that, expectedly, the first marginal distribution is approximately standard
normal, while the second and third marginal distributions are in accordance with
scaled chi-square and Student’s t distributions.

Now, having constructed a VITA distribution for the residual errors, the re-
searcher may use simulation to assess whether the quality of NTML inference for
ρ, the correlation between the intercept and slope factors, deteriorates under non-
normal residual errors. As a benchmark, the researcher simulates from a fully nor-
mal distribution on the observed variables x1, x2, and x3. For the non-normal case,
the researcher first simulates VITA residual errors, and then combines these with

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 11

Corr:

0.400***

Corr:

0.311***

Corr:

0.372***

δ1 δ2 δ3

δ
1

δ
2

δ
3

−2 0 2 4 0 2 4 6 −2.5 0.0 2.5 5.0

0

30

60

90

0

2

4

6

−2.5

0.0

2.5

5.0

Figure 5. Scatterplots and histograms for a n = 1000 sample
drawn from a three-dimensional VITA distribution.

simulated intercept and slope values, each drawn from standard normal distribu-
tions, to obtain simulated observations on x1, x2 and x3. The researcher replicates
1000 samples of size n = 1000 from both the fully normal distribution and the
distribution with residual errors stemming from VITA.1 The growth model was es-
timated with seven free parameters: Three correlated residual errors; the residual
error variances, which were constrained to be the same at each of the three mea-
surement occasions; the correlation ρ; and the means of the intercept and slope
variables. The model has one DF. As a measure of inference quality for ρ the
researcher decides to calculate the confidence interval coverage rate, at the 95%
confidence level, for ρ = 0, using classical standard errors that assume exact nor-
mality. Under full normality, the coverage rate of 0.94 was close to nominal. With
non-normal error vector, the coverage rate was 0.905. Hence, the researcher found
some support for the claim that non-normality in the error vector may affect the
quality of intercept-slope correlation NTML inference.

3.1. The independent generator approach. The covsim package exports, in addi-
tion to vita, the function rIG. This simulation function is not based on a copula
perspective and does not allow for full specification of the univariate marginal dis-
tributions. Instead it is closer in approach to the method of Vale and Maurelli
(Vale & Maurelli, 1983), where only univariate skewness and kurtosis is prespeci-
fied. However, the independent generator (IG) algorithm (Foldnes & Olsson, 2016)
is more flexible than the Vale and Maurelli method, defining a larger class of non-
normal distributions for each set of skewness and kurtosis values. Although the

1Simulation code is provided in the online supplementary material.

12 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

Corr:

0.402***

Corr:

0.323***

Corr:

0.473***

δ1 δ2 δ3

δ
1

δ
2

δ
3

−2 0 2 −2 0 2 4 6 8 −3 0 3 6

0

25

50

75

−2

0

2

4

6

8

−3

0

3

Figure 6. Scatterplots and histograms for a n = 1000 sample
drawn from a three-dimensional IG distribution.

main focus of the present manuscript is the flexible use of bivariate copulas in sim-
ulating non-normal data with given marginals and covariance matrix, we here for
completeness give a short introduction to the IG algorithm.

The IG transform represents the non-normal vector ξ stochastically as

ξ = AX

where A is a square matrix and X a vector consisting of mutually independent
generator variables with unit variance. The user specifies desired skewness and
kurtosis values in ξ, and the IG algorithm numerically determines the skewness and
kurtosis in each generator variable to match the desired values. The matrix A is
a square root of the specified covariance matrix Σ. In rIG the user may specify a
triangular square or a symmetrical square root matrix, which gives two different
distributions. Also the marginal distributions for X may be freely chosen, further
expanding the distributional class defined by IG. In its current implementation,
rIG uses the Pearson family of distributions (Pearson, 1895). Let us reconsider
the marginal distributions used above. We note that the chi-square distribution
with one DF and the Student’s t distribution with five DFs have skewness

√
8 and

0, respectively, and kurtosis 12 and 6, respectively. In the following code we ask
for an IG distribution that matches the first four moments of the three marginal
distributions considered in the previous section. The scatterplot is given in Figure
6.

R> set.seed(1)

R> ig.sample <- rIG(N = 10^3, sigma.target = sigma.target, reps = 1,

+ skewness = c(0, sqrt(8), 0), excesskurtosis = c(0, 12, 6))

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 13

4. A six-dimensional growth curve illustration

In this section we use the flexibility of VITA to further study the effect of non-
normality in growth curve residual error vectors on normal-theory based inference.
We focus on the chi-square statistic of model fit. We consider a linear growth curve
with scores across six time-points. We assume that the errors δi, i = 1, . . . , 6, have
unit variance, and that they are autocorrelated according to the following banded
structure (i.e., a Toeplitz structure):

Σδ =

1

0.5 1
0.2 0.5 1
0 0.2 0.5 1
0 0 0.2 0.5 1
0 0 0 0.2 0.5 1

We calibrate the following three VITA distributions for the δ vector:

VITA1: δ1, δ2, δ3, δ4, δ5, and δ6 are standard normal, and all 18 bivariate cop-
ulas are of Clayton type

VITA2: δ1 is standard normal, while δ2, δ3, δ4, δ5, and δ6 are chi-square dis-
tributed with 5, 4, 3, 2, and 1 degrees of freedom, respectively. The chi-
square distributions are scaled to have unit variance. All 18 bivariate cop-
ulas are normal.

VITA3: δ1 is standard normal, while δ2, δ3, δ4, δ5, and δ6 are chi-square dis-
tributed with 5, 4, 3, 2, and 1 degrees of freedom, respectively. The chi-
square distributions are scaled to have unit variance. All 18 bivariate cop-
ulas are of type Clayton.

Using the vita function in package covsim the code is as follows:

R> residual.covariance <- toeplitz(1:6)

R> residual.covariance[residual.covariance > 3] <- 0

R> residual.covariance[residual.covariance == 2] <- 0.5

R> residual.covariance[residual.covariance == 3] <- 0.2

R> margins.nonnorm <- list(list(distr = "norm"),

+ list(distr = "chisq", df = 5), list(distr = "chisq", df = 4),

+ list(distr = "chisq", df = 3), list(distr = "chisq", df = 2),

+ list(distr = "chisq", df = 1))

R> margins.norm <- list(list(distr = "norm"), list(distr = "norm"),

+ list(distr = "norm"), list(distr = "norm"),

+ list(distr = "norm"), list(distr = "norm"))

R> margin.variances <- c(1, 10, 8, 6, 4, 2)

R> sigma.target <- diag(sqrt(margin.variances)) %*% residual.covariance %*%

+ diag(sqrt(margin.variances))

R> set.seed(1)

R> vita1 <- vita(margins.norm, residual.covariance, family_set = "clayton")

R> set.seed(1)

R> vita2 <- vita(margins.nonnorm, sigma.target, family_set = "gauss")

R> set.seed(1)

R> vita3 <- vita(margins.nonnorm, sigma.target, family_set = "clayton")

14 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

Data generation first simulates independent random draws from the standard
normal for the intercept and slope variables, and then adds the residual errors sim-
ulated from VITA distributions. A growth model with 15 degrees of freedom, which
correctly specifies the structure for Σδ, is fitted to the data. Our research question is
to what extent non-normality in the errors affects the sampling distribution, and in
particular, the Type I error control of the regular normal-theory chi-square statistic
TNTML. Since VITA1, VITA2, and VITA3 are different distributions, with different
mixes of marginal and copula non-normality, there might also be insights to draw
from their differential effect on the chi-square test. One way of conducting this
research is to use conventional small-sample simulations and to calculate rejection
rates over many replications. Here we choose a different approach. We calculate the
exact asymptotic distribution of TNTML in each distributional condition. This will
also give us asymptotic Type I error rates.2 First, we simulate a very large n = 106

sample from each of the VITA distributions. Then the model is fitted to each
of the three datasets, and we extract the eigenvalues of the matrix UΓ (see, e.g.,
Foldnes & Grønneberg (2017a) for further details). Theory (Box, 1954) dictates
that TNTML is asymptotically distributed as the weighted sum of independent chi-
square distributions, each with one degree of freedom, where the weights are the
eigenvalues of UΓ. This allows us to calculate the density of TNTML under the
three distributional conditions. Under multivariate normality, this density is that
of the nominal chi-square distribution with 15 degrees of freedom, which is used to
calculate asymptotic Type I error control of TNTML. Figure 7 depicts the asymp-
totic sampling distribution of TNTML under four conditions, namely multivariate
normality, and the distributions involving the three VITA error distributions. It is
seen that TNTML becomes inflated as we move from multivariate normality, and as
we progress through the three VITA error distributions. The vertical line represents
the critical value when referring TNTML to its critical value at the α = 0.05 level
of significance. VITA1 has standard normal marginals and a non-normal copula.
In this condition the asymptotic type I error control is 7.3%, quite close to the
nominal level. VITA2 has four non-normal marginals, and a normal copula, and
affects TNTML to a larger extent than VITA1. The asymptotic rejection rate under
VITA2 is 29.4%, which is far above the nominal 5% level. VITA3 introduces more
non-normality compared to VITA2, by having a non-normal copula. The effect on
TNTML is critical, whose asymptotic rejection rate is 50.6% under VITA3 errors.
In sum we see that non-normality in the residual error vector may markedly inflate
the rejection rates of TNTML, but we may speculate that the effect is mild as long
as the univariate marginals are normally distributed.

5. The implementation of VITA in covsim

In this section we briefly explain how the function vita implements the VITA
algorithm. Grønneberg & Foldnes (2017) provided as supplementary material a
VITA implementation using package VineCopula (Schepsmeier, Stoeber, Brech-
mann, Graeler, Nagler & Erhardt, 2018) for constructing and simulating from regu-
lar vines. This package is no longer in active development, and package rvinecopulib
Nagler & Vatter (2019) was instead used in vita. The most important benefits of
rvinecopulib relative to VineCopula for our purposes is a sleeker and more modern

2In the online supplementary material are given code for conventional small-sample simulations
that confirms our upcoming findings.

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 15

0.00

0.02

0.04

0.06

0.08

0 20 40 60
TNTML

D
en

si
ty

Distribution

VITA1

VITA2

VITA3

nominal

Figure 7. The asymptotic density of TNTML under four condi-
tions. nominal=Chi-square distribution with 15 degrees of free-
dom. VITA1, VITA2, and VITA3 denote three kinds of non-
normal residual distributions. Vertical line represents critical value
at α = 0.05.

API and shorter simulation runtimes. In experiments (see supplementary mate-
rial) with a five-dimensional vine, on a computer with 4 CPU cores, simulation
runtimes at a sample size of n = 1000 was shorter with rvinecopulib compared to
VineCopula by a factor of four. Also, as explained below, the initial calibration
of VITA parameters involves a series of large-sample random draws from regular
vines, which means that VITA calibration is computationally demanding. The
root-finding routine provided by Grønneberg & Foldnes (2017) has been improved
in vita, by splitting it into a high-speed routine which identifies an interval for the
root, followed by high-precision root-finding in this interval, based on curve-fitting.
This two-stage root-finding routine is faster than the basic method in Grønneberg
& Foldnes (2017). Combined with faster simulation times in package rvinecopulib,
the calibration time for a five-dimensional vine using vita instead of the original
code provided by Grønneberg & Foldnes (2017) was reduced by a factor of 13.

The main arguments to vita are

• margins. A list that specifies the univariate marginal distributions.
• sigma.target. The target covariance matrix.
• vc. A vine copula structure in the format defined by package rvinecopulib.

That is, a specification of a hierarchy of p−1 trees, and, for each tree node,
a bivariate copula family. If not provided by the user, vita will initialize
vc as follows. The vine structure of vc is specified as the simplest regular
vine, namely the D-vine on p dimensions. See Figures 4 and 10 for the
D-vine with p = 3 and p = 4, respectively. In addition, the bivariate copula
family in each node in the D-vine will be taken as the first element of the
argument family set.
• family set. A vector that specifies which bivariate copula families are to be

calibrated. If vc is provided by the user, and the algorithm can not identify

16 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

a feasible solution for the family dictated by vc, the algorithm instead tries
to calibrate the dependence parameter for the first family in family set. If
not successful, an attempt is made to calibrate the parameter in the second
family, and so forth. If vc is not provided, the algorithm attempts first to
calibrate the dependence parameter in the first member of family set, and
if not succesful, the second member, and so forth.

The above arguments specify a class of VITA distributions, parameterized by
the p(p−1)/2 dependence parameters in the bivariate copulas. The task of vita is
to numerically determine the values of these dependence parameters so that the re-
sulting VITA distribution has the required covariance matrix given by sigma.target.
That is, vita searches for a dependence parameter value θ in each of the copulas,
so that the covariance matrix of the resulting full distribution is sigma.target, up to
numerical precision. This search can be done in the same order as when simulating
from a vine, building our way up the tree, connecting more and more distributions
with pairwise conditional distributions. As shown in Grønneberg & Foldnes (2017),
the correlation of each pair of variables is typically a strictly increasing function
of θ for most single parameter copulas, making the numerical search well behaved.
Unfortunately, there is no simple formula for the correlation matrix of a vine. Worse
still, no simple formula can be derived for pairwise bivariate distributions connected
at higher levels of the vine tree. In the implementation of VITA in vita, we resort
to Monte Carlo simulation to approximate the required correlation.

VITA calibrates each pairwise bivariate distribution and combines them to form
the full vine distribution in a specific order. A formal algorithmic description of
the methodology is given in Grønneberg & Foldnes (2017). We here informally
summarize the main steps of the method, and later describe in technical detail the
new implementation of the root finding procedure that underlies the calibration.

As explained in more detail in the appendix, each pair (i, j), where 1 ≤ i, j ≤ p,
is connected once in the vine. This is also the case in the covariance matrix. Let
(σij) be the target covariance matrix in sigma.target, and let the parameter of the
bivariate copula connecting the (i, j) distribution be parametrized by θij . The first
pairs of bivariate distributions that are calibrated are those connected at the lowest
level of the vine tree. For illustration, we consider the vine given in Figure 4 (p.10).
We see that (1, 2) are connected at the lowest tree. We may therefore simulate
directly from this bivariate distribution. This distribution depends on a parameter
θ12. We may choose this parameter in such a way that the covariance of the resulting
bivariate distribution matches the required covariance given in σ12. This matching
is non-trivial and is described in technical detail below. A similar matching may
be done for all other marginals connected at the lowest level of the vine, which
here is only (2, 3). These calibrations are done independently of each other. Now
the vine in Figure 4 have only two levels, and there is only one bivariate margin
left to be matched, namely (1, 3), which is connected at the topmost level. The
distribution of (1, 3) is derivable from the full vine structure, and the conditional
copula of (1, 3) given 2 is parametrized using a bivariate copula a parameter θ13.
To simulate realizations from (1, 3) we need to know the distributions at the lower
level of the tree, as well as specifying the value of θ13. The distributions of the
lowest level of the tree have already been fixed, and we may, for varying values of
θ13, simulate the full three-dimensional vine distribution, compute the covariance

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 17

of (1, 3), and select the θ13 value that yields a covariance equal to σ13. We have
then calibrated the full three-dimensional vine.

For higher dimensions, this idea has to be iterated several times to identify
all parameters in an order that enable us to always simulate from the required
bivariate variables in the vine. In order to briefly illustrate how to calibrate a
higher dimensional vine, consider the four-dimensional vine in Figure 10 in the
appendix (p.34). Comparing the vine in Figures 4 and 10, we see that the three
dimensional vine in Figure 4 is included within the structure of the vine of Figure
10 as a subset of its connections. That is, the vine in Figure 4 is a sub-vine of the
vine of Figure 10 that comprise the variables (1, 2, 3): The vines are equal, with the
exception that the four-dimensional vine also has to connect marginal 4 with the
remaining variables, which is done using the additional structure given in Figure
10. But to simulate only (1, 2, 3) from the four-dimensional vine in Figure 10, we
only need to know the three-dimensional vine in Figure 4.

To calibrate the four-dimensional vine in Figure 10, we may therefore continue
where we left off when calibrating the three-dimensional vine in Figure 4. After
calibrating the new bivariate distribution connected at the lowest level, namely
(3, 4), the next step is to calibrate all distributions at the second level. Only one
such distribution is left, namely (2, 4). By the same reasoning as earlier, we may
simulate from the sub-vine that enables the simulation of (2, 3, 4): The parameters
of the (2, 3) and (3, 4) distributions have already been fixed. Therefore, the sub-vine
expressing the full distribution of (2, 3, 4) only have one free parameter, namely θ24,
which may be varied to get a covariance between (2, 4) to match up with σ24. As
in the first level of the tree, the matching of the parameters at the second level
of the tree are done independently of each other, and can be done in any order.
However, to calibrate all connections at a given level, all connections at lower levels
have already to be calibrated from before.

The final matching required for the four-dimensional vine is then to work with
the single distribution connected at the third level of the vine, namely the (1, 4)
distribution, so that the (1, 4) marginal has covariance equal to σ14. All parameters
of the vine are now fixed with the exception of θ14, and this parameter may be varied
until the required covariance is induced.

The calibration order of variable pairs in vita is as follows: All copulas at
the lowest level are calibrated, then the next level, and so on up the the highest
level. As mentioned in Grønneberg & Foldnes (2017), other orders are possible,
as exemplified above, but the order is immaterial as long as unique solutions for
reaching the desired covariances exist.

In each calibration step, numerical integration done via Monte Carlo simulation
and a search for the solution of an equation must be performed. We now detail how
this is done in the implementation of vita. Let (Ui, Uj) be distributed according to
the copula of the sub-vine required to simulate the (i, j) distribution as described
above. Due to the order we have traversed the vine, there is always only one
free parameter θij of this distribution that is free, and is used to match up the
required covariance σij . In the following description we omit the i, j subscript from
θ, to reduce the notational burden. As explained in more detail in the appendix,
we apply the corresponding inverse quantile functions according to the entries in
margins to calculate the covariance induced by a given θ: Let us denote by σij(θ)

the covariance between the resulting variables F−1
i (Ui) and F−1

j (Uj). Our aim is

18 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

now to determine θ so that σij(θ) = σij . Unfortunately there are no analytical
expressions available for σij(θ) except in very special cases, but the covariance may
be approximated by simulating a large sample of size n of (Ui, Uj), applying the

quantile functions F−1
i and F−1

j to each simulated variable, and calculating the

resulting sample covariance, which we denote by σ̂ij(θ). Then σ̂ij(θ) will converge
in probability to σij(θ) as n increases. However, with large n, simulating these
samples is time-consuming, so vita is implemented in two stages.

(1) Initial high-speed calibration. In this stage we use the modest sample size
n = 1500 to determine σ̂ij(θ), using function uniroot in the stats package.

That is, we approximate θ by finding the root θ̂n of the discrepancy function

σ̂ij(θ)−σij . We expect θ̂n to be quite close to θ, but it contains random er-
ror, so we repeat this procedure and approximate θ a small number of times
(the argument numrootpoints). This results in a number of root candidates

θ̂1
n, θ̂

2
n, . . . , θ̂

numrootpoints
n , which are independent and identically distributed

random variables. A standard t-based confidence interval for the depen-
dence parameter θ is then constructed from these approximate roots, using
a high level of confidence (as specified by the argument conflevel).

(2) Final high-precision calibration. In this stage, we evaluate the discrepancy
σ̂ij(θ)−σij to a high precision at a small number (as specified by argument
numpoints) of equally spaced points across the confidence interval deter-
mined in the first stage. The approximation is done by simulating from
a very large sample (n is equal to the argument Nmax) in each of these
points. We then fit a second degree polynomial to the discrepancy values
and use uniroot to locate the root of this polynomial, which yields our
final estimate for θ.

If, for any pair of variables, the calibration does not find a solution θ, the algo-
rithm changes the bivariate family to the next entry in family set. If no solution is
found, vita terminates with an error message. This means that there is no VITA
distribution with the given marginals, vine structure and bivariate families that
can attain sigma.target. To proceed, the user could then rerun vita with, e.g., a
different vine structure.

As mentioned in the introduction, traditional approaches to non-normal covari-
ance modeling only specifies the lower-order univariate moments, and do not offer
any control of the multivariate aspects of the simulated vector, with the exception
of covariance matching. As we have demonstrated, the VITA approach is more
flexible. However, the cost of increased flexibility is increased computing time nec-
essary to calibrate the VITA distribution. The default values for arguments Nmax
and numpoints in vita guarantees a highly precise VITA calibration. That is, the
calibrated VITA distribution will have a covariance matrix almost numerically in-
distinguishable from sigma.target. In higher dimensions, this precision comes at
the cost of long calibration running times. Table 1 gives calibration times on a
computer (2.3 GHz 8-Core Intel Core i9) using the default options in vita, with
target correlation among all variable pairs equal to ρ = 0.3, for increasing dimen-
sionality. It is seen that approaching 20 dimensions, calibration time exceeds one
hour, while simulating 1000 samples, each of size n = 1000, requires less than a
minute. So the calibration step, which is only executed once, is time-consuming,
while repeated simulation from the calibrated VITA is relatively fast. Foldnes &

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 19

Grønneberg (2021) calibrated and simulated from VITA distributions in twenty di-
mensions in an extensive simulation design. However, given that the median number
of observed variables in empirical SEM studies is close to 20 (Li, 2016), using vita

for larger models, with say 50 dimensions, will entail days of calibration time with
the default options. In such cases the user may lower the argument Nmax from 106

to 105, thereby reducing calibration time by a factor of 10. For instance, for dimen-
sion 40 calibration was achieved in 4.5 hours using option Nmax=105. Even with
reduced precision, the calibrated VITA distribution has a covariance matrix almost
equal to the target covariance. Among the 780 pair-wise correlations estimated in a
n = 106 sample drawn from the 40 dimensional calibrated VITA distribution with
Nmax=105, 748 were within a 0.005 distance of the target ρ = 0.3, and all were
within a 0.01 of ρ = 0.3.

If high precision is important in an application, a formal test of equality of
covariance matrices should be performed. This may be done by computing as test
statistic the quadratic form of the discrepancies between the sample covariances and
the target covariances, weighted by the inverse of estimated asymptotic covariance
matrix of the covariances (Mair et al., 2012).

Dimension 5 10 15 20 25 30
Calibration (hrs) 0.006 0.065 0.401 1.447 3.675 8.100
Simulation (hrs) 0.001 0.004 0.009 0.015 0.024 0.034

Table 1. Calibration times in hours under the default Nmax=106.
Simulation of 1000 samples, each of size n = 103.

To precisely (Nmax=106) calibrate VITA distributions with 50 or more dimen-
sions, our current implementation will demand unrealistically long running times.
The bottleneck of the calibration algorithm consists of simulating a large sample
(Nmax) from a regular vine. This simulated sample is then used to compute a sin-
gle covariance. If we distribute the large-sample simulation to several computers,
the desired covariance of all the simulated realizations across computers can be
computed based on sums, cross-products and sums of squares from each computer.
Hence, the VITA algorithm may conveniently be distributed across a network of
computers. Such functionality may be included in future versions of covsim.

6. Further examples

We here consider some further applications of VITA. In Section 6.1, we consider
a 20 dimensional SEM example with continuous data. In Section 6.2 we discuss
simulation of ordinal SEMs and show how this can be done with VITA.

6.1. Using VITA to simulate continuous data for SEM. In most SEM simulation
studies the methodologist first specifies a SEM model together with its population
parameter values. Then the study is conducted by drawing random samples from a
distribution whose covariance matrix equals the model-implied covariance matrix.
As an example, consider the SEM whose structural part is depicted in Figure 8.
The model has five factors, and is representative of medium-sized SEM in applied
studies (Li, 2016). Each factor has four indicators, yielding a total of 20 dimensions.
The factor loadings for the indicators were set to 0.8, 0.7, 0.6 and 0.5 within each
factor, and the corresponding residual variances were set to 0.5. The correlation

20 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

ξ1

ξ2

η3

η2

η1

0.3

0.4

0.4

0.1

0.6

0.2

0.1

0.
3

0.
2

0.5
0.5

0.5

0.5

Figure 8. Structural model for a medium-sized SEM. Indicator
variables not depicted.

was set to 0.3 between the two exogeneous factors, each of which had unit variance.
The residual variances for the endogeneous factors were also set to 0.5. Using
the package lavaan we can compute the target covariance matrix implied by these
population parameters as follows.

R> sem.pop <- ’

Ksi1 =~ start(.8) * x1 + start(.7) * x2 + start(.6) * x3 + start(.5) * x4

Ksi2 =~ start(.8) * x5 + start(.7) * x6 + start(.6) * x7 + start(.5) * x8

Eta1 =~ start(.8) * y1 + start(.7) * y2 + start(.6) * y3 + start(.5) * y4

Eta2 =~ start(.8) * y5 + start(.7) * y6 + start(.6) * y7 + start(.5) * y8

Eta3 =~ start(.8) * y9 + start(.7) * y10 + start(.6) * y11 + start(.5) * y12

Eta1 ~ start(.4) * Ksi1 + start(.6) * Ksi2

Eta2 ~ start(.4) * Ksi1 + start(.2) * Ksi2 + start(.3) * Eta1

Eta3 ~ start(.1) * Ksi1 + start(.1) * Ksi2 + start(.2) * Eta1 + start(.5) * Eta2

Ksi1 ~~ start(.3) * Ksi2; Eta1 ~~ start(.5) * Eta1; Eta2 ~~ start(.5) * Eta2

Eta3 ~~ start(.5) * Eta3; x1 ~~ start(.5) * x1; x2 ~~ start(.5) * x2

x3 ~~ start(.5) * x3; x4 ~~ start(.5) * x4; x5 ~~ start(.5) * x5

x6 ~~ start(.5) * x6; x7 ~~ start(.5) * x7; x8 ~~ start(.5) * x8

y1 ~~ start(.5) * y1; y2 ~~ start(.5) * y2; y3 ~~ start(.5) * y3

y4 ~~ start(.5) * y4; y5 ~~ start(.5) * y5; y6 ~~ start(.5) * y6

y7 ~~ start(.5) * y7; y8 ~~ start(.5) * y8; y9 ~~ start(.5) * y9

y10 ~~ start(.5) * y10; y11 ~~ start(.5) * y11; y12 ~~ start(.5) * y12’

R> sigma.target <- lavInspect(sem(sem.pop, data = NULL), "sigma.hat")

Next, we fit a VITA distribution with normal marginals to the target covariance
matrix. This is a variant of a data generating distribution used in the simulation
study of Foldnes & Grønneberg (2021). First, the margins are scaled to match
the target variances. Then, we calibrate a VITA distribution. Note that we do
not specify which family of copulae to use, so the default Clayton copula is used.
Finally, a list of 1000 samples, each of sample size 1000, is drawn from the calibrated
vita distribution.

R> marginsnorm <- lapply(X = sqrt(diag(sigma.target)),

+ function(X) list(distr = "norm", sd = sqrt(X)))

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 21

R> vitadist <- vita(marginsnorm, sigma.target)

R> randomsamples <- replicate(10^3, rvine(10^3, vitadist))

As discussed previously, the calibration step is time-consuming in higher dimen-
sions. Here, with 20 variables, the calibration step required 1.8 hours (again using
a 2.3 GHz 8-Core Intel Core i9 CPU). This step is only performed once. When
completed, random samples can be drawn at a relatively fast rate. Producing 1000
samples each of size 1000 took one minute to complete. Finally, we note that the
calibration step may be performed faster by specifying option Nmax=105 when
calling vita, at the expense of reduced precision in covariance matching.

6.2. Using VITA to simulate ordinal-categorical data for SEM. A major approach
for SEM with ordinal data is to impose a threshold model to the data, which postu-
lates that the categorical data arise from discretization of an underlying continuous
vector which is multivariate normally distributed. Many influential simulation stud-
ies (e.g., Flora & Curran, 2004; Li, 2016; Quiroga, 1994; Rhemtulla, Brosseau-Liard
& Savalei, 2012) have investigated the robustness of ordinal SEM against viola-
tion of non-normality, using the Vale Maurelli approach. However, Grønneberg &
Foldnes (2019a) showed that the Vale Maurelli approach is not suitable for ordinal
data simulation in the context of covariance modeling. We here briefly show how to
simulate ordinal bivariate data by discretizing bivariate VITA distributions. For an
observed ordinal variable, there is no way to identify which underlying univariate
distribution that produced the data, since the thresholds may be transformed to
accommodate all continuous univariate distributions.

As argued in Foldnes & Grønneberg (2019a,2), it is advantageous to keep the
marginals fixed during simulation. Since VITA offers exact control of marginals, it
is uniquely suited for simulation studies with ordinal data for SEM. We will here
set the marginals to standard normal. When simulating fully normal data, both
the marginals and the copula are normal. We will let the copula be non-normal,
but the marginals will be normal.

For illustration, we assume that the underlying correlation in a continuous bi-
variate distribution with standard normal marginals is ρ = 0.5, and we discretize
into three categories using thresholds τ1 = 0 and τ2 = 1. This means that we
consider simulated data of the form

Xi =

1, if ξi ≤ τ1
2, if τ1 < ξi ≤ τ2
3, if ξi > τ2

=

1, if ξi ≤ 0
2, if 0 < ξi ≤ 1
3, if ξi > 1

for i = 1, 2, where (ξ1, ξ2) is a continuous random vector simulated using VITA.
Both ordinal variables have proportions 0.5, 0.34, and 0.16. We inquire whether
the polychoric correlation estimator used in ordinal SEM becomes biased when we
replace the bivariate normal with a Clayton or a Joe copula. So first, we deter-
mine parameters for the latter two copulas such that, when marginals are standard
normal, the Pearson correlation is 0.5.

R> sigma.target <- matrix(c(1, 0.5, 0.5, 1), 2)

R> set.seed(1)

R> vita_clayton <- vita(list(list(distr = "norm"), list(distr = "norm")),

+ sigma.target, family_set = "clayton")

R> set.seed(1)

R> vita_joe <- vita(list(list(distr = "norm"), list(distr = "norm")),

22 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

+ sigma.target, family_set = "joe")

R> clayton.disc <- apply(rvine(10^3, vita_clayton), 2, cut,

+ breaks = c(-Inf, 0, 1, Inf), labels = FALSE)

Contour plots of these calibrated copulas are given in Figure 9.

x1

x 2

 0.02

 0.04

 0.06

 0.08

 0
.1

 0.12

 0.14

 0.16

 0.18

−2 −1 0 1 2

−
2

−
1

0
1

2

(a) Clayton copula.

x1
x 2

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

−2 −1 0 1 2

−
2

−
1

0
1

2

(b) Joe copula.

Figure 9. VITA distributions with standard normal marginals.
The dashed lines represent thresholds τ1 = 0 and τ2 = 1 used for
discretization.

After discretizing the distribution with standard normal marginals and a Clayton
copula shown in Figure 9a and the distribution with standard normal marginals and
a Joe copula in Figure 9b, the resulting population contingency tables are

1 2 3
1 0.334 0.123 0.043
2 0.123 0.146 0.072
3 0.043 0.072 0.044

and

1 2 3
1 0.333 0.146 0.021
2 0.146 0.149 0.047
3 0.021 0.047 0.091

respectively. It is seen that under the Clayton and Joe copula the probabilities that
both ordinal variables take their maximum value are 4.4% and 9.1%, respectively.
Such discrepancies in the bivariate ordinal distribution affects the normal-theory
based polychoric estimator: The population value of the polychoric correlation
under the Clayton and Joe copula is 0.42 and 0.60, respectively. Given that the
true underlying Pearson correlation for both distributions in Figure 9 is 0.5, this
shows that the polychoric correlation may become strongly (downwards or upwards)
biased when underlying normality is violated. In this illustration, the lower tail
dependency in the Clayton copula, combined with the chosen thresholds, results in
strong downward bias. And the upper tail dependency in the Joe copula leads to
strong upward bias.

The sensitivity of the polychoric correlation to underlying non-normality poses
a threat to the popular practice of conducting SEM with ordinal data based on
the polychoric correlation matrix. Even though a proposed SEM model fits well
to the underlying data, it might fit poorly to the polychoric correlation matrix,
since the latter might be biased due to non-normality in the underlying data. The
result might be biased estimates and inflated Type I error rates, and it is therefore

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 23

Underlying distribution Normal Clayton Joe
n = 100 0.068 0.178 0.210
n = 500 0.056 0.608 0.838

Table 2. Rejection rates of bootstrap test for underlying normality.

important to assess whether the ordinal dataset is compatible with the underly-
ing normality assumption. Foldnes & Grønneberg (2019b) proposed a bootstrap
test for this purpose, which is implemented in the R package discnorm (Foldnes &
Grønneberg, 2020b). It is used as follows.

library("discnorm")

bootTest(clayton.disc)

We conducted a small simulation study on the Type I error control and power of
the bootstrap test in the context of the present bivariate illustration. We generated
500 samples of size n = 100 and of size n = 500 and collected the rejection rate of
the bootstrap test for ordinal data stemming from discretization of a normal distri-
bution, the Clayton VITA, and the Joe VITA, using the same set of thresholds as
depicted in Figure 9. The rejection rates are given in Table 2. The bootstrap test
maintains Type I error rates well, but has low power to detect the underlying nor-
mality in both the Clayton and Joe VITA distributions at the smallest sample size.
Expectedly, at the larger sample size n = 500 the power to detect the underlying
non-normality is higher. The non-normality in the Joe VITA is more detectable
than the non-normality in the Clayton VITA at both sample sizes.

7. Conclusion

The VITA approach, implemented in the R package covsim, is very flexible, since
it accommodates user-specified marginal distributions and also offers a great deal
of control over the bivariate dependencies in the simulated vector. This control
is in contrast to more established methodology, like the Vale & Maurelli (1983)
method. In most cases, Vale Maurelli has an exactly normal copula (Foldnes &
Grønneberg, 2015), and does not allow the specification of the resulting distribution
except the covariance matrix, skewness and kurtosis. The increased flexibility of
VITA, however, comes at a cost. VITA, being based on the statistical concept of
a regular vine, is a more complex construction than the Vale Maurelli transform.
Also, VITA calibration is more computationally demanding than is the case for
the Vale Maurelli transform. In the appendix we have given an introduction to
the statistical machinery underlying vines and VITA, such as bivariate copulas
and their use in constructing regular vines. We also give an introduction to how
VITA simulation is performed on a computer. Numerical illustrations of applying
VITA to simulate non-normal residual error structures in growth curve modeling
were presented, demonstrating the effects of different kinds of non-normality on
inference. Also, we have illustrated how VITA may be used to simulate continuous
non-normal data from a SEM, and to simulate ordinal data in a way that properly
violates the underlying normality assumption. For ordinal data, we illustrated a new
bootstrap test, implemented in the R package discnorm, for the central assumption
of underlying normality.

24 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

Appendix A. Technical appendix: How simulation is done on a
computer

A.1. How univariate and bivariate simulations are performed on a computer. Through-
out the paper, we assume that the marginals of the distribution we simulate from are
continuous. In SEM, this is mostly without loss of generality, as ordinal variables
are usually modelled as discretizations of a continuous random vector, see Section
6.2. Note that this also applies to a large class of IRT models, see, e.g., Foldnes &
Grønneberg (2019a); Takane & De Leeuw (1987).

A.1.1. Univariate simulation. We first review a standard method to simulate from
a continuous univariate distribution with cumulative distribution function F1. This
is covered in most standard statistics text books, see, e.g., Rice (2006, Proposition
D, Section 2.3).

We assume further that F1 is strictly increasing, and therefore has an inverse
F−1

1 . Since F1 is a continuous distribution function, it will be continuous and
increasing, but not necessarily strictly increasing (i.e., there may be flat regions),
necessitating the use of more complex arguments, such as those in Chapter 1 of
Shorack & Wellner (2009). We will throughout the paper pedagogically assume
such strict monotonicity, and thereby avoiding such complex arguments.

Recall that the inverse function F−1
1 is defined as the solution to the equation

F1(x) = u with respect to x, and where 0 < u < 1. Clearly, this solution depends
on u, and we therefore denote the solution as a function of u, that is, F−1

1 (u).
Since F−1

1 (u) = x where F1(x) = u we get that F (F−1(u)) = F (x) = u. We may
compute F−1

1 (u) by solving

(2) F1(x)− u = 0

for u. Since F1 is increasing and continuous, with F1(−∞) = 0 and F1(∞) = 1,
eq. (2) has a single solution, which can be found either analytically, or using any
standard root finding procedure.

Now let U be a univariate random variable with the uniform distribution on [0, 1],
denoted by U ∼ U [0, 1]. This means that P (U ≤ x) = xI{0 ≤ x ≤ 1} + I{x > 1}
where I{A} is the indicator function of A which is 1 is A is true, and zero otherwise.
We may then let

X = F−1
1 (U).

The distribution of X is F1. To see this, we start with P (X ≤ x) = P (F−1
1 (U) ≤ x).

Applying F1 on both sides of the inequality is allowed since F1 is increasing. Since
F (F−1

1 (U)) = U , this gives

P (F−1
1 (U) ≤ x) = P (F1(F−1

1 (U)) ≤ F1(x)) = P (U ≤ F1(x))

= F1(x)I{0 ≤ F1(x) ≤ 1}+ I{F1(x) > 1}.

Since F1 is a cumulative distribution function, we have 0 ≤ F1(x) ≤ 1, and therefore
the first indicator function is always one, while the second is always zero. Therefore,
we conclude that P (X ≤ x) = F1(x) as required.

A.1.2. Imposing required marginals on copula-distributions. Let us now consider
the more complex bivariate case, which is not as well-known as the univariate case.
Firstly, let us assume that we are able to simulate from a copula C. That is, suppose

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 25

(U1, U2) ∼ C, meaning

(3) P (U1 ≤ u1, U2 ≤ u2) = C(u1, u2).

Recall that a copula has uniform marginals. This means that U1 ∼ U [0, 1] and
U2 ∼ U [0, 1]. Therefore, following the argument above, we may let X1 = F−1

1 (U1)
and X2 = F−1

2 (U2), and see that the marginal distribution of X1 is F1 and the
marginal distribution of X2 is F2. This means P (Xi ≤ xi) = Fi(xi) for i = 1, 2,
and does not say anything about the dependence between X1 and X2. We now
show that (X1, X2) has the distribution as in eq. (1), i.e., P (X1 ≤ x1, X2 ≤ X2) =
C(F1(x1), F2(x2)). Using the definition of X1, X2 and applying the functions F1

and F2 respectively on the two inequalities, we have

P (X1 ≤ x1, X2 ≤ x2) = P (F−1
1 (U1) ≤ x1, F

−1
2 (U2) ≤ x2)

= P (U1 ≤ F1(x1), U2 ≤ F2(x2))

= C(F1(x1), F2(x2))

where the last equality uses eq. (3).

A.1.3. Bivariate copula simulation. Let us now review how to simulate (U1, U2)
from C. We follow a general method described in Nelsen (2007, Section 2.9), which
uses the so-called multivariate quantile transform. In the univariate case, the central
step in simulating from F1 was to compute the function F−1

1 . In the bivariate case,
the central step is to compute a function h−1

u1
(u2), which will later be shown to

be the inverse of the distribution function of U2 conditional on U1. After having
written code which can evaluate this function, the details of which will be covered
shortly, we may simulate from C as follows: Let U1 ∼ U [0, 1] and V ∼ U [0, 1]
be independent. Then set U2 = h−1

U1
(V). The pair (U1, U2) is then distributed

according to the copula C (Nelsen, 2007, Section 2.9).
We now define h−1

u1
(u2). For each value 0 < u1 < 1, let

hu1
(u2) =

∂

∂u1
C(u1, u2)

Then, for each 0 < u1 < 1, the function h−1
u1

is the (generalized) inverse of hu1
(u2)

as a function of u2. Recall that for a function H(x), its generalized inverse is defined
as H−1(y) = inf{x : H(x) > y}, a definition which agrees with the standard inverse
when H is invertible. As in the univariate case, where it was simpler to work with
the case when F1 was continuous and strictly increasing, we will again assume that
hu1

is continuous and strictly increasing for all u1. We now show that this follows
if C has a density c which is non-zero on (0, 1)2 and continuous in each coordinate.
Both assumptions on c are fulfilled for all popular copula classes, and will therefore
be assumed also in the following. To see that these two assumptions imply that
hu1 is continuous and strictly increasing for any u1, notice that since

C(u1, u2) =

∫ u1

0

∫ u2

0

c(x1, x2) dx1dx2,

we have hu1
(u2) =

∫ u2

0
c(u1, x2) dx2 by the fundamental theorem of calculus. Since

c(u1, u2) > 0, and since the function x2 7→ c(u1, x2) is continuous for a given u1,
the integral is strictly increasing and continuous in u2 and hence hu1(u2) is strictly
increasing and continuous in u2. Further, we have hu1

(0) = 0 and hu1
(1) = 1,

and hu1
: [0, 1] 7→ [0, 1] is therefore a bijection for each u1. That hu1

(0) = 0 and

26 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

hu1
(1) = 1 can be seen from noticing that hu1

(0) = ∂
∂u1

C(u1, 0) = ∂
∂u1

0 = 0 since

C(u1, 0) = P (U1 ≤ u1, U2 ≤ 0) = 0, and that since C(u1, 1) = P (U1 ≤ u1, U2 ≤
1) = P (U1 ≤ u1) = u1 we also have hu1

(1) = ∂
∂u1

C(u1, 1) = ∂
∂u1

u1 = 1.

Finally, we show that (U1, U2) ∼ C. We have not found an elementary pre-
sentation of this result in the literature (see Rüschendorf (2009, Section 3) for
an authoritative account), and include it for completeness and since the following
argument is short, and will be generalized progressively in the following. For com-
pactness, we assume hu1(u2) is invertible with respect to u2 for all 0 < u1 < 1. We
have

P (U1 ≤ u1, U2 ≤ u2) = P (U1 ≤ u1, h
−1
U1

(V) ≤ u2)

(a)
= P (U1 ≤ u1, V ≤ hU1

(u2))
(b)
= EE[I{U1 ≤ u1}I{V ≤ hU1

(u2)}|U1]

(c)
= EI{U1 ≤ u1}E[I{V ≤ hU1

(u2)}|U1]
(d)
= EI{U1 ≤ u1}hU1

(u2)

=

∫ 1

0

I{x1 ≤ u1}hx1(u2) dx1 =

∫ u1

0

hx1(u2) dx1 =

∫ u1

0

∂

∂x1
C(x1, u2) dx1

(e)
= C(u1, u2)− C(0, u2)

(f)
= C(u1, u2)

Explanations: (a) Apply hU1 to both sides of the second inequality. (b) P (A) =
EI{A}. Double expectation. Also, I{A,B} = I{A}I{B}. (c): Use E[H(X)Y |X] =
H(X)E[Y |X]. (d): Since V is independent to U1, we have E[I{V ≤ hU1

(u2)}|U1] =
EV I{V ≤ hU1

(u2)} where the expectation is with respect to V only, and U1 is fixed.
Recalling that for a random variable X with CDF FX we have FX(x) = P (X ≤
x) = EI{X ≤ x} we have that EV I{V ≤ hU1(u2)} = hU1(u2) since V is uniform
on [0, 1], i.e., V has CDF FU (u) = u for 0 ≤ u ≤ 1. (e) Fundamental theorem of
calculus. (f) Since 0 ≤ U1 ≤ 1 and continuous we have C(0, u2) = P (U1 ≤ 0, U2 ≤
u2) = P (U1 = 0, U2 ≤ u2) = 0.

Practically speaking, we may therefore simulate from any copula by computing
h−1
u1

(u2), which requires the computation of a partial derivative and the inversion of
a function. This may be done analytically in some cases, but in general, numerical
approximation is required.

A.1.4. Identifying correlations from a bivariate distribution. We now consider how
we may identify a θ0 such that the distribution F (x1, x2; θ0) =
C(F1(x1), F2(x2); θ0) has a Pearson correlation ρ. The Höffding (1940) formula for
correlation ρ(θ) gives

ρ(θ) = sd(F1)−1 sd(F2)−1

∫ ∞
−∞

∫ ∞
−∞

C(F1(z1), F2(z2); θ)

− F1(z1)F2(z2) dz1dz2,(4)

where sd(F1), sd(F2) are the standard deviations of F1, F2. Most bivariate copula
classes are such that C(u1, u2; θ) is increasing in θ, a property fulfilled by all copulas
catalogued in Section 5.1 of Joe (1997). This implies (Grønneberg & Foldnes, 2017,
Theorem 1) that ρ(θ) is an increasing function. It is therefore easy to solve for θ0

via numerical root finding methods. The function ρ(θ) then has to be evaluated
through numerical integration.

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 27

A.2. How trivariate vine simulations are performed on a computer. We here pro-
vide more technical details on how to simulate from the three dimensional vine dis-
tribution used as an example in the main text. As is generally the case, we only need
to simulate from the vine copula (which by definition has uniform marginals), as the
marginals are easily transformed to any desired marginal distributions in the same
way as explained in the univariate and bivariate case, i.e., by applying the quantile
functions of the marginals to each of the coordinates of the simulated vector from
a copula. When this is done, the resulting distribution has the desired marginals,
and the same copula as before transformation. That is, if C is a d dimensional cop-
ula, meaning C is a d dimensional cumulative distribution function with uniform
marginals, and (U1, U2, . . . , Ud) ∼ C, then X = (F−1

1 (U1), F−1
2 (U2), . . . , F−1

d (Ud))
will have a distribution of the form

F (x1, x2, . . . , xd) = C(F1(x1), F2(xd), . . . , Fd(xd))

meaning X has marginals F1, F2, . . . , Fd and C as its copula.
Let us first consider how to simulate from a three dimensional copula in general.

Constructing multivariate distributions can be difficult, and vines provide a general
construction which is often useful. A useful feature of this class is that some of the
properties of the resulting distribution are well suited for computation, and in spite
of the flexibility and simplicity of constructing vine distributions, simulating from
them is straightforward.

We first consider how to simulate from a general three dimensional copula (U1, U2, U3)′ ∼
C, which does not have to be a vine distribution. We first simulate (U1, U2)
from the bivariate copula C1,2 as described in the bivariate section above. Re-
call that C1,2 can be easily computed from C, since 0 ≤ U3 ≤ 1 implies that
C1,2(u1, u2) = P (U1 ≤ u1, U2 ≤ u2) = P (U1 ≤ u1, U2 ≤ u2, U3 ≤ 1) = C(u1, u2, 1).
We may now simulate U3 from the distribution of (U1, U2, U3) after “conditioning
away” the values of U1, U2. Again we may use the multivariate quantile transform.
We simulate V which is uniform on [0, 1] and independent from previously generated
variables, and then let

U3 = h−1
U1,U2

(V),

where h−1
U1,U2

is the generalized inverse of hU1,U2 , which is the distribution of U3

conditional on (U1, U2). That is,

hu1,u2
(u3) = C3|12(u3|u1, u2).

Conditional distributions are conceptually complex, and will only be covered super-
ficially here. While we will give some more needed technical details for conditional
distributions in the next subsection, we follow common text-book treatments (e.g.,
Rice, 2006), and use the fact that if C has a density c1,2,3, which we will assume,
C3|12 has density given by

c3|12(u3|u1, u2) =
c1,2,3(u1, u2, u3)

c1,2(u1, u2)
,

where

c1,2(u1, u2) =

∫ 1

0

c1,2,3(u1, u2, x3) dx3.

28 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

We then have that

C3|12(u3|u1, u2) =

∫ u3

0

c3|12(u3|u1, u2) dx3 =

∫ u3

0

c1,2,3(u1, u2, x3)

c1,2(u1, u2)
dx3

=

∫ u3

0
c(u1, u2, x3) dx3

c1,2(u1, u2)
.

As in the bivariate case, hu1,u2
(u3) is seen to be invertible if we assume that c is

continuous and non-zero on (0, 1)3, and generalized inverses are not needed when
computing U3. If a simple formula for the copula CDF is available, which we note
is often not the case, we may avoid integration when computing hu1,u2

, since

C3|12(u3|u1, u2) =

∫ u3

0
c(u1, u2, x3) dx3

c1,2(u1, u2)
=

∂2

∂u1∂u2
C1,2,3(u1, u2, u3)

∂2

∂u1∂u2
C1,2,3(u1, u2, 1)

.(5)

When only the joint density of C is available, integration is in general needed for
computing C3|12, and this is achieved by numerical approximations.

Following this recipe gives (U1, U2, U3) ∼ C1,2,3 by a similar argument as in the
bivariate case: Again we assume hu1,u2(u3) is invertible as a function of u3 for all
0 < u1, u2 < 1. We then have

P (U1 ≤ u1, U2 ≤ u2, U3 ≤ u3) = EI{U1 ≤ u1, U2 ≤ u2}I{h−1
U1,U2

(V) ≤ u3}
= EE[I{U1 ≤ u1, U2 ≤ u2}I{V ≤ hU1,U2(u3)}|U1, U2]

= EI{U1 ≤ u1, U2 ≤ u2}E[I{V ≤ hU1,U2
(u3)}|U1, U2]

(a)
= EI{U1 ≤ u1, U2 ≤ u2}EV [I{V ≤ hU1,U2

(u3)}]
(b)
= EI{U1 ≤ u1, U2 ≤ u2}hU1,U2

(u3)

=

∫ u1

0

∫ u2

0

c12(x1, x2)hx1,x2
(u3) dx1dx2

=

∫ u1

0

∫ u2

0

∂2

∂x1∂x2
C1,2,3(x1, x2, u3) dx1dx2

= C1,2,3(u1, u2, u3).

Explanations: (a) V is independent to U1, U2. (b) V is uniform.
Let us now apply this to three dimensional regular vines. The idea behind vines

is described in Joe (1996) and (Joe, 2014, Sections 3.8 and 3.9), and is based on ex-
pressing cumulative distribution functions as mixtures of conditional distributions.
The motivation for its construction will be sketched in the next sub-section, and
we here simply state the distribution for a trivariate copula in terms of its CDF.

The three dimensional vine copula illustrated in Figure 4 has cumulative distri-
bution

(6) C1,2,3(u1, u2, u3) =

∫ u2

0

C1,3;2(C1|2(u1|z2), C3|2(u3|z2)) dz2

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 29

where C1,3;2 is a chosen bivariate copula to bind marginals 1 and 3 together, when
given 2, and where

C1|2(u1, u2) =
∂

∂u2
C1,2(u1, u2) =

∫ u2

0

c1,2(u1, x2) dx2,

C3|2(u3, u2) =
∂

∂u2
C3,2(u3, u2) =

∫ u2

0

c3,2(u3, x2) dx2,

where C1,2 and C3,2 are chosen copulas, directly giving the copula of marginals
1, 2 and 3, 2 respectively. Notice C1,3;2 is a standard bivariate copula, and does
not depend on the value x2 being integrated over in the above display. This is an
important point which will be discussed further in the next sub-section.

There is an important distinction between C1,3|2, which is the conditional distri-
bution of (U1, U3) given U2, and C1,3;2, which as we will discuss later is the copula
of C1,3|2. The objects C1,3|2 and C1,3;2 need not be the same, and while C1,2,3 have
all uniform marginals, the marginals of the conditional distribution C1,3|2 need not
be uniform, which in turn implies that C1,3|2 need not be a copula. We will return
to this issue in the following. In order to further separate the two further, we will
keep the C notation for functions such as C1,3;2 – since these are actually copulas,
but rather write F1,3|2 to refer to the conditional distribution of (U1, U3) given U2.
That is, we will from now on write F1,3|2 = C1,3|2.

Consider now how to simulate from this vine. Since (U1, U2) is simulated from
C1,2 which is directly specified in the lowest tree, its simulation procedure follows
from the already described bivariate case. We now need to compute F3|12. Recalling
eq. (5), we have

F3|12(u3|u1, u2) =
∂2

∂u1∂u2
C1,2,3(u1, u2, u3)

c12(u1, u2)

=
∂2

∂u1∂u2

∫ u2

0
C1,3;2(C1|2(u1|z2), C3|2(u3|z2)) dz2

c12(u1, u2)

=
∂
∂u1

C1,3;2(C1|2(u1|u2), C3|2(u3|u2))

c12(u1, u2)
.

A notable feature is that this expression only depends on bivariate distributions,
which are usually computationally well-behaved.

A.3. More details on the vine construction in the trivariate case. We here provide
a sketch of the vine construction of Joe (1996). We are unaware of an elementary
presentation of this material in the literature, and presentations such as those in
Bedford & Cooke (2002); Joe (1996, 2014) require considerable technical training
to read. We therefore include an elementary presentation of this material here,
restricted to the trivariate case.

Using operations similar to the derivation on the validity of the general trivariate
simulation method, we see that for any trivariate continuous copula C, we have for

30 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

variables (U1, U2, U3) ∼ C that

C(u1, u2, u3)

= P (U1 ≤ u1, U2 ≤ u2, U3 ≤ u3)

= EI{U1 ≤ u1, U2 ≤ u2, U3 ≤ u3}
= EI{U2 ≤ u2}I{U1 ≤ u1, U3 ≤ u3}
= EE[I{U2 ≤ u2}I{U1 ≤ u1, U3 ≤ u3}|U2]

= EI{U2 ≤ u2}E[I{U1 ≤ u1, U3 ≤ u3}|U2]

= EI{U2 ≤ u2}P (U1 ≤ u1, U3 ≤ u3|U2)

=

∫ 1

0

I{x2 ≤ u2}P (U1 ≤ u1, U3 ≤ u3|U2 = x2) dx2

=

∫ u2

0

P (U1 ≤ u1, U3 ≤ u3|U2 = x2) dx2.

This calculation provides an expansion of the full distribution of (U1, U2, U3) in
terms of the conditional distribution of (U1, U3) given U2. This conditional bivari-
ate distribution F1,3|2(u1, u3|x2) = P (U1 ≤ u1, U3 ≤ u3|U2 = x2) has marginals
F1|2(u1|x3) and F3|2(u3|x2), which can be derived using properties of conditional
distributions. A non-rigorous heuristic argument for the formula for F1|2(u1|x2) is
that

F1|2(u1|x2) = P (U1 ≤ u1|U2 = x2)

= lim
h→0

P (U1 ≤ u1, x2 ≤ U2 ≤ x2 + h)

P (x2 ≤ U2 ≤ x2 + h)

= lim
h→0

C1,2(u1, u2 + h)− C1,2(u1, u2)

x2 + h− x2

= lim
h→0

C1,2(u1, u2 + h)− C1,2(u1, u2)

h

=
∂

∂u2
C1,2(u1, u2),

using the uniformity of U2. Similarly, F3|2(u3|x2) = ∂
∂u2

C3,2(u3, u2). A formal
argument justifying the formulas for F1|2 and F3|2 requires the general and rather
complex mathematical framework of conditional probability, as developed by Kol-
mogorov, see Kallenberg (2002). A nice feature flowing from our focus on simulation
is that an alternative justification for the formula for conditional distributions is
provided by its successful application in simulation.

Sklar’s theorem applied for each given x2 value to the conditional distribution
F1,3|2(u1, u3|x2) = P (U1 ≤ u1, U3 ≤ u3|U2 = x2) shows that there is a class of
copulas C13;2(u1, u3;x2) varying with x2, which is such that

F1,3|2(u1, u3|x2) = C13;2(F1|2(u1|x2), F3|2(u3|x2);x2).

Using the formulas we identified for F1|2(u1|x2), F3|2(u3|x2) and recalling that we
started with an expansion for C(u1, u2, u3), we have shown that

(7) C(u1, u2, u3) =

∫ u2

0

C13;2

(
∂

∂u2
C1,2(u1, u2),

∂

∂u2
C3,2(u3, u2);x2

)
dx2.

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 31

which holds in general. This expression can also be used to construct multivariate
distributions from bivariate distributions: Based on bivariate copulas C1,2 and C3,2

we may compute ∂
∂u2

C1,2(u1, u2), ∂
∂u2

C3,2(u3, u2), and they may be combined using

a family of copulas C13;2(u1, u3;x2) for every x2. For each x2, the Sklar theorem
implies that

C13;2

(
∂

∂u2
C1,2(u1, u2),

∂

∂u2
C3,2(u3, u2);x2

)
is a proper distribution. However, the family of copulas C13;2(u1, u3;x2) has to be
linked together via their x2 dependence in such that the resulting C in eq. (7) is a
proper CDF. This may be challenging, and does not have a simple solution.

The vine copula construction assumes that the family C13;2(u1, u3;x2) is constant
in x2, i.e., does not depend on x2. This is known as the simplifying assumption
(Joe, 2014). We therefore write

(8) C13;2(u1, u3;x2) = C13;2(u1, u3),

and see that we re-gain the vine CDF of eq. (6). Since C13;2(u1, u3) does not vary
with x2, the combination from eq. (6) always results in a valid CDF, as may be seen
as follows. We may consider the algorithm for simulating from C1,2,3. After having
simulated from (U1, U2) using previously described bivariate techniques, we define
U3 = h−1

U1,U2
(V) from an independent V ∼ U [0, 1]. Clearly, U3 is a random variable,

and by the above argument, the joint distribution of (U1, U2, U3) is precisely C1,2,3

from eq. (6), and hence C1,2,3 is indeed a valid distribution function since it is the
CDF of a random vector. By eq. (7) the constructed distribution has C13;2 as the
copula of the conditional distribution of (U1, U3) given U2.

A.4. The density of a four-dimensional vine. In the main text, we gave the the
density of the three dimensional vine in Figure 4 without a complete technical
description. We here rectify this by deriving the density of the more general four-
dimensional vine as depicted in Figure 10, and sketch how to form such densities
in general. How to simulate from this four dimensional vine will be the topic of
the next section. Our discussion of this four dimensional example ought to be
sufficient to prepare the reader to understand general descriptions of simulation
in e.g., Dissmann, Brechmann, Czado & Kurowicka (2013); Joe (2014), as well as
fully understanding the vine based VITA simulation methodology of Grønneberg
& Foldnes (2017).

The copula density of a vine is found by multiplying all copulas that are chosen
as edge copulas. These copulas are evaluated at rather specific points, which will be
discussed in the following. The edge copulas are the copulas of bivariate conditional
distributions from the resulting full copula, with conditioning set indicated by the
edge names. For example, the top-most edge connects (U1, U4) and conditions on
(U2, U3), and represents the copula of F1,4|2,3. Its contribution to the full density
therefore includes a multiplicative factor c1,4;2,4, where the use of a semi-colon
indicates that this is the copula of a conditional distribution. As explained in
the previous section, we write all conditional distributions of c such as the actual
conditional distribution (here, a density) of (U1, U4) conditional on (U2, U3) using
the notation f1,4|2,3 for the density and F1,3|2,3 for the CDF.

Conditional marginals are the key to the general description of writing down the
density of a vine copula based on its vine, such as Figure 10, as they are included
in the multiplicative contribution from each edge. For any edge on the vine, the

32 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

edge may be denoted by (i, j|v) where i, j are the marginals connected by this edge,
and v may contain several indices (or none, as is the case at the lowest tree) which
are conditioned on. For example, the top-most tree in Figure 10 contains only one
edge, where i = 1, j = 4 and v = {2, 3}. In contrast, the second tree in Figure 10
contains two edges. For the left-most edge, we have i = 1, j = 3 and v = {2}. For
the right-most edge, we have i = 2, j = 4 and v = {3}. For the lowest tree, we do
not condition on any indices, and so v is always empty. Going from left to right,
the first edge has i = 1, j = 2, the next edge has i = 2, j = 3, and the final edge
has i = 3, j = 4.

The multiplicative contribution of every edge i, j|v is ci,j|v(Fi|v(ui|uv), Fj|v(uj |uv)),
where uv = (uk : k ∈ v), and where Fi|v(ui|uv) is the conditional cumulative dis-
tribution of Ui given {Uk : k ∈ v}.

When v is empty, Fi|v(ui|uv) is the actual cumulative distribution of Ui, which
is uniform since c is a copula. In these cases, we have Fi|v(ui|uv) = ui. Therefore,
the contributions of the lowest tree is simply c1,2(u1, u2)c2,3(u2, u3)c3,4(u3, u4).

Combining this description for the vine in Figure 10, we see that

c1,2,3,4(u1, u2, u3, u4) =c1,2(u1, u2)c2,3(u2, u3)c3,4(u3, u4)

c1,3;2(F1|2(u1|u2), F3|2(u3|u2))

c2,4;3(F2|3(u2|u3), F4|3(u4|u3))

c1,4;2,3(F1|2,3(u1|u3, u3), F4|2,3(u4|u2, u3))

Now each of the bivariate copulas, i.e., each ci,j;v are chosen by us, and therefore
does not require further calculation to be evaluated. In contrast, the conditional
marginal distributions have to be computed, and we now explain how this is done.
We note that for general regular vines, there is a simple recursive method to calcu-
late the required conditional densities, see Section 2.4 of Dissmann et al. (2013).

For the lowest tree, the marginals are uniform, and we do not need to deal with
them. For the second tree, use

Fi|j(ui|uj) =
∂

∂uj
Ci,j(ui, uj)

as discussed above. For the third, and here highest tree, we need to compute F1|2,3
and F4|2,3. Since we assume the vine copula has a density, F1|2,3 is the cumulative
distribution function of the density

(9) f1|23(u1|u2, u3) =
c1,2,3(u1, u2, u3)

c2,3(u2, u3)
.

Now, (U1, U2, U3) is also generated from a vine, and this vine can be found by
removing everything that has to do with the other variables. Here, this sub-vine
results in exactly the three dimensional vine we used in earlier examples, see Figure
4. Therefore, we know that the joint distribution of (U1, U2, U3) has joint density

c1,2,3(u1, u2, u3) = c1,2(u1, u2)c2,3(u2, u3)c1,3;2(F1|2(u1|u2), F3|2(u3|u2)).

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 33

Inserting this into eq. (9) gives

f1|23(u1|u2, u3) =
c1,2,3(u1, u2, u3)

c2,3(u2, u3)

= c1,2(u1, u2)c1,3;2(F1|2(u1|u2), F3|2(u3|u2))

= c1,2(u1, u2)c1,3;2

(
∂

∂u2
C1,2(u1, u2),

∂

∂u2
C2,3(u2, u3)

)
Recalling that we wish to identify not the density f1|23 but instead the cumulative
distribution function F1|23, we integrate with respect to u1. Now for u1 < 0 or
u1 > 1 we have c1,2(u1, u2) = 0, and therefore we start integrating at 0, and get,
for u1 ≤ 1, that

F1|23(u1|u2, u3) =

∫ u1

0

c1,2(x1, u2)c1,3;2

(
∂

∂u2
C1,2(x1, u2),

∂

∂u2
C2,3(u2, u3)

)
dx1.

Using the substitution

y =
∂

∂u2
C1,2(x1, u2),

which has derivative

d

dx1
y =

∂2

∂x1∂u2
C1,2(x1, u2) = c1,2(x1, u2),

integration with substitution gives

F1|23(u1|u2, u3)(10)

=

∫ y(u1)

0

c1,3;2

(
y,

∂

∂u2
C2,3(u2, u3)

)
dy

=

∫ y(u1)

0

∂2

∂u1∂u2
C1,3;2

(
y,

∂

∂u2
C2,3(u2, u3)

)
dy

= D2C1,3;2 (y(u1), D2C2,3(u2, u3))

= D2C1,3;2 (D2C1,2(u1, u2), D2C2,3(u2, u3)) .

where we, to avoid notational ambiguity, use the notationDiH(x1, x2) = (∂/∂xi)H(x1, x2).
By a similar argument, we identify F4|23. We have that

f4|23(u4|u2, u3) =
c2,3,4(u2, u3, u4)

c2,3(u2, u3)

where the density of the sub-vine (U2, U3, U4) is deduced by the previously described
general technique, giving

c2,3,4(u2, u3, u4) = c2,3(u2, u3)c3,4(u3, u4)c2,4;3(F2|3(u2|u3), F4|3(u4|u3))

and therefore

f4|23(u4|u2, u3) = c3,4(u3, u4)c2,4;3(D2C2,3(u2, u3), D1C3,4(u3, u4)).

It then follows that

(11) F4|2,3(u4|u2, u3) = D1C2,4;3(D2C2,3(u2, u3), D1C3,4(u3, u4)).

Combining the above derivations gives a complete expression for the density of
the vine in Figure 10. A notable feature is that numerical integration is avoided,
at least when the densities and cumulative distribution functions of the bivariate
copulas chosen by the user can be evaluated without numerical integration, which

34 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

is usually the case for commonly used bivariate copulas. In cases where numerical
integration is required, only bivariate numerical integration is needed, which is
considerably less complex than general high dimensional integration.

1 2 3 4

1, 2 2, 3 3, 4

1, 3 | 2 2, 4 | 3

1, 2 2, 3 3, 4

1, 3 | 2 2, 4 | 3

1, 4 | 2, 3

Figure 10. A four-dimensional regular vine.

A.5. How to simulate from a vine. Since the three-dimensional case considered
earlier is too simple to easily see the general pattern of how to simulate from a
general multivariate regular vine, we here consider the four-dimensional vine of
Figure 10. The four dimensional case is sufficiently complex for the general case to
be within reach after having studied it.

A.5.1. Simulation from a general p dimensional copula. We start by providing a
general algorithm for simulating from an arbitrary p dimensional copula. This
method, while general, will in high dimensions often be numerically infeasible, as
there are no closed form expressions for the quantities required for applying the
algorithm and numerical approximations have to be employed. In contrast, we
will see that simulating from vines are computationally simpler to simulate from,
mainly since simulation in most cases does not require high dimensional numerical
integration. Vine simulation, illustrated via a four dimensional example, will be
explained in the next section.

The general simulation method we now present extends the bivariate and trivari-
ate examples given above, and continues to use the multivariate quantile transfor-
mation. For p variables this transform takes the following form (Rüschendorf, 2009,
Section 3). We want to simulate from a p dimensional copula CDF C. We simulate
V1, V2, . . . , Vp which are independent and uniform on [0, 1]. Then we let U1 = V1

(the marginals are already uniform), and recursively define

Uj = F−1
j|1,2,...,j−1(Vj |U1, U2, . . . , Uj−1)

where F−1
j|1,2,...,j−1 is the generalized inverse of the conditional distribution function

Fj|1,2,...,j−1(uj |u1, u2, . . . , uj−1).

For simplicity, we will assume that C has a density. Let C1,2,...,j denote the distribu-
tion of (U1, U2, . . . , Uj), given by C1,2,...,j(u1, u2, . . . , uj) = C(u1, u2, . . . , uj , 1, 1, . . . , 1),
and let c1,2,...,j denote its density. For simplicity, we assume that the density c1,2,...,j
is strictly positive for all inner points in the unit cube [0, 1]j . Recall that the

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 35

density of a subset of the variables, such as the density c1,2,...,j can be found by
c1,2,...,j(u1, u2, . . . , uj) = ∂jC(u1, u2, . . . , uj , 1, 1, . . . , 1)/(∂u1 · · · ∂uj). We have

Fj|1,2,...,j−1(uj |u1, u2, . . . , uj−1)

=

∫ uj

0

c1,2,...,j(u1, . . . , xj)

c1,2,...,j−1(u1, . . . , uj−1)
dxj =

∫ uj

0
c1,2,...,j(u1, . . . , xj) dxj

c1,2,...,j−1(u1, . . . , uj−1)

=
∂j−1

∂u1∂u2 · · · ∂uj−1
C1,2,...,j(u1, u2, . . . , uj) (c1,2,...,j−1(u1, . . . , uj−1))

−1

Notice that if, say, only the density c of C is known, the computation of Fj|1,2,...,j−1

requires numerical integration routines in order to approximate the integral
∫ uj

0
c1,2,...,j(u1, . . . , xj) dxj .

The bivariate and trivariate simulation methods also follow the above pattern,
and we have shown earlier that they work as intended. We may therefore conclude
that the general method is valid using a proof by induction: Supposing this works
for generating (U1, U2, . . . , Uj−1), we prove that it also works for (U1, U2, . . . , Uj).
By the induction hypothesis, (U1, U2, . . . , Uj−1) is already generated as required.
Then we generate

Uj = h−1
U1,U2,...,Uj−1

(Vj)

where h−1
u1,u2,...,uj−1

(uj) is the (generalized) inverse function of Fj|1,2,...,j−1(uj |u1, u2, . . . , uj−1).
Again we restrict attention to the cases where h is in invertible in the regular sense.
We have

P (U1 ≤ u1, . . . , Uj−1 ≤ uj−1, Uj ≤ uj)
= E

(
I{U1 ≤ u1, . . . , Uj−1 ≤ uj−1}E[I{h−1

U1,U2,...,Uj−1
(Vj) ≤ uj}|U1, . . . , Uj−1]

)
= E

(
I{U1 ≤ u1, . . . , Uj−1 ≤ uj−1}E[I{Vj ≤ hU1,U2,...,Uj−1(uj)}|U1, . . . , Uj−1]

)
= EI{U1 ≤ u1, . . . , Uj−1 ≤ uj−1}hU1,U2,...,Uj−1

(uj)

= EI{U1 ≤ u1, . . . , Uj−1 ≤ uj−1}F1,...,j−1(uj |U1, U2, . . . , Uj−1)

=

∫ u1

0

· · ·
∫ uj−1

0

c1,...,j−1(x1, . . . , xj−1)F1,...,j−1(uj |x1, x2, . . . , xj−1) dx1 · · · dxj−1

=

∫ u1

0

· · ·
∫ uj−1

0

∂j−1

∂u1∂u2 · · · ∂uj−1
C1,2,...,j(x1, x2, . . . , xj−1, uj) dx1 · · · dxj−1

= C1,2,...,j(u1, u2, . . . , uj).

as required.

A.5.2. Simulating from a four-dimensional vine. Let us now see how to apply this
general technique to the four dimensional vine copula distribution represented in
Figure 10. Again, simulation can be performed without needing numerical inte-
gration. The general simulation approach from the multivariate quantile transform
always simulate from Fj|1,2,...,j−1 with j starting at 1 and increasing up to p. This
will always work, but for vines, we may simulate directly from the bivariate con-
ditional distributions specified in the vine. Simulating from a bivariate conditional
distribution will amount to simulate from two conditional distributions that are
connected via bivariate copulas. This will in total lead to the same steps as the
multivariate quantile transform, but has the advantage of having computations that
are simpler to follow, as we follow the structure of the vine. A general simulation
algorithm for regular vines is given in Algorithm 2.2 of Dissmann et al. (2013).

36 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

The main insight we need is that we have direct knowledge of certain conditional
distributions from how the vine distribution is specified. We have easy access to
the following conditional (and unconditional) distributions

F1,4|2,3,

F1,3|2, F2,4|3,

F1,2, F2,3, F3,4.

These distributions are all bivariate, and, as we have seen from constructing the
joint density of (U1, U2, U3, U4), can be joined to produce the full joint distribution
of (U1, U2, U3, U4).

We already know how to simulate from bivariate distributions. Let us see how
this can be extended to simulating from bivariate conditional distributions.

Suppose therefore, that we have simulated (U2, U3) in such a way that it has
the required bivariate distribution, i.e., it has the cumulative distribution function
C2,3(u2, u3) = C(1, u2, u3, 1). We may do this directly using previously described
techniques, since the copula and marginals of U2, U3 are known and directly speci-
fied.

To simulate the remaining coordinates U1, U4 we start by simulating from the
conditional distribution of U1, U4 when conditioning on U2, U3, whose conditional
CDF is denoted by F1,4|2,3. By the simplifying assumption, the copula C1,4;2,3(u1, u4;u2, u3)
of F1,4|2,3 does not depend on u2, u3, and we therefore write C1,4;2,3(u1, u4;u2, u3) =
C1,4;2,3(u1, u4). Due to the simplifying assumption, C1,4;2,3 is further a bivariate
copula that we have chosen, which connects U1, U4 when conditioning on U2, U3.
This implies that

F1,4|2,3(u1, u3|u2, u3) = C1,4;2,3(F1|2,3(u1|u2, u3), F4|2,3(u4|u2, u3))

How should we simulate from F1,4|2,3? We will show that if u2 and u3 are fixed
to the already simulated U2 and U3 respectively, we may treat F1,4|2,3 as if it is
a standard (non-conditional) distribution, and use already described techniques
to simulate from this bivariate distribution. The resulting variables will be valid
simulations of the remaining U1, U4.

Since F1,4|2,3 is a bivariate distribution with non-uniform marginals, we will as
before split this simulation into two steps. Firstly, we simulate W1,W4 from its
copula, which is C1,4;2,3. By the simplifying assumption, this copula is a stan-
dard bivariate copula which does not depend on variables simulated earlier. We
will then transform W1,W4 using univariate quantile transforms so that they have
distributions F1|2,3 and F4|2,3 respectively.

Let us first simulate W1,W4 from the bivariate copula C1,4;2,3. How this is done
has been explained earlier: We simulate independent V1, V4 from U [0, 1]. Then we
set W4 = V4 and

W1 = h
(1,4;2,3)
W4

(V1)

where

h(1,4;2,3)
w4

(v1) = D1C1,4;2,3(v1, w4).

Again note that due to the simplifying assumption, this step does not depend on
the already simulated U2, U3.

We next transform W1,W4 so that they are F1|2,3 and F3|2,3 distributed respec-
tively. An important point here is that this is where dependence from U2 and U3

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 37

is introduced. We again use the univariate quantile transform and set

U1 = F−1
1|2,3(W1|U2, U3), U4 = F−1

4|2,3(W4|U2, U3)

where F1|2,3 is given in eq. (10) (p.33) and F4|2,3 is given in eq. (11) (p.33), con-
sidering the already simulated U2, U3 as fixed. It is not immediately apparent that
U1, U4 have uniform marginals. This can be shown directly, but we will now show
the more general fact that (U1, U2, U3, U4) ∼ C, and since all marginals in C are
uniform, this also implies that U1, U4 have uniform marginals.

Let us for completeness (and since we do not know an elementary reference for
this fact) show the formal validity of this simulation method. That is, let the
variables generated in this fashion be denoted U1, U2, U3, U4. We will show that the
joint CDF of these variables is C. Again, all inverse functions are assumed to be
traditional inverse functions. Since (W1,W4) ∼ C1,4;2,3 is independent to (U2, U3)
we have

P (U1 ≤ u1, U2 ≤ u2, U3 ≤ u3, U4 ≤ u4)

=EI{U2 ≤ u2, U3 ≤ u3}E[I{F−1
1|2,3(W1|U2, U3) ≤ u1, F

−1
4|2,3(W4|U2, U3) ≤ u4}|(U2, U3)]

=EI{U2 ≤ u2, U3 ≤ u3}E[I{W1 ≤ F1|2,3(u1|U2, U3),W4 ≤ F4|2,3(u4|U2, U3)}|(U2, U3)]

(a)
= EI{U2 ≤ u2, U3 ≤ u3}EW1,W2

[I{W1 ≤ F1|2,3(u1|U2, U3),W4 ≤ F4|2,3(u4|U2, U3)}]
=EI{U2 ≤ u2, U3 ≤ u3}PW1,W2

(
W1 ≤ F1|2,3(u1|U2, U3),W4 ≤ F4|2,3(u4|U2, U3)

)
(b)
=EI{U2 ≤ u2, U3 ≤ u3}C1,4;2,3(F1|2,3(u1|U2, U3), F4|2,3(u4|U2, U3))

=

∫ u2

0

∫ u3

0

c2,3(x2, x3)C1,4;2,3(F1|2,3(u1|x2, x3), F4|2,3(u4|x2, x3)) dx2dx3

Explanations: (a) Use that (W1,W4) is independent to (U2, U3). EW1,W2
and

PW1,W2
means that we integrate only overW1,W2. (b) Use that (W1,W4) ∼ C1,4;2,3.

Since

C1,4;2,3(F1|2,3(u1|x2, x3), F4|2,3(u4|x2, x3)) = F1,4|2,3(u1, u4|x2, x3)

where F1,4|2,3 is the conditional distribution of (U1, U4) conditional on (U2, U3), we
have that

C1,4;2,3(F1|2,3(u1|x2, x3), F4|2,3(u4|x2, x3)) =

∫ u1

0

∫ u4

0

c1,4|2,3(x1, x4|x2, x3) dx1x4

=

∫ u1

0

∫ u4

0

c1,2,3,4(x1, x2, x3, x4)

c2,3(x2, x3)
dx1x4.

Therefore,

P (U1 ≤ u1, U2 ≤ u2, U3 ≤ u3, U4 ≤ u4)

=

∫ u2

0

∫ u3

0

c2,3(x2, x3)C1,4;2,3(F1|2,3(u1|x2, x3), F4|2,3(u4|x2, x3)) dx2x3

=

∫ u2

0

∫ u3

0

c2,3(x2, x3)

∫ u1

0

∫ u4

0

c1,2,3,4(x1, x2, x3, x4)

c2,3(x2, x3)
dx1x4dx2x3

=

∫ u1

0

∫ u2

0

∫ u3

0

∫ u4

0

c1,2,3,4(x1, x2, x3, x4)dx1dx2dx3dx4

= C(u1, u2, u3, u4),

38 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

showing the validity of the simulation.

References

Aas, K., Czado, C., Frigessi, A. & Bakken, H. (2009). Pair-copula constructions of
multiple dependence. Insurance: Mathematics and economics 44, 182–198.

Bedford, T. & Cooke, R. M. (2002). Vines–a new graphical model for dependent
random variables. The Annals of Statistics 30, 1031–1068.

Bentler, P. (2006). Eqs 6 structural equations program manual.
Boomsma, A. (2013). Reporting monte carlo studies in structural equation modeling.

Structural Equation Modeling: A Multidisciplinary Journal 20, 518–540.
Box, G. E. P. (1954). Some theorems on quadratic forms applied in the study of analysis

of variance problems, i. effect of inequality of variance in the one-way classification.
The annals of mathematical statistics 25, 290–302.

Cain, M. K., Zhang, Z. & Yuan, K.-H. (2017). Univariate and multivariate skewness
and kurtosis for measuring nonnormality: Prevalence, influence and estimation.
Behavior research methods 49, 1716–1735.

Cario, M. C. & Nelson, B. L. (1997). Modeling and generating random vectors with ar-
bitrary marginal distributions and correlation matrix. Tech. rep., Department of In-
dustrial Engineering and Management Sciences, Northwestern University, Evanston,
Illinois.

Christoffersson, A. (1977). Two-step weighted least squares factor analysis of di-
chotomized variables. Psychometrika 42, 433–438.

Curran, P. J., West, S. G. & Finch, J. F. (1996). The robustness of test statistics to
nonnormality and specification error in confirmatory factor analysis. Psychological
Methods 1, 16–29.

Dimitrov, D. M. (2002). Reliability: Arguments for multiple perspectives and potential
problems with generalization across studies. Educational and Psychological Mea-
surement 62, 783–801.

Dissmann, J., Brechmann, E. C., Czado, C. & Kurowicka, D. (2013). Selecting and
estimating regular vine copulae and application to financial returns. Computational
Statistics & Data Analysis 59, 52–69.

Embrechts, P., Lindskog, F. & McNeil, A. (2001). Modelling dependence with cop-
ulas. Rapport technique, Département de mathématiques, Institut Fédéral de Tech-
nologie de Zurich, Zurich 14.

Flora, D. B. & Curran, P. J. (2004). An empirical evaluation of alternative methods of
estimation for confirmatory factor analysis with ordinal data. Psychological methods
9, 466–491.

Foldnes, N. & Grønneberg, S. (2020a). covsim: Simulate from Distributions with
Given Covariance Matrix and Marginal Information. R package version 0.1.0.

Foldnes, N. & Grønneberg, S. (2020b). discnorm: Test for Discretized Normality in
Ordinal Data. R package version 0.1.0.

Foldnes, N. & Grønneberg, S. (2015). How general is the Vale–Maurelli simulation
approach? Psychometrika 80, 1066–1083.

Foldnes, N. & Grønneberg, S. (2017a). Approximating test statistics using eigenvalue
block averaging. Structural Equation Modeling: A Multidisciplinary Journal , 1–14.

Foldnes, N. & Grønneberg, S. (2017b). The asymptotic covariance matrix and its use
in simulation studies. Structural Equation Modeling: A Multidisciplinary Journal ,
1–16.

Foldnes, N. & Grønneberg, S. (2019a). On identification and non-normal simulation
in ordinal covariance and item response models. Psychometrika 84, 1000–1017.

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 39

Foldnes, N. & Grønneberg, S. (2019b). Pernicious polychorics: The impact and detec-
tion of underlying non-normality. Structural Equation Modeling: A Multidisciplinary
Journal , 1–19.

Foldnes, N. & Grønneberg, S. (2021). The sensitivity of structural equation modeling
with ordinal data to underlying non-normality and observed distributional forms.
Psychological Methods .

Foldnes, N. & Olsson, U. H. (2015). Correcting too much or too little? The performance
of three chi-square corrections. Multivariate behavioral research 50, 533–543.

Foldnes, N. & Olsson, U. H. (2016). A simple simulation technique for nonnormal data
with prespecified skewness, kurtosis, and covariance matrix. Multivariate behavioral
research 51, 207–219.

Fouladi, R. (2000). Performance of modified test statistics in covariance and correla-
tion structure analysis under conditions of multivariate nonnormality. Structural
Equation Modeling: A Multidisciplinary Journal 7, 356–410.

Frees, E. W. & Valdez, E. A. (1998). Understanding relationships using copulas. North
American actuarial journal 2, 1–25.

Genest, C. & Favre, A.-C. (2007). Everything you always wanted to know about copula
modeling but were afraid to ask. Journal of hydrologic engineering 12, 347–368.

Grimm, K. J. & Widaman, K. F. (2010). Residual structures in latent growth curve
modeling. Structural Equation Modeling: A Multidisciplinary Journal 17, 424–442.

Grønneberg, S. & Foldnes, N. (2017). Covariance model simulation using regular
vines. Psychometrika 82, 1035–1051.

Grønneberg, S. & Foldnes, N. (2019a). A problem with discretizing Vale-Maurelli in
simulation studies. Psychometrika 84, 554–561.

Grønneberg, S. & Foldnes, N. (2019b). Testing model fit by bootstrap selection.
Structural Equation Modeling: A Multidisciplinary Journal 26, 182–190.

Grønneberg, S., Foldnes, N. & Marcoulides, K. M. (2022). covsim: An R pack-
age for simulating non-normal data for structural equation models using copulas.
Journal of Statistical Software Forthcoming.

Grønneberg, S. & Hjort, N. L. (2014). The copula information criteria. Scandinavian
Journal of Statistics 41, 436–459.

Hofert, M., Kojadinovic, I., Maechler, M. & Yan, J. (2013). copula: Multivariate
Dependence with Copulas. R package version 0.999-7.

Höffding, W. (1940). Masstabinvariante korrelationstheorie. Schriften des Mathematis-
chen Instituts und Instituts fur Angewandte Mathematik der Universitat Berlin 5,
181–233.

Joe, H. (1996). Families of m-variate distributions with given margins and m (m-1)/2
bivariate dependence parameters. Lecture Notes-Monograph Series , 120–141.

Joe, H. (1997). Multivariate models and multivariate dependence concepts, vol. 73. Chap-
man & Hall/CRC.

Joe, H. (2014). Dependence modeling with copulas. CRC Press.
Joe, H. & Kurowicka, D. (2011). Dependence modeling: vine copula handbook. World

Scientific.
Jöreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis.

Psychometrika 32, 443–482.
Jöreskog, K. & Sörbom, D. (2006). Lisrel version 8.8. lincolnwood, il: Scientific software

international.
Kallenberg, O. (2002). Foundations of modern probability. Springer-Verlag, 2nd ed.
Laenen, A., Alonso, A., Molenberghs, G. & Vangeneugden, T. (2009). Reliability

of a longitudinal sequence of scale ratings. Psychometrika 74, 49.
Li, C.-H. (2016). The performance of ml, dwls, and uls estimation with robust corrections

in structural equation models with ordinal variables. Psychological methods 21, 369.

40 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

Mair, P., Satorra, A. & Bentler, P. M. (2012). Generating Nonnormal Multivariate
Data Using Copulas: Applications to SEM. Multivariate Behavioral Research 47,
547–565.

Marcoulides, K. M. (2019). Reliability estimation in longitudinal studies using latent
growth curve modeling. Measurement: Interdisciplinary Research and Perspectives
17, 67–77.

Marcoulides, K. M., Foldnes, N. & Grønneberg, S. (2019). Assessing model fit in
structural equation modeling using appropriate test statistics. Structural Equation
Modeling: A Multidisciplinary Journal , 1–11.

Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures.
Psychological bulletin 105, 156.

Muthén, B. (1984). A general structural equation model with dichotomous, ordered
categorical, and continuous latent variable indicators. Psychometrika 49, 115–132.

Nagler, T. & Vatter, T. (2019). rvinecopulib: High Performance Algorithms for Vine
Copula Modeling. R package version 0.5.1.1.0.

Nelsen, R. B. (2007). An introduction to copulas. Springer-Verlag.
Pearson, K. (1895). Contributions to the mathematical theory of evolution. ii. skew

variation in homogeneous material. Philosophical Transactions of the Royal Society
of London. A , 343–414.

Pornprasertmanit, S., Miller, P., Schoemann, A. & Jorgensen, T. D. (2020).
simsem: SIMulated Structural Equation Modeling. R package version 0.5-15.

Qu, W., Liu, H. & Zhang, Z. (2019). A method of generating multivariate non-normal
random numbers with desired multivariate skewness and kurtosis. Behavior research
methods , 1–8.

Qu, W. & Zhang, Z. (2020). mnonr: A Generator of Multivariate Non-Normal Random
Numbers. R package version 1.0.0.

Quiroga, A. M. (1994). Studies of the polychoric correlation and other correlation mea-
sures for ordinal variables. Ph.D. thesis, Uppsala University.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Rhemtulla, M., Brosseau-Liard, P. É. & Savalei, V. (2012). When can categorical
variables be treated as continuous? a comparison of robust continuous and categor-
ical SEM estimation methods under suboptimal conditions. Psychological methods
17, 354.

Rice, J. A. (2006). Mathematical statistics and data analysis. Cengage Learning.
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of

Statistical Software 48, 1–36.
Rüschendorf, L. (2009). On the distributional transform, Sklar’s theorem, and the

empirical copula process. Journal of Statistical Planning and Inference 139, 3921–
3927.

Ruscio, J. & Kaczetow, W. (2008). Simulating multivariate nonnormal data using an
iterative algorithm. Multivariate Behavioral Research 43, 355–381.

Satorra, A. & Bentler, P. (1988). Scaling corrections for statistics in covariance
structure analysis (UCLA statistics series 2). Los Angeles: University of California
at Los Angeles, Department of Psychology .

Schepsmeier, U., Stoeber, J., Brechmann, E. C., Graeler, B., Nagler, T. &
Erhardt, T. (2018). VineCopula: Statistical Inference of Vine Copulas. R package
version 2.1.8.

Shapiro, A. (1983). Asymptotic distribution theory in the analysis of covariance struc-
tures. South African Statistical Journal 17, 33–81.

Shorack, G. R. & Wellner, J. A. (2009). Empirical processes with applications to
statistics, vol. 59. Philadelphia, PA: Society for Industrial and Applied Mathematics
(SIAM). Originally published in 1986 by John Wiley & Sons Inc., New York.

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 41

Sklar, M. (1959). Fonctions de repartition a n dimensions et leurs marges. Université
Paris 8.

Takane, Y. & De Leeuw, J. (1987). On the relationship between item response theory
and factor analysis of discretized variables. Psychometrika 52, 393–408.

Tarka, P. (2018). An overview of structural equation modeling: its beginnings, historical
development, usefulness and controversies in the social sciences. Quality & quantity
52, 313–354.

Touloumis, A. (2016). Simulating correlated binary and multinomial responses under
marginal model specification: The simcormultres package. The R Journal 8, 79–91.

Vale, C. D. & Maurelli, V. A. (1983). Simulating multivariate nonnormal distributions.
Psychometrika 48, 465–471.

Van De Schoot, R., Sijbrandij, M., Winter, S. D., Depaoli, S. & Vermunt, J. K.
(2017). The grolts-checklist: guidelines for reporting on latent trajectory studies.
Structural Equation Modeling: A Multidisciplinary Journal 24, 451–467.

Wu, H. & Lin, J. (2016). A scaled F distribution as an approximation to the distribution
of test statistics in covariance structure analysis. Structural Equation Modeling: A
Multidisciplinary Journal 23, 409–421.

Yan, J. et al. (2007). Enjoy the joy of copulas: with a package copula. Journal of
Statistical Software 21, 1–21.

42 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

Appendix B. Supplementary material: Complete R-code for examples

Journal of Statistical Software

##

covsim: An R package for simulating non-normal data for Structural

↪→ Equation Models Using Copulas

S. Gr?nneberg, N. Foldnes, K. Marcoulides

##

August 2021

library("MASS")

library("lavaan")

library("copula")

library("rvinecopulib")

library("covsim")

library("discnorm")

library("ggExtra")

library("GGally")

library("psych")

library("VineCopula")

---- Figure 1 and 2----

set.seed(1234)

n=1000

#Figs 1a and 2a

tmp <- rCopula(n, claytonCopula(param=3.4))

p <- ggplot(data.frame(x=tmp[, 1], y=tmp[, 2]), aes(x,y))+

geom_point()+xlab(expr(U[1]))+ylab(expr(U[2]))

ggExtra::ggMarginal(p, type="histogram", bins=15)

tmp <- qnorm(tmp)# add N(0,1) marginals

p <- ggplot(data.frame(x=tmp[, 1], y=tmp[, 2]), aes(x,y))+

geom_point()+xlab(expr(Z[1]))+ylab(expr(Z[2]))

ggExtra::ggMarginal(p, type="histogram", bins=15)

#Figs 1b and 2b

set.seed(1234)

n=1000

tmp = rCopula(n, normalCopula(param=0.8))# 14.1: corr 0.8 with chi-ssquare

↪→ marginals

p <- ggplot(data.frame(x=tmp[, 1], y=tmp[, 2]), aes(x,y))+

geom_point()+xlab(expr(U[1]))+ylab(expr(U[2]))

ggExtra::ggMarginal(p, type="histogram", bins=15)

tmp <- qnorm(tmp)# add N(0,1) marginals

p <- ggplot(data.frame(x=tmp[, 1], y=tmp[, 2]), aes(x,y))+

geom_point()+xlab(expr(Z[1]))+ylab(expr(Z[2]))

ggExtra::ggMarginal(p, type="histogram", bins=15)

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 43

--- VITA calibration for the clayton copula parameter 3.4 used above ---

↪→ ##

mnorm <- list(list(distr="norm"),list(distr="norm"))

sigma.target <- matrix(c(1,0.8,0.8,1),2)

set.seed(1)

calibrated.vita <- vita(mnorm, sigma.target, family_set="clayton")

summary(calibrated.vita)

#simulate from vita and test accuracy

library(rvinecopulib)

cov(rvine(10^5, calibrated.vita))

--- Fig 5: VITA calibration in the 3-dimensional growth curve

↪→ illustration --- ##

sigma.target <- matrix(c(1,0.4,0.3, 0.4,1,0.4,0.3,0.4,1),3)

margins <- list(list(distr="norm"),

list(distr="chisq", df=1),

list(distr="t", df=5))

pcs <- list(list(bicop_dist("clayton"), bicop_dist("joe")), list(bicop_dist

↪→ ("frank")))

vine_cop<- vinecop_dist(pcs, structure=dvine_structure(1:3))

#vita vector has these marginal variances:

margin.variances <- c(1,2,5/3)

#the covariance matrix to be attained by vita must be scaled, therefore

pre <- diag(sqrt(margin.variances/diag(sigma.target)))

vita.target <- pre %*% sigma.target %*% pre

set.seed(1)

calibrated.vita<- vita(margins, vita.target, vc=vine_cop, verbose=T)

the vita vector must be post-multiplied to have unit variances

post <- diag(1/diag(pre))

vita.sample <- rvine(10^5, calibrated.vita)%*%post

round(cov(vita.sample)-sigma.target,3)# approximately equal

set.seed(1234)

GGally::ggpairs(data.frame(rvine(10^3, calibrated.vita)%*%post),

diag=list(continuous="barDiag"),

columnLabels = c("delta[1]", "delta[2]","delta[3]"),

labeller = "label_parsed")

Fig 6 IG

--- Subsection 3.1 on independent generator approach

set.seed(1234)

ig.sample<-rIG(N=10^3,sigma.target=sigma.target, reps=1,

skewness=c(0,sqrt(8),0), excesskurtosis =c(0, 12, 6))

GGally::ggpairs(data.frame(ig.sample[[1]]),

diag=list(continuous="barDiag"),

columnLabels = c("delta[1]", "delta[2]","delta[3]"),

44 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

labeller = "label_parsed")

simulation for growth model

growth.mod <- "

i =~ 1*t1 + 1*t2 + 1*t3

s =~ 0*t1 + 1*t2 + 2*t3

i~~1*i; s~~1*s; i~~start(0)*s;

t1~~t2+t3;

t2~~t3;

t1~~c*t1; t2~~c*t2; t3~~c*t3;

"

set.seed(1)

n <- 1000; reps =1000

par <- 9; parvalue <- 0

sim.df <- replicate(reps, {

errors <- data.frame(MASS::mvrnorm(n, mu=rep(0,3), Sigma=sigma.target))

i <- rnorm(n); s <- rnorm(n)

t1 <- i+errors[,1]

t2 <- i+s+errors[, 2]

t3 <- i+2*s+errors[,3]

f <- sem(growth.mod, data.frame(t1,t2,t3))

cover.norm <- (parameterestimates(f)[par, "ci.lower"]- parvalue)*

(parameterestimates(f)[par, "ci.upper"]- parvalue) < 0

errors <- data.frame(rvine(n, calibrated.vita)%*% post)

i <- rnorm(n); s <- rnorm(n)

t1 <- i+errors[,1]

t2 <- i+s+errors[, 2]

t3 <- i+2*s+errors[,3]

f <- sem(growth.mod, data.frame(t1,t2,t3))

cover.vita <- (parameterestimates(f)[par, "ci.lower"]- parvalue)*

(parameterestimates(f)[par, "ci.upper"]- parvalue) <0

c(cover.norm, cover.vita)

})

sim.df <- data.frame(t(sim.df))

colMeans(sim.df, na.rm=T)

--- Fig 7: VITA calibration in the 6-dimensional growth curve

↪→ illustration --- ##

residual.covariance <- toeplitz(1:6)

residual.covariance[residual.covariance > 3] <-0

residual.covariance[residual.covariance == 2] <- 0.5

residual.covariance[residual.covariance == 3] <- 0.2

margins.nonnorm <- list(list(distr="norm"), list(distr="chisq", df=5),

list(distr="chisq", df=4), list(distr="chisq", df=3),

list(distr="chisq", df=2), list(distr="chisq", df=1))

margins.norm <- list(list(distr="norm"), list(distr="norm"),

list(distr="norm"), list(distr="norm"),

list(distr="norm"), list(distr="norm"))

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 45

margin.variances <- c(1, 10, 8, 6, 4, 2)

sigma.target <- diag(sqrt(margin.variances))%*% residual.covariance%*%

diag(sqrt(margin.variances))

#calibration

set.seed(1)

vita1 <- vita(margins.norm, residual.covariance, family_set="clayton")

set.seed(1)

vita2 <- vita(margins.nonnorm, sigma.target, family_set="gauss")

set.seed(1)

vita3 <- vita(margins.nonnorm, sigma.target, family_set="clayton")

post multiplication matrix

pre <- diag(sqrt(margin.variances/diag(residual.covariance)))

post <- diag(1/diag(pre))

#approximately equal at N=10^5

round(cov(rvine(10^5, vita1))-residual.covariance,2)

round(cov(rvine(10^5, vita2)%*%post)-residual.covariance,2)

round(cov(rvine(10^5, vita3)%*%post)-residual.covariance,2)

DATA GENERATOR

get_data <- function(n, cv){

residuals <- rvine(n, cv, cores=parallel::detectCores())

if(cv$margins[[6]]$distr != "norm")

residuals <- residuals %*% post

i <- rnorm(n); s <- rnorm(n)

t1 <- i + residuals[,1]

t2 <- i+s+ residuals[,2]

t3 <- i+2*s+ residuals[,3]

t4 <- i+3*s+ residuals[,4]

t5 <- i+4*s+ residuals[,5]

t6 <- i+5*s+ residuals[,6]

data.frame(t1=t1, t2=t2, t3=t3, t4=t4, t5=t5, t6=t6)

}

growth.model.toeplitz <- "

i =~ 1*t1 + 1*t2 + 1*t3 + 1*t4 + 1*t5 + 1*t6

s =~ 0*t1 + 1*t2 + 2*t3 + 3*t4 + 4*t5 + 5*t6

i~~start(0)*s;

t1~~b*t2+c*t3; t2~~b*t3+c*t4;

t3~~b*t4+c*t5; t4~~b*t5+c*t6;

t5~~b*t6

t1~~a*t1;t2~~a*t2; t3~~a*t3; t4~~a*t4; t5~~a*t5; t6~~a*t6;

"

ASYMPTOTIC POWER

set.seed(1)

big <- get_data(10^6, vita1)

f <- sem(growth.model.toeplitz, big, estimator="MLM")

eigs1 <- Re(eigen(lavInspect(f, "UGamma"))$values)

library(CompQuadForm)

46 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

imhof(qchisq(0.95, 15), eigs1[1:15])$Qq# RR= 7.3%

set.seed(1)

big <- get_data(10^6, vita2)

f <- sem(growth.model.toeplitz, big, estimator="MLM")

eigs2 <- Re(eigen(lavInspect(f, "UGamma"))$values)

imhof(qchisq(0.95, 15), eigs2[1:15])$Qq# RR= 29.4%

set.seed(1)

big <- get_data(10^6, vita3)

f <- sem(growth.model.toeplitz, big, estimator="MLM")

eigs3 <- Re(eigen(lavInspect(f, "UGamma"))$values)

imhof(qchisq(0.95, 15), eigs3[1:15])$Qq# RR= 50.6%

#produce graphs

get_density <- function(egs,x){

CDF.T <- NULL

for (i in x) {

CDF.T <- c(CDF.T, 1-imhof(i, egs)$Qq)

}

dens.val <- NULL

for (i in 2:length(x)) {

dens.val <- c(dens.val, CDF.T[i]- CDF.T[i-1])

}

dens.val <- dens.val/(x[2]-x[1])

}

Tvalues <- seq(0, 60, length.out = 500); x <- Tvalues[-1]

my.df <- data.frame(x=Tvalues[-1],

VITA1 = get_density(eigs1, Tvalues),

VITA2 = get_density(eigs2, Tvalues),

VITA3 = get_density(eigs3, Tvalues),

nominal = dchisq(x, df=15))

m <- reshape2::melt(my.df, id.vars="x");m$Distribution <- m$variable

ggplot(m, aes(x, value, color=Distribution, linetype=Distribution))+

↪→ geom_line()+

geom_vline(xintercept=qchisq(0.95, df=15))+

xlab(expr("T"["NTML"]))+ylab("Density")+

theme(legend.position = c(0.8,.6))

##MODERATE SAMPLE SIZE, n=500 SIMULATIONS, confirm the asymptotics

set.seed(1)

f1 <- replicate(1000, {sem(growth.model.toeplitz, data=get_data(500, vita1))

↪→ })

f2 <- replicate(1000, {sem(growth.model.toeplitz, data=get_data(500, vita2))

↪→ })

f3 <- replicate(1000, {sem(growth.model.toeplitz, data=get_data(500, vita3))

↪→ })

#Test of fit

pval.df <- data.frame(p1=sapply(f1, function(f) fitmeasures(f, "pvalue")),

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 47

p2=sapply(f2, function(f) fitmeasures(f, "pvalue")),

p3=sapply(f3, function(f) fitmeasures(f, "pvalue")))

colMeans(pval.df <0.05)

--- SECTION 5 ---

--- running times of original code from 2017 vs vita() based on

↪→ rvinecopulib --- ###

####

Auxiliary functions needed for original VITA implementation in Gronneberg

↪→ and Foldnes (2017)

#####

index.par <- function(A) {

a <- A[1]

b <- A[2]

d <- dim(Matrix)[1]

index.i <- NULL

index.j <- NULL

for(i in(1:d)) {

if(Matrix[i,i] %in% c(a,b)) {

ind <- Matrix[,i] %in% c(a,b)

#cat("i = ", i, " result: ", ind, "\n")

if (sum(ind) == 2) {

index.i <- which(ind[-i] == TRUE)+1

index.j <- i

print(c(index.i, index.j))

}

}

}

return(c(index.i,index.j))

}

parameter.valid = function (family, par.value1, par.value2){#check if

↪→ parameter value is valid

if ((family == 1 || family == 2) &&

abs(par.value1) >= 1)

return(FALSE)

if (family == 2 && par.value2 <= 2)

return(FALSE)

if ((family == 3 || family == 13) &&

par.value1 <= 0)

return(FALSE)

if ((family == 4 || family == 14) &&

par.value1 < 1)

return(FALSE)

if ((family == 6 || family == 16) &&

par.value1 <= 1)

return(FALSE)

if (family == 5 && par.value1 == 0)

48 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

return(FALSE)

if ((family == 7 || family == 17) &&

par.value1 <= 0)

return(FALSE)

if ((family == 7 || family == 17) &&

par.value2 < 1)

return(FALSE)

if ((family == 8 || family == 18) &&

par.value1 <= 0)

return(FALSE)

if ((family == 8 || family == 18) &&

par.value2 < 1)

return(FALSE)

if ((family == 9 || family == 19) &&

par.value1 < 1)

return(FALSE)

if ((family == 9 || family == 19) &&

par.value2 <= 0)

return(FALSE)

if ((family == 10 || family == 20) &&

par.value1 < 1)

return(FALSE)

if ((family == 10 || family == 20) &&

(par.value2 <= 0 || par.value2 > 1))

return(FALSE)

if ((family == 23 || family == 33) &&

par.value1 >= 0)

return(FALSE)

if ((family == 24 || family == 34) &&

par.value1 > -1)

return(FALSE)

if ((family == 26 || family == 36) &&

par.value1 >= -1)

return(FALSE)

if ((family == 27 || family == 37) &&

par.value1 >= 0)

return(FALSE)

if ((family == 27 || family == 37) &&

par.value2 > -1)

return(FALSE)

if ((family == 28 || family == 38) &&

par.value1 >= 0)

return(FALSE)

if ((family == 28 || family == 38) &&

par.value2 > -1)

return(FALSE)

if ((family == 29 || family == 39) &&

par.value1 > -1)

return(FALSE)

if ((family == 29 || family == 39) &&

par.value2 >= 0)

return(FALSE)

if ((family == 30 || family == 40) &&

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 49

par.value1 > -1)

return(FALSE)

if ((family == 30 || family == 40) &&

(par.value2 >= 0 || par.value2 < (-1)))

return(FALSE)

if ((family == 104 || family == 114 ||

family == 204 || family == 214) &&

par.value1 < 1)

return(FALSE)

if ((family == 104 || family == 114 ||

family == 204 || family == 214) &&

(par.value2 < 0 || par.value2 > 1))

return(FALSE)

if ((family == 124 || family == 134 ||

family == 224 || family == 234) &&

par.value1 > -1)

return(FALSE)

if ((family == 124 || family == 134 ||

family == 224 || family == 234) &&

(par.value2 < 0 || par.value2 > 1))

return(FALSE)

return(TRUE)

}

This function identifies the appropriate sub-vine and uses the R-vine

↪→ array representation from the VineCopula package.

create.submatrix <- function(I) {

I <- unique(I)

d <- dim(Matrix)[1]

l <- length(I)

for(i in (d:1)) {

if(sum(Matrix[,i] %in% I) == l)

break

}

sub.matrix <- Matrix[(i:d),(i:d)]

sub.par <- par[(i:d),(i:d)]

sub.family <- family[(i:d),(i:d)]

remove.ind <- which(!(diag(sub.matrix) %in% I))

if(length(remove.ind) != 0) {

sub.par <- sub.par[,-remove.ind]

sub.family <- sub.family[,-remove.ind]

sub.matrix <- sub.matrix[,-remove.ind]

}

new.sub.matrix <- NULL

new.sub.par <- NULL

new.sub.family <- NULL

for(i in (1:(dim(sub.matrix)[2]))) {

indx <- which(sub.matrix[,i] %in% I)

50 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

tmp.mat <- sub.matrix[indx,i]

new.sub.matrix <- cbind(new.sub.matrix, c(rep(0, length(I)-length(tmp.

↪→ mat)), tmp.mat))

tmp.par <- sub.par[indx,i]

new.sub.par <- cbind(new.sub.par, c(rep(0, length(I)-length(tmp.mat)),

↪→ tmp.par))

tmp.family <- sub.family[indx,i]

new.sub.family <- cbind(new.sub.family, c(rep(0, length(I)-length(tmp.

↪→ mat)), tmp.family))

}

sub.matrix <- new.sub.matrix

sub.par <- new.sub.par

sub.family <- new.sub.family

add zeros to diagonals on par and family:

diag(sub.par) <- rep(0, l)

diag(sub.family) <- rep(0, l)

return(list(sub.matrix=sub.matrix, sub.par=sub.par, sub.family=sub.family)

↪→)

}

##############

Specify parametric R-vine in five dimensions.

#############

Matrix <- c(5, 2, 3, 1, 4,

0, 2, 3, 4, 1,

0, 0, 3, 4, 1,

0, 0, 0, 4, 1,

0, 0, 0, 0, 1)

Matrix <- matrix(Matrix, 5, 5)

family <- c(0, 3, 3, 3, 3,

0, 0, 3, 3, 3,

0, 0, 0, 3, 3,

0, 0, 0, 0, 3,

0, 0, 0, 0, 0) #3=Clayton copula

family <- matrix(family, 5, 5)

par=family #parameter matrix for copulas. VITA fills in parameters

↪→ sequentially in this matrix

RVM = RVineMatrix(Matrix, family, par) #the R vine specification.

#define an order in which to run through the vine structure, edge by edge

pair.index <- NULL

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 51

index.set <- list()

d <- dim(Matrix)[1]

for(i in ((d-1):1)) {

for(j in (d:(i+1))) {

cond.index <- NULL

pair.index <- c(Matrix[i,i], Matrix[j,i])

if(j+1<=d) {

cond.index <- Matrix[((j+1):d),i]

}

index.set <- c(index.set, list(pair.index=pair.index, cond.index=cond.

↪→ index))

}

}

###############

Define target covariance matrix

###############

model.true <- ’

latent variables

F1 =~ load*x1 +load* x2

F2 =~ load*y1 + load*y2+load*y3

x1 ~~ resvar *x1

x2 ~~ resvar *x2

y1 ~~ resvar *y1

y2 ~~ resvar *y2

y3 ~~ resvar *y3

F1 ~~ phi *F2

F1 ~~ 1 *F1

F2 ~~ 1 *F2

’

load=0.95

resvar=1-load^2

phi=.9

model.true <- gsub("resvar", as.character(resvar), model.true, fixed=TRUE)

model.true <- gsub("load", as.character(load), model.true, fixed=TRUE)

model.true <- gsub("phi", as.character(phi), model.true, fixed=TRUE)

f=cfa(model.true, data=NULL)

sigma.target = fitted(f)$cov

########

Original VITA for given sigma.target and standard normal marginals

#######

52 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

the numerical routine that searches for copula parameter for a given edge=

↪→ pair.index in the vine

solve.param <- function(pair.index, cond.index) {

I <- c(pair.index,cond.index)

curr.family = family[index.par(pair.index)[1], index.par(pair.index)[2]]

cat(" family: ", curr.family, "\n")

sub.matrices <- create.submatrix(I) #the sub-vine we need for simulation

Rename the RVineMatrix, to get the names from 1 and up:

sub.matrix <- sub.matrices$sub.matrix

recoded.index <- sort(unique(as.vector(sub.matrix)))[-1]

recoded.sub <- as.vector(sub.matrix)

recoded.pair.index <- pair.index

for(i in (1:length(recoded.index))) {

recoded.sub[which(recoded.sub==recoded.index[i])] <- i

recoded.pair.index[which(recoded.pair.index==recoded.index[i])] <- i

}

sub.matrix <- matrix(recoded.sub, dim(sub.matrix)[1], dim(sub.matrix)[2])

RVM.sub <- RVineMatrix(Matrix=sub.matrix, par=sub.matrices$sub.par, par2=

↪→ sub.matrices$sub.par*0, family=sub.matrices$sub.family)

root.function <- function(theta) { # this function returns the difference

↪→ between target covariance and vine-implied covariance for theta

#cat(theta, "\n")

if(!parameter.valid(curr.family, theta, NA)){

cat("not valid parameter: ", theta , "\n")

return(10^3)

}

RVM.sub$par[2, 1] <<- theta

simdata <- RVineSim(N,RVM.sub)[,recoded.pair.index] #Simulate large

↪→ sample of size N

return(sigma.target[pair.index[1], pair.index[2]]-cov(qnorm(simdata[,1])

↪→ , qnorm(simdata[,2])))#standard normal marginals

}

est <- uniroot(root.function, lower=0.001, upper=20)$root

cat("Approximation:", est, "\n")

par[index.par(pair.index)[1], index.par(pair.index)[2]] <<- est #replace

↪→ VITA result into global vine structure

}

#Original implementation timing

N=10^6

set.seed(1)

system.time({

for(i in (1:(length(index.set)/2))) {

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 53

pair.index <- index.set[[2*i-1]]

cond.index <- index.set[[2*i]]

cat("Optimizing for:", pair.index, "|", cond.index)

solve.param(pair.index, cond.index)

}

})

RVM=RVineMatrix(Matrix, family, par)

#Timing of covsim implementation of VITA

bicop <- bicop_dist("clayton")

pcs <- list(list(bicop, bicop, bicop, bicop),

list(bicop, bicop, bicop),

list(bicop, bicop), list(bicop))

set up vine copula model with Gaussian margins

tmat <- Matrix[5:1,]

vc <- vine_dist(list(distr = "norm"), pcs, tmat)

marginsnorm <- lapply(X=sqrt(diag(sigma.target)),function(X) list(distr="

↪→ norm", sd=X))

set.seed(1)

system.time(calvita <- vita(marginsnorm, sigma.target, vc=vc, family_set="

↪→ clayton"))

Simulation runtimes at n=1000

system.time(replicate(10000, qnorm(RVineSim(10^3, RVM))))123.364

system.time(replicate(10000, rvine(10^3, calvita)))34.186

--- SECTION 6 ---

--- Table 1 ---

test_func <- function(d){

set.seed(1)

ncores <- parallel::detectCores()

marginsnorm <- lapply(X=rep(1,d),function(X) list(distr="norm", sd=X))

mat <- diag(d)+0.3

diag(mat) <- 1

time.cal <- tryCatch(system.time(vita <- vita(marginsnorm, mat)), error=

↪→ function(w) {-1},

warning=function(w) {-2})

if(length(time.cal) == 5){

time.sim <- tryCatch(system.time(replicate(10^3, rvine(500, vita))),

error=function(w) {-1},

warning=function(w) {-2})

}

return(list(time.cal=time.cal, time.sim=time.sim, vita=vita, ncores=ncores

↪→))

54 STEFFEN GRØNNEBERG, NJÅL FOLDNES, AND KATERINA M. MARCOULIDES

}

#RAN FOLLOWING CODE. With 40 dimension it took too long. 15++ hours.

for(d in c(5, 10, 15)){#}, 20, 25, 30, 40, 50)){

res <- test_func(d)

print(res)

}

--- SECTION 6 ---

--- Continuous SEM data example ---

sem.pop <- ’

Ksi1 =~ start(.8)*x1+start(.7)*x2+start(.6)*x3+start(.5)*x4

Ksi2 =~ start(.8)*x5+start(.7)*x6+start(.6)*x7+start(.5)*x8

Eta1 =~ start(.8)*y1+start(.7)*y2+start(.6)*y3+start(.5)*y4

Eta2 =~ start(.8)*y5+start(.7)*y6+start(.6)*y7+start(.5)*y8

Eta3 =~ start(.8)*y9+start(.7)*y10+start(.6)*y11+start(.5)*y12

Eta1 ~ start(.4)*Ksi1+start(.6)*Ksi2

Eta2 ~ start(.4)*Ksi1+start(.2)*Ksi2+start(.3)*Eta1

Eta3 ~ start(.1)*Ksi1+start(.1)*Ksi2+start(.2)*Eta1+start(.5)*Eta2

Ksi1~~start(.3)*Ksi2; Eta1~~start(.5)*Eta1; Eta2~~start(.5)*Eta2

Eta3~~start(.5)*Eta3; x1~~start(.5)*x1; x2~~start(.5)*x2; x3~~start

↪→ (.5)*x3

x4~~start(.5)*x4; x5~~start(.5)*x5; x6~~start(.5)*x6; x7~~start(.5)*

↪→ x7

x8~~start(.5)*x8; y1~~start(.5)*y1; y2~~start(.5)*y2; y3~~start(.5) *

↪→ y3

y4~~start(.5)*y4; y5~~start(.5)*y5; y6~~start(.5)*y6; y7~~start(.5) *

↪→ y7

y8~~start(.5)*y8; y9~~start(.5)*y9; y10~~start(.5)*y10

y11~~start(.5)*y11; y12~~start(.5)*y12’

sigma.target <- lavInspect(sem(sem.pop, data=NULL), "sigma.hat")

marginsnorm <- lapply(X=sqrt(diag(sigma.target)),

function(X) list(distr="norm", sd=sqrt(X)))

vitadist <- vita(marginsnorm, sigma.target)

randomsamples <- replicate(10^3, rvine(10^3, vitadist))

--- Ordinal data simulation ---

sigma.target <- matrix(c(1,0.5,0.5,1),2)

set.seed(1)

vita_clayton <- vita(list(list(distr="norm"), list(distr="norm")),sigma.

↪→ target, family_set="clayton")

set.seed(1)

vita_joe <- vita(list(list(distr="norm"), list(distr="norm")),sigma.target,

↪→ family_set="joe")

#generate data and discretize

COVSIM: AN R PACKAGE FOR SIMULATING NON-NORMAL DATA 55

clayton.disc <- apply(rvine(10^3, vita_clayton), 2, cut, breaks=c(-Inf,0, 1,

↪→ Inf),labels=FALSE)

--- Run bootstrap test ---

bootTest(clayton.disc)

Department of Economics, BI Norwegian Business School, Oslo, Norway 0484
Email address: steffeng@gmail.com

Department of Economics, BI Norwegian Business School, Stavanger, Norway 4014
Email address: njal.foldnes@bi.no

Department of Psychology, University of Minnesota, Elliott Hall 75 East River

Rd., Minneapolis, MN 55455, USA
Email address: kmarcoul@umn.edu

