Introduction to the dna package

Ryan Gill* Somnath Dattal Susmita Dattal

March 22, 2014

1 Introduction

In this vignette, a description is given for an R (R Development Core Team,
2014) package dna which implements statistical tests for differential network
analysis described in Gill, Datta, and Datta (2010) based on connectivity scores.
Built-in options for computing the connectivity scores include partial least squares
(PLS), principal components, ridge regression, and correlation; the package also
provides the option for the user to specify a custom method for computing the
scores. An example of using the package with a custom method based on the
least absolute shrinkage and selection operator (LASSO) is presented with code
in Section [l

Once the method for computing the scores has been selected, the following
three types of tests are implemented by the dna package.

1. Test whether the connectivity scores for a single gene differ between the
two networks.

2. Test whether the connectivity scores for a set of important genes differ
between the two networks.

3. Test whether the overall modular structure differs between the two net-
works.

For the last type, a definition of what is meant by a module is required based
on the connectivity scores. Therefore, the dna package has functions for de-
termining and working with the modular structure of a network based on its
corresponding scores.

In Section 2] we describe the three types of statistical tests as well and briefly
reviews the mathematical background for the connectivity scores and modules
implemented within the dna package. Section [3] illustrates each of the tests
with several connectivity scores applied to a real data example. Finally, some
additional details and features of the package are discussed in Section

*Department of Mathematics, University of Louisville
TDepartment of Bioinformatics and Biostatistics, University of Louisville

2 Differential network analysis methodology

The three statistical tests introduced in Gill, Datta, and Datta (2010) are de-
scribed in this section. Each of these tests are based on one of the methods (PLS,
principal components, ridge regression, correlation, or any other) for computing
connectivity scores. The tests for differential connectivity in Sections [2.1] and
also depend on a distance function D which measures the distance between
each pair of scores; the test for modular structure in Section depends on
the modules obtained from the connectivity scores. The methods for computing
the connectivity scores that are directly implemented by the dna package are
described in Section 2.4

2.1 Tests for an individual gene

This section reviews the test proposed in Gill, Datta, and Datta (2010) to de-
termine whether the difference between the connectivity scores for an individual
gene g in two networks is statistically significant. The difference in connectivity
in the two networks is measured by the statistic

d(g) = n_1 Z D(sgg1554)

9'€G,9#9’

where G is the set of all common genes in the networks, p is the number of genes
in G, sqy is the connectivity score between gene g and ¢’, and D is a distance
function specified by the user.

To test the significance of this statistic d(g), Gill, Datta, and Datta (2010)
proposed the following permutation test. Let X; and X5 be the N7 x p and
N5 x p matrices of expression values for the two respective networks. Create an
(N1 + N3) x p matrix X by stacking the rows of X; and X5. Then repeat the
calculation of the connectivity scores and d(g) for a specified number of random
permutations of the rows of X. Specifically, for each random permutation w
of the rows of X, we obtain a new (N; + Na) X p matrix X7, and we let XT
denote the first N1 rows of this matrix and let XJ denote the last Na rows of
this matrix. New connectivity scores s7 , and the test statistic

d"(g)=— > Dsgys55)

9'€G,9#9’

are computed for the networks represented by X and XJ. The p-value for this
permutation test is approximated by the proportion of times that d™(g) is at
least as large as d(g) among the random permutations selected, and the connec-
tivity scores for the gene are statistically significant if the p-value is sufficiently
small.

2.2 Tests for a class of genes

Gill, Datta, and Datta (2010) also proposed a test to determine whether the
difference between the connectivity scores for a class of “important” genes F in

two networks is statistically significant. The difference in connectivity in the
two networks is measured by the statistic

A(f):ﬁ S D(slys,).

9,9’ €F,9#9g’

where f is the number of genes in F, and D is a distance function specified by
the user. To test the significance of A(F), a permutation test similar to that
described in Section is used with d(g) and d™(g) replaced by A(F) and

s 1 s T
A™(F) = 7D > D(sjy,spa).
9.9'€F,9#9g’

2.3 Tests for overall modular structure

Once the scores have been computed, it is often of interest to find modules of
genes which are connected with each other. One approach is to use the definition
of a module given in Gill, Datta, and Datta (2010). A module with minimum
size parameter m and threshold connectivity parameter € is a set of genes F
such that

1. the cardinality of F is at least m, and

2. given any two genes f; and f> in F, they are connected by a path of genes
inF, fi=0¢1,..., 9= fo, for some k > 2, such that the connectivity
score of each pair on the path is at least € in magnitude.

To define modules in this manner, it must be assumed that the matrix of con-
nectivity scores has been symmetrized.

To determine if the modular structures of two networks differ significantly
from each other, the following test proposed by Gill, Datta, and Datta (2010)
can be used. Suppose M; = {Fi1,...,Fis,} and My = {Fa1,...,Fay,} are
the collections of all distinct modules in the respective networks. Let Gy =
ﬂ?zl U}]=1 Fi; be the set of all genes present in some module in both networks.
Then the test statistic based on these modules is

[F1i(9) N F2j()|

N=1-
[F1j(9) U F2j(9)l

9€Go
where Fjj;4) is the module in network ¢ that contains gene g. To test the

significance of NV, a permutation test similar to that described in Section [2.1] is
used with d(g) and d™(g) replaced by N and

[F1j(9) () N Fajg) ()]
| F1j(g) () U Faj(gy ()]

N(E)=1-

g€Go ()

where F;;(m) are the modules in the respective networks based on the permuted
2 J1
data and go(ﬂ') = ﬂi:l Uj:l]:ij (7‘(’)

2.4 Scores

Each of the tests are based on connectivity scores sq . between genes g and g
derived from the matrix of expression values X for the kth network; the su-
perscript k& will be ignored for the remainder of this section. There are many
methods available for computing connectivity scores, and herein we describe the
four methods implemented directly by the dna package. Let x; denote the ith
column of X, giving the expression values for the ith gene, and let X ¢ denote
the deflated design matrix with columns xq,...,®4—1,Tg41,...,Tp. Bach of
the methods described in this section assumes that x; is centered. Usually, x;
is rescaled so that the standard deviation of x; equals 1 (i.e., ||z;]|> = N — 1),
but there are options available when using the dna package for not automati-
cally rescaling the expression values that are described in Section [d] After the
statistical method is applied to obtain the connectivity scores, the connectivity
scores are usually symmetrized (sqq and sgq are both re-assigned the value
(8gg' + 8¢7¢)/2) and then often re-scaled so that all scores are divided by the
largest score in magnitude. These options for postprocessing the scores using
the dna package are also discussed in Section [

2.4.1 Partial least squares (PLS)

The PLS connectivity score for gene g based on gene ¢’ can be computed using
the algorithm described in [6]. Start by letting X M = Xg. Then iteratively

construct the v latent PLS factors £, ..., £

Z)_ZCZ)XW

where

J#g
where -
¢
) = [C(Z) O R ST O = 7)((L@
g gl »7g,9—1 ~g,9+1> »gp ||X(é)7w.||’
X® is the deflated design matrix with columns X(é) X;@l, X;ﬂzl, - Xy),
and
XD = X0 O pOTH0 1407 X0 g <,
Then ©
R x)t
Bt = g(tf)g
1t |2

is the coefficient obtained when regressing 4, on the latent factor t_(f). Finally,
the PLS estimates of the coefficients for regressing x4 on the columns of X, are

v
A l
sgg/:Zﬂggc;g)/,g’:1,...,gfl,g+1,...,p

2.4.2 Principal components regression

Principal components regression is a similar method also based on derived inputs
that can be used to compute connectivity scores. The ¢th principal component

vy) is the eigenvector corresponding to the fth largest eigenvalue of X ;— Xg.

Then [39 = [Bgl, cee Bg,,]-r where

a:Tz_Ef)

I i
NP

is the coefficient when regressing «, on the derived input zgl) =X gvy). Finally,
the principal components regression estimates of the coefficients for regressing
x4 on the columns of X, are

- .
[Sgl,...,8g7g_1,897g+1,...,Sgp] = Vﬁg
: o 1
where V is the matrix with columns 'v(g)L, véy).

2.4.3 Ridge regression

The ridge regression connectivity scores are the coefficients when regressing x,
on the columns of X ¢ with penalty parameter is the p — 1 dimensional vector 3
which minimizes R

lzg — XyBII1° + N8I
and can be computed by

[Sg1,---+8g,9—1>Sg.g+1s- - - » sgp}T = ()N(ng(g +)\1)71)2;:139.

2.4.4 Correlation

The Pearson correlation coefficient

T
CCg :Dg/

[EZE
is a simple and quick method of measuring the association between the expres-
sion values for genes g and ¢’ where ||| = V& Tz is the Euclidean norm.

Sgg’

3 Usage

In this section, we illustrate the functions provided by the dna package which
implement the test procedures described in Sections and on real
genomic data from the liver tissue of female mice that was analyzed previously
in Ghazalpour et al. (2006), Fuller et al. (2007), and Gill, Datta, and Datta
(2010). The matrix HeavyMice includes expression values of 314 genes for 50
mice with weights greater than 40.5 grams, while the matrix LeanMice includes
the expression values of the same 314 genes for 50 mice with weights below 36.9
grams. The library and data can be loaded into R as follows.

> library("dna")
> data("HeavyMice")
> data("LeanMice")

First, we perform the tests for individual genes described in Section to
determine whether there is a difference between the connectivity scores for each
respective individual gene in the Heavy and Lean networks. The dna package
includes a function test.individual.genes which performs the test for all
genes with options for various methods of computing the connectivity scores and
distance function as well as several preprocessing and postprocessing options.
The arguments for the function are displayed below.

R> args(test.individual.genes)
function (X1, X2, scores = "PLS", distance = "abs", num.permutations = 1000,
check.networks = TRUE, ...)

The mandatory inputs X1 and X2 are two matrices containing the expression
levels for the networks with experimental units in the rows and genes in the
columns. The user does not necessarily need to place the genes in the same order
in the columns of each matrix since the function automatically preprocesses the
networks as long as the optional argument check.networks is set to TRUE. This
and other technical details concerning the functions are discussed in Section

The type of connectivity score to be used is specified by the argument
scores. Either a built-in method ("PLS", "PC", "RR", or "cor") or a properly-
defined function specified by the user is accepted. Any arguments accepted by
the method or function for the connectivity score can be passed as additional
arguments to test.individual.genes. The distance function D to be used
is specified by the optional argument distance, and it also can either be one
of the built-in distance functions "abs" or "sqr") or a user-defined function;
distance="abs" indicates that the L;-distance D(s1,s2) = |$1 — s2| should be
used and distance="sqr" indicates that the Lo-distance D(s1,s2) = (51 — 52)?
should be used. Examples of user-defined scores and distance functions will
be discussed in Section refsec:additional. The number of permutations for the
test can be controlled by the optional argument num.permutations; if it is not
specified, then it is set to 1000 by default.

To illustrate this function in use, we perform the test for differential connec-
tivity for individual genes based on PLS connectivity scores (rescaled) with Ly
distances using the following command.

R> tig.results=test.individual.genes(LeanMice,HeavyMice,scores="PLS",
+ distance="abs",rescale.scores=TRUE,num.permutations=1000)

The function outputs an object of class resultsIndTest. A summary method is
available for the object which outputs the number of genes which have P-values
less than various levels.

R> summary(tig.results)
Tests for differential connectivity of individual genes

9 genes are significant at level 0.001
20 genes are significant at level 0.005
29 genes are significant at level 0.01
57 genes are significant at level 0.05

The full results can be extracted and inserted into a data frame with columns
containing the gene names, values of the test statistic, and P-values with the
method get.results.

R> get.results(tig.results)

d p.value
Anxa?2 0.11804280 0.000
F7 0.12197477 0.000
Anxab 0.11906887 0.000
Map4k4 0.14530306 0.000
Kng2 0.16757005 0.000
Scnnla 0.14848855 0.000
Slc43al 0.16212205 0.000
Apom 0.18553058 0.000
Spp1l 0.23177885 0.000
Slc22a7 0.15434813 0.001

Next, we perform the test for a class of genes described in Section Most
of the arguments for the function test.class.genes are similar to those for
test.individual.genes. There is one additional optional argument genelist
which specifies the class of genes to be considered; genelist can either be a
vector which contains the names of the genes or it can be a numeric vector with
the indices of the genes. Usually, the user will want to choose a subset of genes
to be tested, but if genelist is not specified by the user, then the default choice
for the class is to use all genes.

The following example demonstrates the use of this function to test a class
of four genes Anza2, Anxab, F7, and Proz. This set of genes was identified to
be related to blood coagulation (Gill, Datta, and Datta, 2010). The following
code uses PLS scores with L; distances.

R> ourgenelist=c("Anxa2","Anxab","F7","Proz")

R> tcg.results=test.class.genes(LeanMice,HeavyMice,genelist=ourgenelist,
+ scores="PLS",distance="abs",rescale.scores=TRUE,num.permutations=1000)
R> tcg.results

Tests for differential connectivity of a class of genes

Class of genmes:
Proz,Anxa2,F7,Anxab

Test statistic: delta= 0.1511344
P-value= 0

The function outputs an object of class resultsClassTest. Thereis a get.results
method that accepts this object as an argument and outputs a list including the
P-value, test statistic, and class of genes.

R> get.results(tcg.results)
$p.value
(11 0

$delta
[1] 0.1511344

$class.genes
[1] "Proz" "Anxa2" "F7" "Anxab"

Finally, we demonstrate the function test.modular.structure which im-
plements the test for overall modular structure described in Section The
arguments for the function are displayed below.

R> args(test.modular.structure)
function (X1, X2, scores = "PLS", min.module.size = 5, epsilon = 0.5,
num.permutations = 1000, check.networks = TRUE, ...)

The following example shows the function being applied to the mice networks
with (rescaled) PLS connectivity scores, minimum size parameter m = 5, and
threshold connectivity parameter ¢ = 0.5.

R> tms.results=test.modular.structure(LeanMice,HeavyMice,min.module.size=5,
+ epsilon=.5,scores="PLS",rescale.scores=TRUE,num.permutations=1000)

The function outputs an object of class resultsModTest. A summary method
is available which accepts objects of this class and outputs information about
each network, the test statistic, and the P-value for the test as shown below.

R> summary(tms.results)
Tests for differential modular structure in two networks of genes

Network 1:

Class: modules

10 genes in Module 1
44 genes in Module 2
6 genes in Module 3
5 genes in Module 4
10 genes in Module 5

Network 2:

Class: modules
300 genes in Module 1

Test statistic: N= 0.9755889
P-value= 0.033

There is also a method get.results (not shown here) which extracts the net-
works, test statistic, and P-value.

4 Additional features and details

The functions available in the dna package for performing the tests of signifi-
cance have been described in the previous section. This section discusses some
additional options available in performing these tests as well as additional func-
tions and methods provided with the package which may be useful to users.

4.1 Preprocessing tools

The dna package uses custom S4 classes and methods to preprocess the pair of
networks specified by a user. Using the package does not require users to work
directly with these classes and methods since the functions which perform the
statistical tests will create the classes and employ their methods when needed.
However, it is important that users understand the implications of how they
input their networks of genes.

It is assumed that each network specified by the user is a matrix with rows
which represent the experimental units and columns which represent the genes to
be considered. To illustrate the objects, we create the following small example.

R> X1=cbind(Gz=c(.4,.5,-.8),Gy=c(.8,-.8,-.3),

+ Gb=c(1.1,.3,.8),6a=c(1.5,-.6,-1.5))

R> X2=cbind(Gc=c(-1.6,1.8,-.5,.6),Ga=c(.6,-.2,.8,2.2),Gb=c(2,1.6,.3,.5))
R> networks=new("pairOfNetworks" ,network1=X1,network2=X2)

R> networks

Class: pairOfNetworks

Network 1: 3 subjects and 4 genes.

Network 2: 4 subjects and 3 genes.

The networks have 2 genes in common.

If labels for the columns are provided as they are above, then the class can
handle networks with different numbers of columns. When networks are used
in the statistical tests shown in Section |3} a method get.common.networks is
invoked to extract the genes common to both networks. Thus, in this example,
only the two genes Gb and Ga will be used.

R> get.common.networks (networks)
$networki
Gb Ga

(1,1 1.1 1.5
[2,]1 0.3 -0.6
[3,] 0.8 -1.5
$network?2

Gb Ga
[1,] 2.0 0.6
[2,] 1.6 -0.2
[3,] 0.3 0.8
(4,1 0.5 2.2

When no gene names are supplied, the method automatically assumes that
the genes are specified in the same order in each network. In this case, it gives
the columns the generic names Gene 1, Gene 2, ... that will be used by other
functions.

4.2 Connectivity scores

The tests discussed in Section [3| are based on connectivity scores discussed in
Section [2.41 While some users may only wish to directly use the statistical
tests, others may want to access the connectivity scores and possibly use them
for other purposes. There are built-in functions available for each of the methods
described in Section which return a matrix of connectivity scores.

The default connectivity scores for the test procedures are PLS scores. To
directly compute these scores, the function PLSnet is available. By default, this
function uses three PLS components, but this can be changed by specifying a
different value for the ncom argument. No intercept is included in the computa-
tion of the PLS regression, so each of the columns are automatically centered.
There is an optional argument rescale.data which indicates whether the values
for each gene should be rescaled prior to computing the scores; typically this is
done for PLS regression so the default is rescale.data=TRUE. A few options for
transforming the PLS scores are also available after PLS regression has been per-
formed; symmetrize.scores indicates whether scores should be symmetrized
and rescale.scores indicates whether scores should be rescaled by dividing
each score by the largest score in magnitude. By default, the function PLSnet
sets symmetrize.scores=TRUE and rescale.scores=FALSE; if both are set to
true, then symmetrization occurs before rescaling. The following code illustrates
using this function with two PLS components and all optional arguments set to
TRUE on the four genes in the network X1 defined in Section 4.1

R> PLSnet(X1,ncom=2,rescale.data=TRUE, symmetrize.scores=TRUE,
+ rescale.scores=TRUE)
Gz Gy Gb Ga
Gz 1.0000000 -0.1609580 -0.8778705 1.0000000
Gy -0.1609580 1.0000000 0.9692391 0.6735266
Gb -0.8778705 0.9692391 1.0000000 0.3125738
Ga 1.0000000 0.6735266 0.3125738 1.0000000

10

Each of the other methods of computing connectivity scores that are described
in Section are also implemented by the dna package. Connectivity scores
based on principal components regression can be computed using the function
PCnet. The arguments and default values for PCnet are the same as those for
PLSnet. The function RRnet computes the scores based on ridge regression;
rescale.data, symmetrize.scores, and rescale.scores are also optional ar-
guments of RRnet with the same defaults, but it has a different complexity
parameter lambda set to 1 by default. Finally, the function cornet computes
the connectivity scores based on correlation. No centering or scaling is necessary
since the correlation coefficient for two variables is not affected by linear trans-
formations of the variables. Also, correlation is symmetric is no symmetriza-
tion option is necessary. The only optional argument available for cornet is
rescale.scores and it is FALSE by default.

4.3 User-defined scores and distances

The dna package also provides a flexible way of incorporating other methods to
create new user-defined connectivity scores through the function gennet. The
arguments for gennet are listed below.

R> args(gennet)
function (data, f, recenter.data = FALSE, rescale.data = FALSE,
symmetrize.scores = FALSE, rescale.scores = FALSE, ...)

The mandatory argument f is a regression method for modeling each gene based
on the remaining genes, and it is used to compute each row of the matrix of
connectivity scores. For example, user-defined connectivity scores based on the
LASSO implemented by the R package lars (Hastie and Efron, 2012) can be
computed for network X1 from Section as follows.

R> require(lars)

R> our.LASSO=function(X,y,s=s,mode=mode){

+ coef (lars(X,y,type="lasso" ,normalize=FALSE, intercept=FALSE),

+ s=s,mode=mode)

+ 3

R> gennet(X1,our.LASSO,recenter.data=TRUE,rescale.data=TRUE,

+ symmetrize.scores=TRUE,rescale.scores=TRUE,s=1,mode="lambda")
Gz Gy Gb Ga

Gz 1.0000000 0.0000000 O 0.3953771

Gy 0.0000000 1.0000000 1 0.5017072

Gb 0.0000000 1.0000000 1 0.0000000

Ga 0.3953771 0.5017072 0O 1.0000000

The argument distance for the tests described in Section [3| can also be
customized by the user. If distance is a user-defined function, then the two
arguments to the function should be corresponding scores or matrices of scores
from the two networks. For instance, the piecewise distance function D(sq, s2) =
min{|s; — sa|, 1} can be created using the command

11

R> our.dist=function(scorel,score2){pmin(abs(scorel-score2),1)}

Then, suppose we want to perform a test for the class of genes discussed in Sec-
tion [3| with LASSO connectivity scores and the user-defined distance function.
The following code shows how this can be accomplished.

R> our.LASSOnet=function(data,s=1,mode="lambda"){

+ gennet (data,our.LASSO,recenter.data=TRUE,rescale.data=TRUE,

+ symmetrize.scores=TRUE,rescale.scores=TRUE, s=s,mode=mode)

+ 7

R> ourgenelist=c("Anxa2","Anxab","F7","Proz")

R> results=test.class.genes(LeanMice,HeavyMice,genelist=ourgenelist,
+ scores=our.LASSOnet,distance=our.dist,num.permutations=1000)

R> results

Tests for differential connectivity of a class of genes

Class of genes:
Proz,Anxa2,F7,Anxab

Test statistic: delta= 0.01925669
P-value= 0.353

4.4 Modules

The dna package provides tools for working with modules given a matrix of
connectivity scores s and user-supplied parameters m and epsilon. To illustrate
these tools, consider the following matrix of connectivity scores for a network.

> set.seed(26)
> s=matrix(runif(100,-1,1),10,10);diag(s)=1;s=round((s+t(s))/2,1)
> s

(,11 [,2] [,3]1 [,4]1 [,5] .61 C,7]1 [,8] [,9]1 [,10]

[1,] 1.0 -0.2 0.8 0.6 -0.4 -0.3 0.0 0.6 -0.5 0.1
[2,] -0.2 1.0 0.2 -0.5 0.7 -0.1 -0.4 0.0 0.3 -0.2
[3,] 0.8 0.2 1.0 0.0 -0.1 -0.1 0.8 0.3 0.0 -0.3
[4,] 0.6 -0.5 0.0 1.0 0.0 0.2 -0.3 -0.7 0.2 0.8
[5,] -0.4 0.7 -0.1 0.0 1.0 -0.2 0.1 -0.1 0.5 -0.3
[6,] -0.3 -0.1 -0.1 0.2 -0.2 1.0 -0.6 0.4 0.2 0.4
[7,] 0.0 -0.4 0.8 -0.3 0.1 -0.6 1.0 0.6 0.0 -0.1
[8,] 0.6 0.0 0.3 -0.7 -0.1 0.4 0.6 1.0 0.7 -0.2
[9,] -0.5 0.3 0.0 0.2 0.5 0.2 0.0 0.7 1.0 0.4
(1t0,] 0.1 -0.2 -0.3 0.8 -0.3 0.4 -0.1 -0.2 0.4 1.0

Suppose we define our modules using parameter values m = 3 and ¢ =
.7. The modules are obtained using the function network.modules with the
appropriate arguments.

12

R> the.modules=network.modules(s,m=3,epsilon=.7)
R> the.modules

Module 1:

Gene 1,Gene 3,Gene 7

Module 2:
Gene 4,Gene 8,Gene 9,Gene 10

Note that, although the score for genes 2 and 5 is 0.7, they do not form a module
because a module requires at least m genes.

The function network.modules returns an object of class “modules”. In
addition to the default output, there are other ways to view and access the
modules. For large networks, it may be helpful to first view a summary of the
modular structure. This can be accomplished using the summary method for
this class.

R> summary(the.modules)
Class: modules

3 genes in Module 1

4 genes in Module 2

In other cases, users may wish to extract the module number for each gene using
the method get.modules.

R> get.modules(the.modules)
[11 1012001222

Here, genes which do not belong to any module are listed in module 0.
By default, network.modules does not display a graph of the networks, but
there is an optional argument plot which can be set to TRUE to output a graph.

> network.modules (s,m=3,epsilon=.7,plot=TRUE, interactive=FALSE)

Module 1:
Gene 1,Gene 3,Gene 7

Module 2:
Gene 4,Gene 8,Gene 9,Gene 10

13

Géde 7

Géde 3
Gébe 1
Gébe 9
GéDe 8
G@e 4Ge@3 10

The figure above ia created using the plot function from the igraph package
(Csardi and Nepusz, 2006). If the optional argument is changed to interac-
tive=TRUE, then an interactive graphing device is opened within R using the
tkplot function from the igraph package; the function gives the user many op-
tions for modifying the graph both before and after the function call. Additional
arguments can be passed to tkplot through network.modules.

References

1]

[2]

G. Csardi and T. Nepusz. (2005). The igraph software package for complex
network research. Interjournal, Complex Systems, 1695.

T. Fuller, A. Ghazalpour, J. Aten, T. Drake, A. Lusis, and S. Horvath.
(2007). Weighted gene coexpression network analysis strategies applied to
mouse weight. M ammalian Genome, 18, 463-472.

A. Ghazalpour, S. Doss, B. Zhang, S. Wang, C. Plaisier, R. Castellanos,
A. Brozell, E.E. Schadt, T.A. Drake, A. Lusis, and S. Horvath. (2006).
Integrating genetic and network analysis to characterize genes related to
mouse weight. PLoS Genet, 2(8), e130.

R. Gill, S. Datta, and S. Datta. (2010). A statistical framework for dif-
ferential network analysis from microarray data. BMC Bioinformatics, 11,
95.

T. Hastie and B. Efron. (2012). lars: Least Angle Regression, Lasso and
Forward Stagewise. R package version 1.1. http://CRAN.R-project.org/
package=lars

V. Pihur, S. Datta, and S. Datta. (2008). Reconstruction of genetic asso-
ciation networks from microarray data: a partial least squares approach.
Bioinformatics, 24(4), 561-568.

14

http://CRAN.R-project.org/package=lars
http://CRAN.R-project.org/package=lars

[7] R Development Core Team. (2014). R: a language and environment for sta-
tistical computing. R Foundation for Statistical Computing, Vienna, Aus-
tria, http://www.R-project.org/

15

http://www.R-project.org/

	Introduction
	Differential network analysis methodology
	Tests for an individual gene
	Tests for a class of genes
	Tests for overall modular structure
	Scores
	Partial least squares (PLS)
	Principal components regression
	Ridge regression
	Correlation

	Usage
	Additional features and details
	Preprocessing tools
	Connectivity scores
	User-defined scores and distances
	Modules

