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1 Introduction

1.1 What is the evdbayes package?

The evdbayes package is an add-on package for the R (Ihaka and Gentleman, 1996) statistical
computing system. It provides functions for the Bayesian analysis of extreme value models,
using MCMC methods. There is no direct relationship between the evd (Stephenson, 2002) and
evdbayes packages, but evd may be a “required package” for evdbayes in the future.

All comments, criticisms and queries on the package or associated documentation are gratefully
received.

1.2 Obtaining the package/guide

The package can be downloaded from CRAN (The Comprehensive R Archive Network) at http:
//cran.r-project.org/. This guide (in pdf) will be in the directory evdbayes/doc/ underneath
wherever the package is installed.

1.3 Contents

This guide contains examples on the use of the evdbayes package. Section 2 introduces Bayes
Theory. Section 3 describes the generalized extreme value distribution and the point process
characterization of extremes. Prior distributions are constructed in Section 4. Posterior distri-
butions and MCMC methods are discussed in Section 5. The heart of the guide is contained
in Sections 6 and 7. In Section 6 the functions that implement the ideas of Sections 2 to 5 are
introduced. Section 7 provides an introduction to more specialist topics.
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1.4 Citing the package/guide

To cite this guide or the package in publications please use the following bibliographic database
entry.

@Manual{key,

title = {A User’s Guide to the evdbayes Package (Version 1.1)},

author = {Stephenson, A. G. and Ribatet, M. A.},

year = {2006},

month = {April},

url = {http://cran.r-project.org/}

}

1.5 Caveat

Alec Stephenson and I have checked these functions as best we can but, as ever, they may contain
bugs. If you find a bug or suspected bug in the code or the documentation please report it to
me at ribatet@hotmail.com. Please include an appropriate subject line.

1.6 Legalese

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but without any warranty; without
even the implied warranty of merchantability or fitness for a particular purpose. See the GNU
General Public License for more details.

A copy of the GNU General Public License can be obtained from http://www.gnu.org/copyleft/

gpl.html. You can also obtain it by writing to the Free Software Foundation, Inc., 59 Temple
Place – Suite 330, Boston, MA 02111-1307, USA.

1.7 Acknowledgments

Thanks to Ole Christensen and Jonathan Tawn for their comments. Thanks to Alec Stephenson
to let me be the “new father” of the evdbayes package.

2 An Introduction to Bayes Theory

Let us assume that the data x = (x1, . . . , xn) are independent realizations of a random variable
whose density falls within the parametric family {f(x|θ) : θ ∈ Θ}. The likelihood function is
defined using

L(θ;x) =

n
∏

i=1

f(xi|θ).

It is often easier to work with the log-likelihood function l(θ;x) = log{L(θ;x)}. The maximum
likelihood estimate θ̂(x) is the value at which l(θ;x) attains its maximum, as a function of θ.

In Bayes Theory we assume that, without reference to the data, it is possible to formulate beliefs
about θ that can be expressed as a probability distribution. For example, if θ ∈ (0, 1), and you
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believe that any value in (0, 1) is equally likely, your belief can be expressed using the probability
distribution θ ∼ U(0, 1). On the other hand, if θ ∈ R

3, you may be able to express your beliefs
using a trivariate normal distribution. This requires the specification of nine parameters; the
mean and variance of each marginal distribution, and the correlation coefficients between each
pair. A distribution on θ, made without reference to the data, is called a prior distribution.
The parameters of the prior distribution are called hyperparameters. The specification of a
particular prior distribution requires the specification of all hyperparameters.

Let π(θ) denote the density of the prior distribution for θ. Bayes’ theorem states that

π(θ|x) =
π(θ)L(θ;x)

∫

Θ π(θ)L(θ;x) dθ
∝ π(θ)L(θ;x), (1)

where π(θ|x) is the density of the posterior distribution. The posterior distribution includes
the additional information provided by the data x. Point estimators can be derived by taking
e.g. the mean of the posterior distribution (the posterior mean).

Computation of the normalizing constant
∫

Θ π(θ)L(θ;x) dθ in (1) can be problematic, particu-
larly for high-dimensional θ. Simulation methods can bypass this difficulty. In particular, Markov
Chain Monte Carlo (MCMC) techniques seek to produce stationary sequences of simulated (vec-
tor) values with marginal density π(θ|x). These sequences can then be used to estimate features
of the posterior distribution.

3 Likelihoods for Extremes

3.1 Generalized Extreme Value Distributions

The GEV (generalized extreme value) distribution function is given by

F (z) = exp
{

− [1 + ξ (z − µ) /σ]
−1/ξ
+

}

, (2)

where (µ, σ, ξ) are the location, scale and shape parameters respectively, σ > 0 and h+ =
max(h, 0). The case ξ = 0 (the Gumbel distribution) is defined by continuity.

Let θ = (µ, σ, ξ). If we assume that the data x = (x1, . . . , xn) are independent realizations of a
random variable distributed as GEV(θ), the log-likelihood is

l(θ;x) = −n log σ − (1 + 1/ξ)

n
∑

i=1

log{1 + ξ (xi − µ) /σ} −

n
∑

i=1

{1 + ξ (xi − µ) /σ}−1/ξ , (3)

provided that 1 + ξ (xi − µ) /σ is positive for each i = 1, . . . , n. If any of these terms are non-
positive the likelihood is zero (since the observed data falls beyond the end point of the GEV(θ)
distribution) and the log-likelihood is −∞. The case ξ = 0 is again defined by continuity.

Due to an asymptotic argument (e.g. Coles, 2001) this model is often used when the data x

consists of maxima (or negated minima) from some underlying process. Annual sea level maxima
and annual temperature maxima are used in the examples of Sections 6.1 and 6.2 respectively.

3.2 Point Process Characterization

Let X1, . . . , Xn be a series of independent random variables with common distribution function F .
Suppose that n is large, so that the distribution of Mn = max{X1, . . . , Xn} can be approximated
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by the GEV(µ, σ, ξ) distribution (e.g. Coles, 2001), with (possibly infinite) end points∗ z− and
z+. Then for large thresholds u > z− the sequence {X1, . . . , Xn} viewed on the interval (u, z+)
is approximately a non-homogeneous Poisson process with intensity function

λθ(x) =
1

σ

{

1 + ξ

(

x− µ

σ

)}−(ξ+1)/ξ

, u < x < z+,

where σ > 0 and θ = (µ, σ, ξ). The intensity measure on (u, z+) is therefore given by

Λθ(u, z+) =

∫ z+

u
λθ(x)dx =

{

1 + ξ

(

u− µ

σ

)}−1/ξ

.

The mathematical details of the asymptotic approximation are given in Pickands (1971) and
Smith (1989). The approximation yields a likelihood for θ based on observed data x = (x1, . . . , xn).
Suppose that nu of the n observations exceed the threshold u. Let x(i) denote the ith exceedence,
for i = 1, . . . , nu. The log-likelihood function can be derived (Coles, 2001) as

l(θ;x) = −Λθ(u, z+) +

nu
∑

i=1

log{λθ(x(i))},

provided that 1+ξ(u−µ)/σ and 1+ξ(x(i)−µ)/σ for i = 1, . . . , nu are positive. The interpretation
of θ depends on the value of n, because the approximate distribution of Mn is GEV(θ). The
following adjustment† to the log-likelihood l(θ;x) avoids this problem.

l(θ;x) = −nyΛθ(u, z+) +

nu
∑

i=1

log{λθ(x(i))}. (4)

If the value ny is the number of years of observation (excluding missing values), the annual
maxima are distributed as GEV(θ). More generally, if ny is the number of periods of observation,
the maxima over those periods are distributed as GEV(θ). The asymptotic approximation
assumes that there are a large number of observations within each period.

3.3 Generalized Pareto Distributions

The GP (Generalized Pareto) distribution function is given by

F (z) = 1− [1 + ξ (z − µ) /σ]
−1/ξ
+ , (5)

where (µ, σ, ξ) are the location, scale and shape parameters respectively, σ > 0 and h+ =
max(h, 0). The case ξ = 0 (the Exponential distribution) is defined by continuity.

Let θ = (µ, σ, ξ). If we assume that the data x = (x1, . . . , xn) are independent realizations of a
random variable distributed as GP(θ), the log-likelihood is

l(θ;x) = −n log σ − (1 + 1/ξ)
n
∑

i=1

log [1 + ξ (xi − µ) /σ] , (6)

provided that 1 + ξ (xi − µ) /σ is positive for each i = 1, . . . , n. If any of these terms are non-
positive the likelihood is zero (since the observed data falls beyond the end point of the GP(θ)
distribution) and the log-likelihood is −∞. The case ξ = 0 is again defined by continuity.

Due to an asymptotic argument (e.g. Coles, 2001) this model is often used when the data x

consists of peaks over a high threshold (or peaks under a low threshold) from some underlying
process.

∗If ξ > 0, z− = µ − σ/ξ and z+ = ∞. If ξ < 0, z− = −∞ and z+ = µ − σ/ξ. If ξ = 0, the expressions given
are all defined by continuity, with z− = −∞ and z+ = ∞.

†The adjustment can be derived by introducing the multiplicative factor ny to the intensity function.
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4 Construction of Prior Distributions

The likelihoods (3), (6) and (4) are both functions of the parameter vector θ = (µ, σ, ξ). The
construction of a prior distribution on θ proceeds in the same manner for both models. We
employ for different methods of construction. The first method uses the trivariate normal dis-
tribution. The second method uses also the trivariate normal distribution but with a different
parametrization. The third and fourth methods construct priors on the quantile space, for fixed
probabilities, and on the probability space, for fixed quantiles.

The trivariate normal distribution, which contains nine hyperparameters, is very flexible but is
difficult to elicit. At the other extreme, the construction on the probability space is relatively
easy to elicit but is not very flexible, having only four hyperparameters with which to define a
trivariate distribution.

The trivariate normal construction is the only construction of those presented below that enables
the specification of independent parameters (e.g. Section 6.1). This specification is often used for
a naive analysis, where there is no external information with which to formulate a dependence
structure. On the other hand, increasing σ or ξ leads to a heavier tailed distribution, so a priori

negative dependence between these parameters is expected (Coles and Tawn, 1996). The quantile
space and probability space constructions induce a natural dependence structure using only a
small number of hyperparameters. They also enable the elicitation of information using familiar
quantities (e.g. Section 6.2).

4.1 Trivariate Normal Distribution (model 1)

A trivariate normal prior distribution on θ
′ = (µ, log σ, ξ) leads to the prior density

π(θ) ∝
1

σ
exp

{

−
1

2
(θ′ − ν)TΣ−1(θ′ − ν)

}

. (7)

This approach was used by Coles and Powell (1996). The mean vector ν and the symmetric
positive definite (3× 3) covariance matrix Σ must be specified.

4.2 Trivariate Normal Distribution (model 2)

A trivariate normal prior distribution on θ
′ = (logµ, log σ, ξ) leads to the prior density

π(θ) ∝
1

µσ
exp

{

−
1

2
(θ′ − ν)TΣ−1(θ′ − ν)

}

. (8)

The log-normal parametrization for the location parameter can be usefull if a physical lower
bound for this parameter is required. The mean vector ν and the symmetric positive definite
(3× 3) covariance matrix Σ must be specified.

4.3 Gamma Distributions for Quantile Differences

The following approach was used in Coles and Tawn (1996). Let F (qp) = 1 − p, where F (·) is
the GEV distribution function, given in expression (2). It follows that

qp = µ+ σ(x−ξ
p − 1)/ξ,

where xp = − log(1 − p). A prior distribution can be constructed in terms of the quantiles
(qp1 , qp2 , qp3) for specified probabilities p1 > p2 > p3. Since qp1 < qp2 < qp3 it is easier to work
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with the differences (q̃p1 , q̃p2 , q̃p3), so that q̃pi = qpi −qpi−1
for i = 1, 2, 3, where qp0 is the physical

lower end point of the process variable. The measurement scale can always be transformed to
make the lower end point zero. The evdbayes package therefore assumes that qp0 = 0. The
priors on the quantile differences are taken to be independent, with

q̃pi ∼ gamma(αi, βi), αi, βi > 0,

for i = 1, 2, 3. The differences (q̃p2 , q̃p3) only depend on the scale and shape parameters (σ, ξ).
The prior information on the location parameter µ arises only through q̃p1 . The hyperparameters
(α1, α2, α3) and (β1, β2, β3), and the probabilities p1 > p2 > p3, must all be specified. (By default
the evdbayes package uses pi = 10−i for i = 1, 2, 3.) This construction leads to the prior density

π(θ) ∝ J
3
∏

i=1

q̃αi−1
pi exp{−q̃pi/βi}, (9)

provided that qp1 < qp2 < qp3 . J is the Jacobian of the transformation from (qp1 , qp2 , qp3) to
θ = (µ, σ, ξ), namely

J = σ/ξ2

∣

∣

∣

∣

∣

∣

∣

∑

i,j∈{1,2,3}
i<j

(−1)i+j(xixj)
−ξ log(xj/xi)

∣

∣

∣

∣

∣

∣

∣

,

where xi = − log(1− pi) for i = 1, 2, 3.

At ξ = 0 the prior distribution is defined by continuity, using

lim
ξ→0

qpi = µ− σ log xi, i = 1, 2, 3,

and

lim
ξ→0

J = σ/2

∣

∣

∣

∣

∣

∣

∣

∑

i,j∈{1,2,3}
i<j

(−1)i+j log xi log xj log(xj/xi)

∣

∣

∣

∣

∣

∣

∣

.

Derivations of the results given in this section are presented in detail in Section 5.6 of Stephenson
(2003).

4.4 Beta Distributions for Probability Ratios

The following method of construction was proposed by Crowder (1992). Let F (q) = 1 − pq,
where F (·) is the GEV distribution function, given in expression (2). It follows that

pq = 1− exp
{

− [1 + ξ (q − µ) /σ]
−1/ξ
+

}

.

A prior distribution can be constructed in terms of the probabilities (pq1 , pq2 , pq3) for specified
quantiles q1 < q2 < q3. Define pq0 = 1 and pq4 = 0. Since pq1 > pq2 > pq3 it is easier to work
with the ratios (p̃q1 , p̃q2 , p̃q3), where p̃qi = pqi/pqi−1

for i = 1, 2, 3.

The priors on the probability ratios are then taken to be independent, with

p̃qi ∼ beta
(

∑4

j=i+1
αj , αi

)

, i = 1, 2, 3.

The positive hyperparameters (αi, α2, α3, α4) and the quantiles q1 < q2 < q3 must all be specified.
This construction leads to the prior density

π(θ) ∝ J
4
∏

i=1

(pqi−1
− pqi)

αi−1, (10)
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provided that pq1 > pq2 > pq3 and that 1 + ξ(qi − µ)/σ is positive for each i = 1, 2, 3. J is the
Jacobian of the transformation from (pq1 , pq2 , pq3) to θ = (µ, σ, ξ), namely

J = σ/ξ2
{

∏3

i=1
f(qi)

}

∣

∣

∣

∣

∣

∣

∣

∑

i,j∈{1,2,3}
i<j

(−1)i+j(xixj)
−ξ log(xj/xi)

∣

∣

∣

∣

∣

∣

∣

,

where xi = − log(1− pqi) for i = 1, 2, 3, and f(·) is the density of the generalized extreme value

distribution, so that f(qi) = x1+ξ
i e−xi/σ.

Define xi0 = limξ→0 xi = exp {−(qi − µ)/σ}, for i = 1, 2, 3. At ξ = 0 the prior distribution is
defined by continuity, using

lim
ξ→0

pqi = 1− e−xi0 , i = 1, 2, 3,

and

lim
ξ→0

J = σ/2
{

∏3

i=1
f0(qi)

}

∣

∣

∣

∣

∣

∣

∣

∑

i,j∈{1,2,3}
i<j

(−1)i+j log xi0 log xj0 log(xj0/xi0)

∣

∣

∣

∣

∣

∣

∣

=
1

2σ2

{

∏3

i=1
f0(qi)

}

∣

∣

∣

∣

∣

∣

∣

∑

i,j∈{1,2,3}
i<j

(−1)i+jqiqj(qi − qj)

∣

∣

∣

∣

∣

∣

∣

,

where f0(·) is the density of the Gumbel distribution, so that f0(qi) = xi0e
−xi0/σ. Derivations

of the results given in this section are presented in detail in Section 5.6 of Stephenson (2003).

5 Posterior Distributions

Given our prior density π(θ) and our likelihood L(θ;x) the posterior density π(θ|x) is defined
by equation (1). Computing π(θ|x) directly is problematic because it requires the computation
of the integral

∫

Θ π(θ)L(θ|x) dθ. Markov Chain Monte Carlo (MCMC) techniques can bypass
this difficulty.

The evdbayes package produces a Markov chain∗
θ0, . . . ,θn with equilibrium distribution†

π(θ|x). Loosely speaking, this means that after the chain has been run for a certain length of
time each subsequent sample within the chain will be (approximately) distributed as π(θ|x),
though the samples will not be independent. In this context π(θ|x) is known as the target

distribution of the Markov chain. The user must specify the run length n, and the initial value
θ0 = (µ0, σ0, ξ0). After the Markov chain has been generated, the user must also decide when
equilibrium has been reached by specifying the burn-in period b. The first b samples (including
the initial value) are then discarded from the chain. Features of the posterior distribution are
estimated using θb, . . . ,θn, which we assume to be a stationary sequence of (vector) values with
marginal density π(θ|x). For example, 1

n−b+1

∑n
t=b µt is a consistent (as n → ∞) estimate of the

posterior mean of µ. The dependence between the samples θb, . . . ,θn influences the accuracy of
these estimates. As the dependence becomes stronger, the run length n must be larger in order
to achieve the same precision. Dependence exists both within the output for a single parameter
(autocorrelations) and across parameters (cross-correlations).

∗Loosely speaking, a (discrete-time) Markov chain is a stochastic process unfolding in time so that the past
and future states are independent given the present.

†The equilibrium distribution is the distribution with density π(θ|x), not π(θ|x) itself. We will often refer to
a distribution using the corresponding density function.
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Suppose the initial value of the chain is specified as θ0. Given that the chain is at state θt =
(µt, σt, ξt) at iteration t, the subsequent state θt+1 is generated using the following algorithm.
LN(ν, γ2) denotes the log-normal distribution, with mean exp(ν + γ2/2) and variance exp(2ν +
2γ2) − exp(2ν + γ2), so that X is distributed as LN(ν, γ2) if and only if the logarithm of X is
distributed as N(ν, γ2). The positive values s = (sµ, sσ, sξ) should be specified to ensure that
the chain has desirable properties. They should be large enough to ensure that the proposals
are made throughout the sample space, but small enough to ensure that the proposed values are
accepted often (e.g. Section 6.1).

Propose µ∗ ∼ N(µt, s
2
µ).

Set ∆ = π(µ∗,σt,ξt|x)
π(µt,σt,ξt|x)

.

Set µt+1 = µ∗ with probability min{1,∆}, else set µt+1 = µt.

Propose σ∗ ∼ LN(log σt, s
2
σ).

Set ∆ = π(µt+1,σ∗,ξt|x)
π(µt+1,σt,ξt|x)

σ∗

σt
.

Set σt+1 = σ∗ with probability min{1,∆}, else set σt+1 = σt.

Propose ξ∗ ∼ N(ξt, s
2
ξ).

Set ∆ = π(µt+1,σt+1,ξ∗|x)
π(µt+1,σt+1,ξt|x)

.

Set ξt+1 = ξ∗ with probability min{1,∆}, else set ξt+1 = ξt.

6 Examples

There are five main functions in the evdbayes package. The functions prior.norm, prior.quant
and prior.prob construct the prior distributions presented in Section 4. The function posterior

generates a Markov chain θ0, . . . ,θn with target distribution π(θ|x). The function mposterior

(locally) maximizes π(θ|x), as a function of θ. This may be used to specify the initial value
θ0 = argmaxθ π(θ|x).

This section presents three examples that illustrate these functions. The first and second ex-
amples use the generalized extreme value model of Section 3.1. The first example replicates the
Bayesian analysis of sea level maxima from Section 9.1.3 of Coles (2001). The second example
examines annual maximum temperatures recorded at Oxford, England. The third example uses
the point process characterization of Section 3.2 for daily rainfall observations, following Coles
and Tawn (1994). The datasets used in the first and second examples are available in the evd

package (Stephenson, 2002).

The computations in the following sections were performed using a notebook containing a 1.2GHz
Celeron processor and 256MB RAM. The generation times of each Markov chain are given in
square brackets. The slowest generation time of all the chains generated within this section is
about two seconds per 1000 iterations.

6.1 Port Pirie Sea Level Data

The numeric vector portpirie contains annual maximum sea levels (in metres) recorded at Port
Pirie, South Australia, from 1923 to 1987. It is included in the evd package, and can be made
available using data(portpirie). The data are plotted in Figure 1, which can be reproduced
using the code given below.

> data(portpirie) ; ptp <- portpirie

> plot(1923:1987, ptp, xlab = "year", ylab = "sea level")
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Figure 1: Annual maximum sea levels at Port Pirie, South Australia.

A “naive Bayesian analysis” of the Port Pirie data is performed in Coles (2001, Section 9.1.3).
He uses the word ‘naive’ because he has no external information with which to formulate a prior
distribution and he makes little attempt to ensure that the generated Markov chain has desirable
properties. I will begin by replicating his analysis. I will then examine the generated Markov
chain and repeat the analysis to ensure that the generated chain does have desirable properties.

The prior specified by Coles (2001) can be constructed using the following code. (The function
diag creates a diagonal matrix.)

> mat <- diag(c(10000, 10000, 100))

> pn <- prior.norm(mean = c(0,0,0), cov = mat)

The function prior.norm is used to construct a multivariate normal prior distribution on (µ, log σ, ξ),
with density (7). The off-diagonal elements of the covariance matrix of this distribution are zero,
so the parameters are specified to be independent. The prior is therefore defined by the marginal
distributions µ ∼ N(0, 104), σ ∼ LN(0, 104) and ξ ∼ N(0, 102). The high variances lead to
near-flat marginal priors, which reflect the absence of external information.

The function posterior can now be used to generate a Markov chain θ0, . . . ,θn with target
distribution π(θ|x). Coles (2001) generates a chain of length 1000, using the initial values
θ0 = (5, 1, 0.1) and the proposal standard deviations∗ s = (0.02, 0.1, 0.1). This chain can be
reproduced using the following assignment [1.5 secs].

> n <- 1000 ; t0 <- c(5,1,0.1) ; s <- c(.02,.1,.1)

> ptpmc <- posterior(n, t0, prior = pn, lh = "gev", data = ptp, psd = s)

The data ptp consist of annual maxima, so the generalized extreme value likelihood of Section
3.1 is specified using lh = "gev". The first argument to posterior is the run length. The
second argument is the initial value θ0, and the proposal standard deviations s should be passed
to psd. The prior distribution which we constructed earlier using prior.norm is passed to the
argument prior.

The object ptpmc is a matrix with 1001 rows and 3 columns, containing the Markov chain. The
rows and columns are labelled using iteration numbers and parameter names respectively. The
object also contains an attribute named ar, which is a matrix containing information regarding
the acceptance of proposed values within the MCMC algorithm. The ar attribute is shown
below. It can be printed using attributes(ptpmc)$ar.

∗Strictly speaking, sσ is the standard deviation of the proposal distribution for log σ, not for σ.
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mu sigma xi total

acc.rates 0.75 0.65 0.68 0.69

ext.rates 0.00 0.00 0.03 0.01

The first row contains acceptance rates (i.e. the number of times a proposal was accepted as a
fraction of the run length) for each parameter and for the entire chain. If the acceptance rates are
too low there may be substantial periods during which the chain does not move at all, because
proposals are made that are too far away from the current state. If the acceptance rates are too
high the chain may be exploring only a small fraction of the parameter space, because proposals
are made that are too close to the current state. If the chain is jumping around, exploring all of
the parameter space, we say that it is mixing well.

The proposal standard deviations s = (sµ, sσ, sξ) can be used to tune the acceptance rates.
Higher standard deviations give smaller acceptance rates, and vice-versa. It is difficult to give
general advice on which acceptance rates represent the ideal, because results exist only for
particular classes of target and proposal distributions (e.g. Gelman et al., 1995). The behaviour
of a chain for any given value of s can always be determined by plotting the sampled values.
Acceptance rates of about 40 percent should lead to chains that mix well. The acceptance rates
for this chain are quite large. If the proposal standard deviations were a bit higher, the chain
would have better mixing properties.

The second row of the ar attribute contains the number of times a proposal was made for which
the posterior density estimate was zero, as a fraction of the run length. This occurs when the
upper/lower end point of the generalized extreme value distribution is less/greater than the
largest/smallest data point. If these values are high, either the proposal standard deviations are
too large, or the density of the target distribution is large near the boundary of the parameter
space.

Once a Markov chain has been generated it needs to be analysed to ensure that it has desirable
properties. I recommend that the R package coda is installed for this purpose. This package
includes the function mcmc, which creates an mcmc object that coda can recognize as a Markov
chain. The iterations of the chain, shown in Figure 2, can be plotted using the following snippet.

> ptp.mcmc <- mcmc(ptpmc, start = 0, end = 1000)

> plot(ptp.mcmc, den = FALSE, sm = FALSE)

Figure 2 recreates Figure 9.1 from Coles (2001). The two figures exhibit similar behaviour,
though Coles (2001) plots the iterations of log σ rather than σ. Other differences are due to
sampling variability.

The burn-in period seems to take about b = 300 iterations. Thereafter, the stochastic variations
in the chain seem reasonably homogeneous. The starting value θ0 = (5, 1, 0.1) is relatively poor†,
as it is not close to the centre of the posterior distribution. A good starting value θ0 can be
derived using the function mposterior, which (locally) maximizes π(θ|x). The maximization is
performed in the following snippet.

> maxpst <- mposterior(t0, prior = pn, lh = "gev", data = ptp)

> round(maxpst$par, 2)

[1] 3.87 0.20 -0.05

†I imagine that Coles (2001) deliberately selected a poor starting value, so that the burn-in period would be
clearly depicted within Figure 2.
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Figure 2: MCMC realizations of generalized extreme value parameters in a Bayesian analysis of
the Port Pirie data, recreating Figure 9.1 from Coles (2001).

The arguments of mposterior are the same as those of posterior, except that the first argument
is now the initial value for the optimization. The value returned from mposterior is a list of
the same form as the value returned by the optimization function optim. The component par

within the returned list contains argmaxθ π(θ|x), which can be used as the initial value of the
Markov chain. The above snippet suggests that we take θ0 = (3.87, 0.2,−0.05).

In this example the prior densities are near-flat, reflecting the absence of prior information. It is
therefore approximately true that π(θ|x) ∝ L(θ;x), so we should expect (3.87, 0.2,−0.05) to be
close to maximum likelihood estimates. (In fact, they are the same when rounded to the second
decimal place.) Maximum likelihood estimates‡ often serve as good starting values.

An alternative approach is to generate a (short) Markov chain and examine the output to see
where the posterior density is large. For example, the iterations shown in Figure 2 suggest taking
θ0 ≈ (3.9, 0.2, 0). The initial value can then be used to generate a further (longer) chain. This
is essentially the same as maximizing π(θ|x) using a stochastic optimization routine, such as
simulated annealing. Simulated annealing can be used to maximize π(θ|x) by including the
argument method = "SANN" in the call to mposterior.

Another approach entirely is to take multiple initial values, scattered about the parameter space.
This generates multiple Markov chains which, loosely speaking, can be compared to see if they
eventually produce the same behaviour (Gelman and Rubin, 1992). Multiple chains are discussed
further in Section 7.1.2.

The code below generates the Markov chain again [1.5 secs] using the starting value θ0 =
(3.87, 0.2,−0.05). After some pilot runs, Alec Stephenson decided to take s = (.06, .25, .25).
These values are quite equivalent to those obtain by function ar.choice:

> t0 <- c(3.87,0.2,-0.05); psd <- rep(0.01, 3)

> psd <- ar.choice(init = t0, prior = pn, lh = "gev", data = ptp, psd =

psd, tol = rep(0.02, 3))$psd

> round(psd, 2)

> t0 <- c(3.87,0.2,-0.05) ; s <- c(.06,.25,.25)

> ptpmc <- posterior(n, t0, prior = pn, lh = "gev", data = ptp, psd = s)

‡The functions fgev and fpot in the evd package can calculate maximum likelihood estimates for the models
of Section 3.

11



0 200 400 600 800 1000

3
.8

0
3

.8
5

3
.9

0
3

.9
5

iterations

m
u

0 200 400 600 800 1000

0
.1

6
0

.1
8

0
.2

0
0

.2
2

0
.2

4
0

.2
6

iterations

s
ig

m
a

0 200 400 600 800 1000

−
0

.2
−

0
.1

0
.0

0
.1

0
.2

0
.3

iterations

x
i

Figure 3: MCMC realizations of generalized extreme value parameters in a Bayesian analysis of
the Port Pirie data, using different starting values and proposal standard deviations than those
used to produce the realizations of Figure 2.

> ptp.mcmc <- mcmc(ptpmc, start = 0, end = 1000)

> plot(ptp.mcmc, den = FALSE, sm = FALSE)

Figure 3 shows the iterations of the chain. The starting value θ0 = (3.87, 0.2,−0.05) yields a
smaller burn-in period. The proposal standard deviations s = (.06, .25, .25) lead to improved
mixing properties (although this is difficult to determine from Figures 2 and 3 because of the
different scales on the y-axis).

The properties of the chains produced by posterior can be examined using statistical techniques.
These techniques attempt to assess whether the chain is in equilibrium (or equivalently, whether
the burn-in period is sufficiently long). There are also techniques that determine how long the
chain should be in order to achieve a given aim. Reviews of these techniques are given in Cowles
and Carlin (1996) and Brooks and Roberts (1998). The coda package contains functions that
implement various diagnostics. The following paragraphs demonstrate the diagnostics introduced
by Geweke (1992) and Raftery and Lewis (1992). The diagnostic of Gelman and Rubin (1992),
designed for multiple chains, is illustrated in Section 7.1.2.

The diagnostic of Geweke (1992) is particularly simple. For each parameter, the means of the
first and last parts of the chain are tested for equality. By default, the first 10% and the last 50%
are used. The difference between the two means is divided by its estimated standard error. The
estimation of the standard error attempts to take into account the autocorrelations. If the chain
has reached equilibrium the distribution of each statistic is approximately standard normal. The
code below implements this diagnostic on the Markov chain generated previously, where the first
b = 200 samples are treated as the burn-in period and are discarded using the coda function
window.

> ptp.mcmc <- window(ptp.mcmc, start = 200)

> geweke.diag(ptp.mcmc)

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

mu sigma xi

0.4131 -0.0289 -0.3141
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> geweke.diag(ptp.mcmc, 0.2, 0.4)

Fraction in 1st window = 0.2

Fraction in 2nd window = 0.4

mu sigma xi

0.1067 -0.6257 0.3706

The test statistics do not give any cause for concern. If any of the values are above two in
absolute value, you may wish to increase the burn-in period and repeat the test. This is the
basis for the plot produced by the function geweke.plot.

The diagnostic of Raftery and Lewis (1992) attempts to assess how long the chain should be
in order to achieve a given aim. Specifically, it gives the number of samples that are needed to
estimate a quantile (on each margin) within a certain accuracy with at least probability s. It is
intended for use on short pilot runs. By default the quantile corresponds to the q = 0.025 point
of the distribution function and the probability s = 0.95. The accuracy is defined so that the
area to the left of the specified quantile be within a given margin ±r of q. By default, r = 0.005.

> raftery.diag(ptp.mcmc, r = 0.01, s = 0.75)

Quantile (q) = 0.025

Accuracy (r) = +/- 0.01

Probability (s) = 0.75

Burn-in Total Lower bound Dependence

(M) (N) (Nmin) factor (I)

mu 10 1033 323 3.20

sigma 13 1342 323 4.15

xi 12 1211 323 3.75

The first column gives the additional burn-in that would be useful next time you run the chain.
The recommendations are often small, and appear to be of limited use in practice. The second
column is of greatest interest. It specifies the length of chain (including the additional recom-
mended burn-in, but excluding the 200 iterations already discarded) that is needed to achieve
the designated aim, for each parameter. The third column gives number of samples Nmin that
would be required if those samples were independent. If this number is greater than the length of
the chain being analysed, which in this case is 801, the function simply returns a sentence stating
the value of Nmin. (If the default arguments are used, Nmin = 3746.) The final column gives the
dependence factor, which is the ratio of the two preceding columns. The factor represents the
extent to which the autocorrelation inflates the required sample size. Autocorrelations can be
estimated and plotted using autocorr and autocorr.plot. (There exists similar functions for
cross-correlations.) Large dependence factors occur when strong autocorrelations are present.

The diagnostics within the coda package should not be used as a substitute for the graphical
examination of the sampled values. If you are going to use these diagnostics you should implement
a range of methods, rather than a single test. I also recommend that you take some time
to examine the theoretical details of each diagnostic that you implement. It is important to
emphasize that there are inherent difficulties with all diagnostic procedures. In particular, no
technique can be guaranteed to successfully diagnose convergence. Cowles and Carlin (1996)
point out that many statisticians rely heavily on such diagnostics, if for no other reason than “a
weak diagnostic is better than no diagnostic at all”.
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Figure 4: Marginal posterior density estimates for the generalized extreme value parameters µ,
σ and ξ respectively, in a Bayesian analysis of the Port Pirie data.

The values θb, . . . ,θn (with b = 200 and n = 1000) contained within the object ptp.mcmc can
now be treated as (dependent) samples from the posterior distribution, with density π(θ|x). In
the following code, θb, . . . ,θn are used to estimate features of π(θ|x). The marginal density
estimates, given in Figure 4, are created using plot.

> bwf <- function(x) sd(x)/2

> plot(ptp.mcmc, trace = FALSE, bwf = bwf)

> summary(ptp.mcmc)

Iterations = 200:1000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 801

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

mu 3.87432 0.02683 0.0009479 0.001679

sigma 0.20347 0.02099 0.0007417 0.001299

xi -0.02594 0.09790 0.0034590 0.006264

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

mu 3.8239 3.8562 3.87592 3.88972 3.9281

sigma 0.1624 0.1896 0.20304 0.21612 0.2475

xi -0.2027 -0.0937 -0.03075 0.03272 0.1982

The summary function presents summary statistics for each parameter. The first matrix gives
empirical means and standard deviations. It also gives two consistent (as n → ∞) estimates of the
standard error of the mean. The Naive SE is the usual estimate, namely the empirical standard
deviation divided by the square root of the number of iterations. The Time-series SE is an
estimate that attempts to account for the autocorrelation. The second matrix gives empirical
quantiles. The empirical 100α/2 and 100(1−α/2) percent quantiles form posterior probability
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Figure 5: Annual maximum temperatures at Oxford, England.

intervals, which contain exactly 100(1− α)% of the posterior probability on each margin. The
summary function also gives the iteration numbers, the thinning interval (see Section 7.1.1), the
number of chains (see Section 7.1.2) and the length of the chain.

6.2 Oxford Temperature Data

The numeric vector oxford contains annual maximum temperatures (in degrees Fahrenheit)
recorded at Oxford, England, from 1901 to 1980. It is included in the evd package, and can be
made available using data(oxford). The data are plotted in Figure 5, which can be reproduced
using the code given below.

> data(oxford) ; ox <- oxford

> plot(1901:1980, ox, xlab = "year", ylab = "temperature")

Suppose that we have an expert who is prepared to give us his/her beliefs regarding annual
temperature maxima at Oxford, without reference to the data. We will use the construction in
Section 4.4, involving prior beta distributions for probability ratios. This induces dependence
between the parameters (µ, σ, ξ), and is relatively easy to elicit. On the other hand, it is not very
flexible, having only four hyperparameters with which to define a trivariate distribution. The
remainder of this section uses the following properties. If X ∼ beta(a, b), with a, b > 0, then X
has mean ν = a/(a+ b) and variance ν(1− ν)/(a+ b+ 1). If a, b > 1, the density function has
a mode at (a− 1)/(a+ b− 2).

Using the notation of Section 4.4, suppose we take q1 = 85, q2 = 88 and q3 = 95. The corre-
sponding probabilities are denoted by p85 < p88 < p95. The probability ratios are then given by
p̃85 = p85, p̃88 = p85/p88 and p̃95 = p88/p95. The prior for p̃85 = p85 should be elicited first. In
other words, we need to elicit a prior distribution for the probability that the maximum annual
temperature at Oxford will exceed 85 degrees Fahrenheit. Suppose that we elicit a beta(5,4)
distribution for this probability. This means that we are satisfied that the beliefs of the expert
correspond to the properties defined by this distribution. In particular, our expert believes that
the maximum annual temperature at Oxford will exceed 85 degrees just over half the time, and
he/she is 90% sure that the probability of exceedence is in the interval (0.28, 0.8).

As an aid to the elicitation process I have included a simple function called ibeta. This takes
the arguments mean and var, or the arguments shape1 and shape2, all of which can be vectors.
It returns a vector or matrix containing the mean (mean), variance (var), mode (mode), and
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shape parameters (shape1/shape2) of the beta distribution(s) corresponding to the specified
arguments. The code below gives two examples of its use.

> xx <- ibeta(shape1 = 5, shape2 = 4)

> round(xx, 2)

shape1 shape2 mean var mode

5.00 4.00 0.56 0.02 0.57

> xx <- ibeta(mean = seq(0.1,0.9,0.2), var = 0.03)

> round(xx, 2)

shape1 shape2 mean var mode

1 0.20 1.80 0.1 0.03 NA

2 1.80 4.20 0.3 0.03 0.2

3 3.67 3.67 0.5 0.03 0.5

4 4.20 1.80 0.7 0.03 0.8

5 1.80 0.20 0.9 0.03 NA

The first example shows that the mean and variance of a beta(5,4) random variable are 0.56 and
0.02 respectively. The density function has a mode at 0.57. Quantiles and probabilities of beta
distributions can be calculated using qbeta and dbeta. Densities can be calculated (and hence
plotted) using dbeta. These tools aid elicitation, and help examine fully the elicited distribution.

We have elicited p̃85 ∼ beta(5, 4), so that α1 = 4 and α2+α3+α4 = 5. Suppose our expert thinks
that half the annual maxima that exceed 85 degrees will also exceed 88 degrees. Furthermore,
suppose he/she thinks that one tenth of the annual maxima that exceed 88 degrees will also
exceed 95 degrees. We can equate the means of p̃88 ∼ beta(α3 + α4, α2), and p̃95 ∼ beta(α4, α3)
to these ratios, giving α3 + α4 = 0.5 × 5 = 2.5 and α4 = 0.1 × 2.5 = 0.25. This yields
α = (α1, α2, α3, α4) = (4, 2.5, 2.25, 0.25). The parameter vector α can now be used to construct
the prior distribution.

The elicitation process demonstrated above is not only hypothetical, but also over-simplified.
Elicitation of prior distributions is a notoriously difficult (and controversial) subject. In partic-
ular, you must obtain the expert’s opinion of a number of different quantities in order to ensure
that his/her beliefs can be represented by a specific distribution.

Given that our expert’s opinion can be represented in the form of Section 4.4, with α =
(4, 2.5, 2.25, 0.25), the prior can be constructed as follows. The function prior.prob constructs
a prior distribution with density (10).

> prox <- prior.prob(quant = c(85,88,95), alpha = c(4,2.5,2.25,0.25))

In the Port Pirie data, the prior distribution on (µ, log σ, ξ) was taken to be trivariate normal.
The prior marginal distributions of µ and ξ were therefore normal, and the marginal distribution
of σ was log-normal. The densities of these marginals can easily be calculated (and therefore
plotted) using dnorm and dlnorm. In this example, the prior marginal distributions of (µ, σ, ξ)
are difficult to determine, since they involve the integration of expression (10). We can avoid
this problem using MCMC methods! A Markov chain is generated as before, but now the target
distribution has density π(θ), rather than π(θ|x). This can be implemented by the function
posterior, using the argument lh = "none", meaning “likelihood is none”.

The following code generates two Markov chains using posterior. The first chain [45 secs]
samples from the prior density π(θ). The second chain [18 secs] samples from the posterior density
π(θ|x). Properties of generated Markov chains were discussed in the previous example, and I will
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Figure 6: Marginal prior (dashed lines) and posterior (solid lines) density estimates for µ, σ and
ξ respectively, in a Bayesian analysis of the Oxford data.

not repeat the process in any detail. The chains have run lengths 50 000 and 10 000 respectively.
A larger chain is generated for the prior distribution because the surface is more complex. The
proposal standard deviations, initial values and burn-in periods have been determined by pilot
runs. The function posterior allows the burn-in periods to be specified through the argument
burn. The first burn iterations are discarded from the returned matrix.

> n <- 50000 ; t0 <- c(84, 1, 0) ; s <- c(5, 1, .5) ; b <- 5000

> ox.prior <- posterior(n, t0, prox, lh = "none", psd = s, burn = b)

> n <- 10000 ; t0 <- c(84,4.2,-0.3) ; s <- c(1.25,.2,.1) ; b <- 1000

> ox.post <- posterior(n, t0, prox, lh = "gev", data = ox, psd = s, burn = b)

Marginal prior and posterior density estimates are given in Figure 6. The figure can be produced
using the code given below. The assignment statements within the code prevent the marginal
density estimate of the scale parameter from being positive below zero. Density estimates can
be plotted more easily using the coda package (e.g. Section 6.1). Unfortunately, the tools within
the package do not make it any easier to create plots of the same form as Figure 6.

> plot(density(ox.post[,1],adj=2), xlim = c(55,90), ylim = c(0,0.85))

> lines(density(ox.prior[,1],adj=2), lty = 2)

> plot(density(ox.post[,2],adj=2), xlim = c(0,10), ylim = c(0,1.05))

> prsc <- density(c(ox.prior[,2], -ox.prior[,2]), adj=2)

> prsc <- list(x = prsc$x[prsc$x > 0], y = 2*prsc$y[prsc$x > 0])

> lines(prsc, lty = 2)

> plot(density(ox.post[,3],adj=2), xlim = c(-0.9,0.5), ylim = c(0,6.5))

> lines(density(ox.prior[,3],adj=2), lty = 2)

6.3 Rainfall Data

The numeric vector rainfall contains 20820 daily aggregate rainfall observations (in millimetres)
recorded at a rain gauge in England over a period of 57 years, beginning on a leap year. Three
years contain only missing (NA) values, and the remaining 54 years contain 58 missing values
in total. The vector is included in the evdbayes package, and can be made available using
data(rainfall). The data are plotted in Figure 7, which can be reproduced using the code
given below.
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Figure 7: Daily aggregate rainfall recorded at a rain gauge in England over a period of 57 years.
The dotted horizontal line represents the threshold used for the likelihood (4).

> data(rainfall)

> plot(rainfall, type = "h")

> abline(h = 40, lty = 3)

In this section we will suppose that we have used an expert to elicit a prior distribution using the
construction of Section 4.3. Suppose that we elicited the distributions q̃p1 ∼ gamma(38.9, 1.5),
q̃p2 ∼ gamma(7.1, 6.3) and q̃p3 ∼ gamma(47, 2.6), where pi = 10−i for i = 1, 2, 3.

Quantiles and probabilities of gamma distributions can be calculated using qgamma and pgamma.
Densities can be calculated (and hence plotted) using dgamma. The means and variances of the
elicited distributions can be derived using igamma, as shown below.

> igamma(shape = c(38.9,7.1,47), scale = c(1.5,6.3,2.6))

shape scale mean var mode

1 38.9 1.5 58.35 87.525 56.85

2 7.1 6.3 44.73 281.799 38.43

3 47.0 2.6 122.20 317.720 119.60

The prior can be constructed using prior.quant. The probabilities do not need to be specified
since they are taken as pi = 10−i by default.

> prrain <- prior.quant(shape = c(38.9,7.1,47), scale = c(1.5,6.3,2.6))

The generalized extreme value likelihood is only appropriate for maxima. For the rainfall data,
we use the point process characterization of Section 3.2. This is specified using lh = "pp" in
the call to posterior. The threshold u within the likelihood (4) is specified using the argument
thresh. The value ny is specified using the argument noy. If the parameters are to represent
the generalized extreme value model for annual maxima, ny should be the number of years of
observation (excluding missing values). In this case noy ≈ 54.

The following code generates two Markov chains using posterior. The first chain [10 secs]
samples from the prior density π(θ). The second chain [20 secs] samples from the posterior
density π(θ|x). We take the threshold u = 40. The specification of the threshold is a standard
topic in extreme value theory (e.g. Coles, 2001, Ch 4), and will not be discussed here. Both

18



0 20 40 60 80

0
.0

0
.1

0
.2

0
.3

0
.4

location parameter

0 5 10 15

0
.0

0
.1

0
.2

0
.3

0
.4

scale parameter

0.2 0.4 0.6 0.8

0
2

4
6

8
1

0

shape parameter

Figure 8: Marginal prior (dashed lines) and posterior (solid lines) density estimates for µ, σ and
ξ respectively.

chains have run length n = 10 000 and burn-in period b = 2000. Initial values have been derived
using mposterior, and the proposal standard deviations s have been determined using pilot
runs.

> n <- 10000 ; t0 <- c(50.8, 1.18, 0.65) ; s <- c(25, .35, .07) ; b <- 2000

> rn.prior <- posterior(n, t0, prrain, "none", psd = s, burn = b)

> t0 <- c(43.2, 7.64, 0.32) ; s <- c(2, .2, .07)

> rn.post <- posterior(n, t0, prrain, "pp", data = rainfall, thresh = 40,

noy = 54, psd = s, burn = b)

These chains can be used to estimate features of the prior and posterior distributions. Figure 8
shows estimates of the prior and posterior densities. The figure can be constructed by adapting
the code, given in Section 6.2, that was used to construct Figure 6.

7 Further Topics

This section provides an introduction to more specialist topics. Section 7.1 introduces the concept
of thinning, and discusses the use of multiple Markov chains. Section 7.2 depicts posterior
distributions of generalized extreme value quantiles. Predictive distributions are defined and
illustrated in Section 7.3. Model diagnostics are implemented in Section 7.4, following Gelman
et al. (1995). Three different extensions to the likelihoods of Section 3 are discussed in Section
7.5.

7.1 MCMC Topics

7.1.1 Thinning

Suppose that you create a Markov chain, but you only store every kth iteration. This process is
called thinning. The integer k is called the thinning interval. The iterations that have been
stored, after an initial burn-in period, are (on assumption) sampled from the target distribution
of the original chain, but the dependence between the samples will have been reduced.

Let us consider a more concrete example. Suppose we take the run length n = 1000, the burn-in
period b = 200 and suppose that we only store every fifth (k = 5) iteration. Then we generate the
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161 values θ200,θ205, . . . ,θ1000. Because the values are only stored after every fifth iteration, they
are not as dependent as the 161 values θ200,θ201, . . . ,θ360, so they contain more information,
and can estimate features of the target distribution more precisely. However, by thinning a chain
you always loose information, because the 801 values θ200,θ201, . . . ,θ1000 are more informative
than θ200,θ205, . . . ,θ1000. At this point, you may be asking why you would ever want to thin a
chain. The main advantage of thinning a chain is one of storage. If you have a limited amount of
storage space you can use thinning to throw away samples in such a way that only the minimum
of information is wasted.

Thinning can be implemented by passing k to the argument thin of the function posterior.
The following code continues the example of Section 6.3. The chain rn.post2 is generated [40
secs] in the same manner as rn.post, except that we use a run length of n = 20 000, and store
only every fifth iteration.

> n <- 20000 ; t0 <- c(43.2, 7.64, 0.32) ; s <- c(2, .2, .07) ; b <- 2000

> rn.post2 <- posterior(n, t0, prrain, lh = "pp", data = rainfall, thresh = 40,

noy = 54, psd = s, burn = b, thin = 5)

> rn.post2

mu sigma xi

2000 43.00410 8.906956 0.3125027

2005 44.13408 8.599823 0.3489489

2010 44.13408 9.526747 0.3054351

[...]

19995 42.21891 7.679970 0.3158895

20000 44.50139 9.801986 0.2814907

7.1.2 Multiple Chains

In Section 6.1 we discussed the possibility of generating multiple Markov chains, with initial
values scattered about the parameter space. This is the only way to ensure that the chain or
chains have fully explored all regions of high probability, particularly when the target distribution
is complex. I recommend generating a small number of chains and examining the iterations
graphically. The burn-in period for each chain can easily be identified using this approach. In
particular, it is possible to determine whether the chains have reached equilibrium (or not, in
which case the burn-in period is larger than the current run length), which is very difficult to
determine using only a single chain. On the other hand, many iterations will be discarded as there
will often be a large burn-in period associated with each chain. Furthermore, if a single chain
with run length 5 000 is generated in preference to five chains with length 1 000, the last 4 000
iterations will be sampled from a distribution that is likely to be closer to the target distribution
than any of the samples that would have been generated in any of the smaller chains.

Continuing the example of Section 6.3, suppose that we generate [2 secs each] the chains rna, rnb
and rnc in the same manner as rn.post, except that we use the starting values θa

0 = (40, 11, 0.2),
θ
b
0 = (50, 5, 0.4) and θ

c
0 = (32, 6, 0.3). I have also reduced the run length to n = 1000 and omitted

the burn-in period (b = 0). The iterations of the location parameter for each of the three chains
are plotted in Figure 9.

The diagnostic of Gelman and Rubin (1992) is designed for multiple chains that have been run
with starting values which are over-dispersed relative to the target distribution. (The starting
values in this example have been arbitrarily selected at points with low posterior density.) The
diagnostic is implemented in coda, and can be performed using the following code. The function
mcmc.list creates an object that coda can recognize as a list of Markov chains.
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Figure 9: Iterations of the location parameter for each of the three chains rna, rnb and rnc. The
starting values are µa

0 = 40, µb
0 = 50 and µc

0 = 32.

> rn.mcl <- mcmc.list(mcmc(rna), mcmc(rnb), mcmc(rnc))

> gelman.diag(rn.mcl, transform = TRUE)

Potential scale reduction factors:

Point est. 97.5% quantile

[1,] 1.03 1.10

[2,] 1.03 1.09

[3,] 1.03 1.09

Multivariate psrf: 1.03

The diagnostics are based on estimates of the variance of the (margins of the) target distribution.
If the chains have not reached equilibrium, the mean of the empirical variance within each chain
(for each parameter) will underestimate the variance, because each chain will not have had the
time to range over the target distribution. Similarly, the empirical between-chain variance (the
variance of the empirical means of each chain, multiplied by the run length) will overestimate
the variance, because the starting values are over-dispersed relative to the target distribution.
The “point estimate” potential scale reduction factors (PSRF) are essentially the within-chain
divided by the between-chain estimates of variance. If these factors are substantially larger than
one, the simulated sequences may not have made a full tour of the target distribution. Gelman
and Rubin (1992) recommend increasing the run length n until all the reduction factors are close
to one, and then taking b = n/2, thus discarding the first half of the chain. This is the basis
for the plot generated by gelman.plot. The condition of being “close” to one depends on the
problem at hand; for most examples, values below 1.2 are acceptable (Gelman et al., 1995).

The “97.5% quantile” PSRF is constructed in a similar manner, except that the variance ratio
is replaced by the 97.5% quantile of its (estimated) sampling distribution. The multivariate
potential scale reduction factor (MPSRF), due to Brooks and Gelman (1997), generalizes the
original “point estimate” method to consider all parameters simultaneously.

The values shown here are sufficiently close enough to one to be acceptable. Incidentally, using
the run length n = 10 000, as was used in Section 6.3, produced reduction factors that were all
equal to one (to the number of decimal places printed by gelman.diag).

As with all diagnostics, there are criticisms. The diagnostic assumes that the initial values are
sampled from a distribution that is over-dispersed relative to the target distribution. In practice
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the target distribution is unknown, so this is difficult∗ to achieve. The diagnostic also relies on a
normal approximation to the samples of each parameter within the chain. The parameters can
be transformed so that the normal approximation is more appropriate, but it remains a criticism.

7.2 Distributions of Quantiles

The Markov chains generated can be transformed in order to estimate other quantities of inter-
est. In particular, the distributions of quantiles can be estimated. Let F be the GEV or GP
distribution function, and let F (qp) = 1− p, so that

qp(θ) =

{

µ− σ
ξ [1− y−ξ] ξ 6= 0

µ− σ log y ξ = 0,

where y =

{

− log(1− p) if F is the GEV distribution function

p if F is the GP distribution function

is the quantile corresponding to the upper tail probability p. For each p, the samples θb, . . . ,θn

can be substituted into the above expression to yield qp(θb), . . . , qp(θn). We can use these values
to estimate features of the prior and posterior distributions of qp(θ) in the same way that the
values θb, . . . ,θn have been used to estimate features of the prior and posterior distributions of
θ.

Continuing the example of Section 6.3, prior and posterior density estimates of the quantiles
q0.1, q0.01 and q0.001 are shown in Figure 10. These are density estimates for the value that is
exceeded by the annual maximum of daily rainfalls with probabilities 0.1, 0.01 and 0.001. The
estimates can be plotted using the following code.

> poq <- mc.quant(rn.post, p = c(.1,.01,.001), lh = "gev")

> prq <- mc.quant(rn.prior, p = c(.1,.01,.001))

> plot(density(poq[,1], adj = 2), xlim = c(20,100), ylim = c(0,.11))

> lines(density(prq[,1], adj = 2), lty = 2)

> plot(density(poq[,2], adj = 2), xlim = c(45,200), ylim = c(0,.05))

> lines(density(prq[,2], adj = 2), lty = 2)

> plot(density(poq[,3], adj = 2), xlim = c(125,350), ylim = c(0,.018))

> lines(density(prq[,3], adj = 2), lty = 2)

The function mc.quant takes three arguments. The first should be an object returned from
posterior, which contains the values θb, . . . ,θn. If the second argument p = p, the function
returns the vector qp(θb), . . . , qp(θn). If p = (p1, . . . pm) is a vector of length m, the function
returns a matrix with jth column qpj (θb), . . . , qpj (θn), for j = 1, . . . ,m. The third argument is
a character string which specifies the likelihood function.

Although Figure 10 gives us density estimates for q0.1, q0.01 and q0.001, it would be useful to
have a graphical summary of the distributions of qp for all (small) values of p. This can be done
using a return level plot. A return level plot is a standard tool in extreme value theory. In
the terminology of extreme value theory, return levels are simply quantiles. We would say that
the value qp is the return level associated with the return period 1/λp, where λ is the mean
number of events in a year. That is, for example, with block maxima, λ is obviously equal to 1.

∗But not impossible. The target distributions can be approximated using (mixtures of) multivariate normal
or multivariate t distributions on (µ, log σ, ξ), the parameters of which can be estimated using the output of
mposterior, upon setting hessian = TRUE.
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Figure 10: Prior (dashed lines) and posterior (solid lines) density estimates for the value (in
millimetres) that is exceeded by the annual maximum of daily rainfalls with probabilities 0.1,
0.01 and 0.001 respectively.
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Figure 11: Return level plots of prior (left panel) and posterior (right panel) distributions for qp.
The curves within the plots represent medians (solid lines) and intervals containing 90% of the
prior/posterior probability (dashed lines). Dotted vertical lines are drawn at p = 0.1, 0.01, 0.001.

A return level plot is a plot of qp verses −1/λ log(1 − p), for fixed values of (µ, σ, ξ), typically
maximum likelihood estimates. The x-axis is plotted on a logarithmic scale. This emphasizes
the values in the upper tail (small p), and makes the plot linear when ξ = 0, with slope σ and
intercept µ. For small p, −1/λ log(1−p) ≈ 1/λp, so the return level plot is approximately a plot
of return levels verses return periods.

In our Bayesian framework, we can use a return level plot to illustrate the distributions of quan-
tiles, or equivalently, return levels. For each p there is a corresponding sample qp(θb), . . . , qp(θn).
We take a summary statistic for each sample, say the median, which we denote by q̌p. We can
then plot q̌p verses −1/ log(1 − p), again using a logarithmic scale on the x-axis. This gives us
a curve of the medians of the prior/posterior distributions of qp. We can also plot curves for
other summary statistics, such as the empirical sample quantiles corresponding to the percentage
points 0.05 and 0.95, which yield intervals containing 90% of the prior/posterior probability, for
each qp. Return level plots of this form are given in Figure 11. The plots depict the prior and
posterior distributions of qp. They can be created using rl.pst(rn.prior, lh = "gev") and
rl.pst(rn.post, lh = "gev") respectively.

For a specific value of p, it may help to imagine a vertical line superimposed on the return level
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plot at −1/ log(1−p) ≈ 1/p. The estimates for the quantiles of the prior/posterior distribution of
qp are given by the y-coordinate of the intersection of this line with the plotted curves. In Figure
11 we have added vertical lines at p = 0.1, 0.01, 0.001, corresponding to the density estimates
given in Figure 10.

7.3 Predictive Distributions

The primary objective of an extreme value analysis is often prediction. Let z denote a future
observation with density function f(z|θ), where θ ∈ Θ. The posterior predictive density of
z, given observed data x, is

f(z|x) =

∫

Θ
f(z|θ)π(θ|x) dθ. (11)

If we are to observe a future observation z but we do not observe any data x, our predictions
are based on the prior predictive density

f(z) =

∫

Θ
f(z|θ)π(θ) dθ.

Predictive distributions reflect the uncertainty in the model and the uncertainty due to the
variability of future observations.

Let Z ∼ GEV(θ), where θ = (µ, σ, ξ). Using expression (11), the posterior predictive distribution
of a future observation z is given by

Pr(Z ≤ z|x) =

∫

Θ
Pr(Z ≤ z|θ)π(θ|x) dθ,

where Pr(Z ≤ z|θ) is the generalized extreme value distribution (2), evaluated at z. The prior
predictive distribution Pr(Z ≤ z) is defined in a similar manner, replacing the posterior density
π(θ|x) with the prior density π(θ). Using our (prior and posterior) Markov chains θb, . . . ,θn,
the predictive distributions can be estimated using

1

n− b+ 1

n
∑

i=b

Pr(Z ≤ z|θi). (12)

Suppose that Pr(Z > z|x) = p, or that Pr(Z > z) = p, so that z is the return level corresponding
to the return period 1/p. For each value of z, we can estimate p using expression (12). This
information can be depicted in a return level plot (see Section 7.2). In other words, we can plot
z verses the estimated values of −1/ log(1− p) ≈ 1/p, using a logarithmic scale on the x-axis.

Continuing the example of Section 6.3, the lower curves within the return level plots of Figure 12
depict the prior and posterior predictive distributions, as described above. It may help to imagine
a horizontal line superimposed on a return level plot at a specific value z. The x-coordinate of
the point at which this line crosses the lower curve is (for sufficiently large z) approximately the
inverse of the prior/posterior probability that the maximum daily rainfall over the next year will
exceed z.

Let ZL be the maximum daily rainfall over a future period of L years. The predictive distributions
Pr(ZL ≤ z) and Pr(ZL ≤ z|x) can similarly be estimated using

1

n− b+ 1

n
∑

i=b

Pr(Z ≤ z|θi)
L,

which reduces to expression (12) when L = 1. The curves on the return level plots of Figure 12
depict the prior and posterior distributions of ZL, for L = 1, 2, 5. The function rl.pred creates
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Figure 12: Return level plots of prior (left panel) and posterior (right panel) predictive distribu-
tions. The curves within the plots represent predictive distributions for maximum daily rainfall
over a future period of one (lower), two (middle) and five (upper) years.

return level plots for predictive distributions. Figure 12 can be created using the following code.
The values of L should be passed to the argument period. The vector qlim represents the
quantiles at which the return level plot is evaluated.

> rl.pred(rn.prior, period = c(1,2,5), qlim = c(0,500), lh = "gev")

> rl.pred(rn.post, period = c(1,2,5), qlim = c(30,500), lh = "gev")

7.4 Model Diagnostics and Sensitivity Analysis

Any analysis should include some check of the adequacy of the fit of the model to the data, and
of the plausibility of the model for the purposes for which it will be used. In a Bayesian context,
the model refers to both the prior distribution π(θ) and the likelihood L(θ;x).

In practice, additional information is often available that is not included formally in the likelihood
or the prior distribution. If this information suggests that posterior inferences are false, then more
effort should be made to incorporate this information within the model. We can perform informal
diagnostic procedures by comparing posterior distributions and posterior predictive distributions
with aspects of reality that are not captured by the model. If there are any discrepancies, the
model should be extended to include these aspects. Some possible extensions are discussed in
Section 7.5.

A more formal diagnostic procedure compares the posterior predictive distribution to the data
that have been observed (Gelman et al., 1995). The basic technique is simple. We simulate
samples from the posterior predictive distribution. These samples are then compared to the
original data. Systematic discrepancies between the samples and the data correspond to features
that are poorly fitted by the model. A balanced discussion of the advantages and disadvantages
of this approach is given by Bayarri and Berger (1999, 2000). Further examples are given in
Gelman et al. (1996).

Let us consider a specific example. Suppose we have data x = (x1, . . . , xm), which we assume
to be observed values of independent and identically distributed GEV(θ) random variables. We
need to simulate a sample from the posterior predictive distribution to which the data can be
compared. This is done by generating m GEV(θ) random variables, where θ is sampled from the

posterior distribution. Our Markov chain gives us n− b+ 1 values θb, . . . ,θn, sampled from the
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Figure 13: The left panel shows a histogram of the annual maxima of daily rainfall. The remaining
three panels show histograms of samples from the posterior predictive distribution.

posterior distribution. This leads to n− b+ 1 samples of length m that can be compared to the
actual data. If the point process likelihood (4) is used, the n − b + 1 samples can be compared
to the period maxima derived from the actual data. Figure 13 demonstrates this process using
the rainfall data from the example of Section 6.3. The plot on the left is a histogram of the
annual maxima of daily rainfalls. The remaining three plots depict samples from the posterior
predictive distribution of annual maxima. They can be created using the following code, where
the vector rainmax is constructed to contain the 54 annual rainfall maxima. The code includes
the rgev simulation function, which is available in the evd package.

> yrs <- c(rep(c(366,365,365,365), 14), 366)

> yrs <- rep(1:57, yrs)

> myrs <- (yrs %in% c(32,38,42))

> rainmax <- tapply(rainfall[!myrs], yrs[!myrs], max, na.rm = TRUE)

> reprn <- cbind(matrix(0, nrow = 54, ncol = 3), rainmax)

> for(i in 1:3) {

j <- 1000*(i-1) + 1

reprn[,i] <- rgev(54, rn.post[j,1], rn.post[j,2], rn.post[j,3])

}

> range(reprn) ; par(mfrow = c(2,2))

> for(i in 1:4) hist(reprn[,i], freq = FALSE, breaks = seq(30,130,10))

The three samples from the posterior predictive distribution are generated using the values θ2000,
θ3000 and θ4000 from the Markov chain rn.post. There are no clear systematic discrepancies
between the samples and the data.

The code can easily be extended to create n − b + 1 posterior predictive samples using all the
values θb, . . . ,θn, where b = 2000 and n = 10000. It is difficult to compare 8001 samples to
the actual data using only graphical methods. Instead, we can define some function of the data
T (·). We can then calculate the number of samples from the posterior predictive distribution
for which the test statistic T (·) is greater than that for the actual data. In other words, if the
replications are denoted by x

l, for l = b, . . . , n, we define p to be the proportion of the n− b+ 1
simulations for which T (xl) > T (x). If the value of p is close to zero or one, the test statistic
T (·) corresponds to a feature that is poorly fitted by the model (Gelman et al., 1995). The test
statistic T (·) should be chosen to reflect aspects of the model that are relevant to the purposes
to which the inference will be applied. In particular, T (x) = maxj xj will often be of particular
importance for extreme value models.
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Figure 14: Histograms of test statistics of 8001 samples from the posterior predictive distribution.
From left to right, the statistics are the largest value, the smallest value, the mean and the
standard deviation. The corresponding values for the actual data are represented by vertical
lines. The value p is given within each plot.

The plots given in Figure 14 demonstrate this process, taking T (x) as the largest value, the
smallest value, the average and the standard deviation. The plot corresponding to T (x) =
maxj xj can be created using the following code. The remaining plots can be constructed in a
similar manner. None of the four test statistics yield a value of p close to zero or one.

> reprn <- matrix(0, nrow = 54, ncol = 8001)

> for(i in 1:8001)

reprn[,i] <- rgev(54, rn.post[i,1], rn.post[i,2], rn.post[i,3])

> repmax <- apply(reprn, 2, max)

> hist(repmax, freq = FALSE) ; abline(v=max(rainmax), lwd = 3)

> pv <- round(sum(repmax > max(rainmax))/8001, 2)

> text(300,.006, paste("p =", pv))

It is often the case that more than one model provides an adequate fit to the data. Sensitivity
analysis determines by what extent posterior inferences change when alternative models are used.
Alternative models may differ in the likelihood, or in terms of prior specification. The basic
method of sensitivity analysis is to fit several models to the same problem. Posterior inferences
from each model can then be compared. Posterior inferences will typically include marginal
posterior distributions of the parameters (µ, σ, ξ), posterior distributions of GEV quantiles and
posterior predictive distributions. The sensitivity of the marginal posterior density of the shape
parameter ξ is often of particular interest.

7.5 Model Extensions

This section illustrates three extensions to the likelihoods of Section 3. Section 7.5.1 generalizes
both the GEV and point process models to a frequently used form of non-stationarity. Section
7.5.2 discusses the implementation of a time-varying threshold within the point process charac-
terization. Section 7.5.3 extends the GEV likelihood to incorporate upper order statistics. The
likelihoods presented in this section are defined by continuity when ξ = 0.

7.5.1 Linear Trend for Location Parameter

The generalized extreme value log-likelihood (3) is based on the assumption that the data to
be fitted are the observed values of independent random variables X1, . . . , Xn, where Xi ∼
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GEV(µ, σ, ξ) for each i = 1, . . . , n. This assumption can be extended to Xi ∼ GEV(µi, σ, ξ),
where

µi = ζ + ηti.

The parameters (ζ, η) are to be estimated, and the vector t = (t1, . . . , tn) is specified by the user.
It is assumed that t is approximately centred and scaled. If there is a linear trend present in
the data, ti should be some centred and scaled version of the time of the ith observation. The
log-likelihood (3) is extended to

−n log σ − (1 + 1/ξ)

n
∑

i=1

log{1 + ξ (xi − µi) /σ} −

n
∑

i=1

{1 + ξ (xi − µi) /σ}
−1/ξ .

The extension of the Poisson process log-likelihood (4) is similar. Recall that nu of the n obser-
vations x1, . . . , xn exceed the threshold u, and x(i) denotes the ith exceedence, for i = 1, . . . , nu.
The original log-likelihood is

−nu log σ − ny

{

1 + ξ

(

u− µ

σ

)}−1/ξ

+

−

(

1 +
1

ξ

) nu
∑

i=1

log

{

1 + ξ

(

x(i) − µ

σ

)}

, (13)

provided that 1 + ξ(x(i) − µ)/σ for i = 1, . . . , nu are positive. We again take µi = ζ + ηti, for
i = 1, . . . , n. Let µ(i) denote the location parameter that corresponds to the ith exceedence x(i).

Then the log-likelihood is extended† to

−nu log σ −
ny

n

n
∑

i=1

{

1 + ξ

(

u− µi

σ

)}−1/ξ

+

−

(

1 +
1

ξ

) nu
∑

i=1

log

{

1 + ξ

(

x(i) − µ(i)

σ

)}

,

provided that 1 + ξ(x(i) − µ(i))/σ for i = 1, . . . , nu are positive.

To incorporate the linear trend term within a Bayesian analysis, a prior π(θ) must be specified
on all four parameters θ = (ζ, σ, ξ, η). The construction of the prior proceeds in two stages.
Firstly, a prior is constructed on (ζ, σ, ξ), using one of the techniques given in Section 4. Then
we specify an independent prior normal distribution for η, with mean zero (since the vector t

should be centred) and standard deviation trendsd, which is specified by the user.

When calling the function posterior, the initial value init must be extended to θ0 = (ζ0, σ0, ξ0, η0),
and the proposal standard deviations must be extended to s = (sζ , sσ, sξ, sη). The vector t should
be specified using the argument trend.

Continuing the example of Section 6.3, the following code generates Markov chains [13 and 32
secs respectively] with target distributions π(θ) and π(θ|x), where θ = (ζ, σ, ξ, η). The initial
values were derived using mposterior. The period 1932− 1988 contains 20820 days, the 6576th
of which is 1st January 1950. The trend parameter t is therefore specified so that ζ represents the
location parameter on 1st January 1950 and η represents the increase (or decrease, if negative)
over a period of 40 years (14610 days). We take trendsd = 10, representing a fairly flat marginal
prior for η.

> shape <- c(38.9,7.1,47) ; scale <- c(1.5,6.3,2.6)

> prrain2 <- prior.quant(shape = shape, scale = scale, trendsd = 10)

> n <- 10000 ; t0 <- c(50.8,1.18,0.65,0) ; s <- c(25,.35,.07,25) ; b <- 2000

†The term 1

n

∑n
i=1

{1 + ξ(u − µi)/σ}
−1/ξ is an approximation to an integral. Since n is often very large, the

package (by default) calculates 1

|b|

∑
i∈b{1 + ξ(u − µi)/σ}

−1/ξ for an appropriate subset b ⊂ {1, . . . , n}, with

|b| << n. This behaviour can be overridden by setting exact = TRUE. This also applies to the likelihoods of
Section 7.5.2.
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Figure 15: Marginal prior (dashed line) and posterior (solid line) density estimates for the
generalized extreme value parameters ζ, σ, ξ and η respectively, in a Bayesian analysis of the
rainfall data.

> rn.prior2 <- posterior(n, t0, prrain2, lh = "none", psd = s, burn = b)

> t0 <- c(42.9,7.61,0.32,1) ; s <- c(2,.2,.07,4) ; tt <- (1:20820 - 6576)/14610

> rn.post2 <- posterior(n, t0, prrain2, lh = "pp", data = rainfall, thresh = 40,

noy = 54, trend = tt, psd = s, burn = b)

The marginal prior and posterior density estimates are shown in Figure 15. The marginal pos-
terior density for η is approximately normal, with mean 1 and standard deviation 1.9. An
increasing trend of one millimetre every 40 years does not represent a trend of any significance.
Consequently, the prior and posterior distributions for (ζ, σ, ξ) are almost identical to those for
(µ, σ, ξ) given in Figure 8.

7.5.2 Variable Thresholds

In the example of Section 6.3, the threshold for the Poisson process likelihood (13) was chosen to
be u = 40. We can extend this idea to allow variable thresholds. In other words, the threshold
u can be a vector of length n, containing one value for each observation. The observation xi is
therefore an exceedence only if xi > ui. Let x(i) denote the ith exceedence. The log-likelihood
is extended to

−nu log σ −
ny

n

n
∑

i=1

{

1 + ξ

(

ui − µ

σ

)}−1/ξ

+

−

(

1 +
1

ξ

) nu
∑

i=1

log

{

1 + ξ

(

x(i) − µ

σ

)}

,

provided that 1+ξ(x(i)−µ)/σ for i = 1, . . . , nu are positive. This likelihood can be implemented
by passing a vector of length n to the argument thresh. If a shorter vector is passed to thresh,
it is replicated until a vector of length n is created.

A linear trend term can also be included in the analysis, using the methods outlined in Section
7.5.1. In this case, the log-likelihood becomes

−nu log σ −
ny

n

n
∑

i=1

{

1 + ξ

(

ui − µi

σ

)}−1/ξ

+

−

(

1 +
1

ξ

) nu
∑

i=1

log

{

1 + ξ

(

x(i) − µ(i)

σ

)}

.

7.5.3 Order Statistics

Due to an asymptotic argument (e.g. Coles, 2001) the generalized extreme value log-likelihood
(3) is often used when the data x consists of maxima from some underlying process. Suppose that
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the data x consists not only of maxima, but of the r largest order statistics. Specifically, suppose

that x = (x
(1)
1 , . . . , x

(r1)
1 , x

(1)
2 , . . . , x

(r2)
2 , . . . , x

(rm)
m ), where (x

(1)
i , . . . , x

(ri)
i ) are the largest ri order

statistics from year/period i, for i = 1, . . . ,m. It will often be the case that r1 = · · · = rm = r.
The same asymptotic argument used to justify the log-likelihood (3) for maxima leads to the
log-likelihood for order statistics

−

(

m
∑

i=1

ri

)

log σ −

m
∑

i=1

{

1 + ξ

(

x
(ri)
i − µ

σ

)}−1/ξ

−

(

1 +
1

ξ

) m
∑

i=1

ri
∑

k=1

log

{

1 + ξ

(

x
(k)
i − µ

σ

)}

,

provided that 1 + ξ(x
(k)
i − µ)/σ is positive for all i = 1, . . . ,m and k = 1, . . . , ri. A linear trend

term can also be included in the analysis, using the methods outlined in Section 7.5.1. In this
case, the log-likelihood becomes

−

(

m
∑

i=1

ri

)

log σ −
m
∑

i=1

{

1 + ξ

(

x
(ri)
i − µi

σ

)}−1/ξ

−

(

1 +
1

ξ

) m
∑

i=1

ri
∑

k=1

log

{

1 + ξ

(

x
(k)
i − µi

σ

)}

,

where µi = ζ + ηti for i = 1, . . . ,m.

The number of order statistics used within each year/period comprises a bias-variance trade-off:
small values of r generate few data leading to high variance, whereas large values are likely
to violate the asymptotic support for the model, leading to bias. The considerations involved
in this choice are similar to those involved in the choice of threshold for the point process
characterization. In practice, it is usual to select the ri as large as possible, subject to ad-
equate model diagnostics (Coles, 2001). For use in the evdbayes package, data of the form

(x
(1)
1 , . . . , x

(r1)
1 , x

(1)
2 , . . . , x

(r2)
2 , . . . , x

(rm)
m ) should be stored in a numeric matrix with m rows and

max{r1, . . . , rm} columns. The (i, j)th entry should contain x
(j)
i if j ≤ ri and NA otherwise. If

no order statistics are available within a particular year, the corresponding row should contain
only NA values.

The numeric matrix venice contains the 10 largest sea levels (in centimetres) within each year
in Venice for the period 1931–1981, except for the year 1935 in which only the six largest mea-
surements are available. It is included in the evd package, and can be made available using
data(venice).

The data are plotted in Figure 16, which can be reproduced using matplot(1931:1981, venice).
Figure 16 gives strong visual evidence for an increasing trend. We explicitly model this trend
using µi = ζ + ηti for i = 1, . . . ,m. (There also appears to be some cyclicity in the series, which
we do not attempt to model.) We perform a naive Bayesian analysis, taking near-flat priors that
reflect the absence of external information, in a similar manner to Section 6.1. The following
code generates a Markov chain [40 secs] with target distribution π(θ|x), where θ = (ζ, σ, ξ, η).
The likelihood can be specified by setting lh = "os", meaning “likelihood is order statistics”.
We take a run length n = 10000, a burn-in period b = 2000 and a thinning interval k = 5. The
starting value has been derived using mposterior. The trend vector t = (t1, . . . , tm) is specified
so that ζ represents the location parameter in 1950 and η represents the increase (or decrease, if
negative) in the location parameter over a period of 10 years. The proposal standard deviations
have, as usual, been determined by pilot runs.

> mat <- diag(c(10000, 10000, 100))

> pv <- prior.norm(mean = c(0,0,0), cov = mat, trendsd = 100)

> t0 <- c(104, 11.7, -0.06, 0.48) ; tt <- (1:51 - 20)/10

> v.post <- posterior(10000, t0, pv, lh = "os", data = venice, trend = tt,

psd = c(1.5, .05, .03, 1), burn = 2000, thin = 5)

30



1930 1940 1950 1960 1970 1980

8
0

1
0

0
1

2
0

1
4

0
1

6
0

1
8

0

year

s
e

a
 l
e

v
e

l 
(c

m
)

Figure 16: The 10 largest sea levels within each year in Venice for the period 1931–1981.
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Figure 17: Marginal posterior density estimates for the generalized extreme value parameters ζ,
σ, ξ and η respectively, in a Bayesian analysis of the venice data, using the ten largest (solid
line) and five largest (dashed line) values within each year.
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The marginal posterior density estimates are depicted by the solid lines within Figure 17. The
dashed lines give marginal posterior density estimates under the same model, but using only
the five largest values within each year. The variances of the marginal posterior distributions
inevitably increase when fewer order statistics are used.

8 Reversible Markov Chains

8.1 Theoretical features

Reversible Markov chains are useful tools to perform Bayesian analysis where the dimension-
ality of the parameter vector is typically not fixed. As an application, Stephenson and Tawn
(2004) introduced an extended model that explicitly allocates a non-zero probability to the Gum-
bel/Exponential type. More generally, we can allocate a non-zero probability pξ to a fixed shape
parameter value ξFix. Thus, we can define a sub-space Θ0 of the parameter space Θ by:

Θ0 =
{

θ = (µ, σ, ξ) : µ ∈ R, σ ∈ R
+
∗ , ξ = ξFix

}

The prior must be defined to give probability pξ on the sub-space Θ0. That is:

π(θ) =

{

(1− pξ)πc(θ) for θ ∈ Θ\Θ0

pξπξFix
(θ) for θ ∈ Θ0

(14)

where πξFix
(θ) = πc(µ, σ, ξFix)/

∫

µ,σ πc(µ, σ, ξFix)dµdσ for θ ∈ Θ0 and πc is a conventional prior
distribution as introduced in Section 4. Note that the latter integral can be easily evaluated by
standard numerical integration methods.

The proposed algorithm must deal with two dimensional change: a change to Θ0 from Θ\Θ0

space and vice-versa. These two types of special moves must be defined cautiously. In particular,
quantiles associated to probability of non exceedance p are set to be equal for state θt and proposal
θ∗, p being fixed.

For a proposal move to Θ\Θ0 from Θ0, i.e., ξt = ξFix and a proposal shape ξ∗ 6= ξFix, the proposal
is to change θt = (µt, σt, ξt) to θ∗ = (µ∗, σ∗, ξ∗) where

µ∗ = µt (15a)

σ∗ = σt
ξ∗(y

−ξt − 1)

ξt(y−ξ∗ − 1)
(15b)

ξ∗ ∼ N(ξ̃, s2ξ) (15c)

where y = 1− p, p being fixed, ξ̃ is taken to be the mode of the marginal distribution for ξ when
there is no mass on Θ0 (Stephenson and Tawn, 2004), and sξ is the standard deviation selected
to give good mixing properties to the chain. As it is usually the case with Metropolis updates,
this move is accepted with probability min(1,∆) where

∆ =
π(µ∗, σ∗, ξ∗|x)

π(µt, σt, ξFix|x)

pξ
1− pξ

[

φ(ξ∗; ξ̃, s
2
ξ)JξFix

(ξ∗)
]−1

(16)

where φ(·;m, s2) denotes the density function of the Normal distribution with mean m and
variance s2, and JξFix

is the Jacobian of the parameter transformation for quantile matching,
that is:

JξFix
(ξ) =

ξFix
ξ

y−ξ − 1

y−ξFix − 1
(17)
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If the move is accepted, then θt+1 = (µ∗, σ∗, ξ∗) else θt+1 = θt.

For a proposal move to Θ0 from Θ\Θ0, i.e., ξt = ξFix and a proposal shape ξ∗ 6= ξFix, the proposal
is to change θt = (µt, σt, ξt) to θ∗ = (µ∗, σ∗, ξ∗) where

µ∗ = µt (18a)

σ∗ = σt
ξ∗(y

−ξt − 1)

ξt(y−ξ∗ − 1)
(18b)

ξ∗ = ξFix (18c)

This move is accepted with probability min(1,∆) where

∆ =
π(µ∗, σ∗, ξFix|x)

π(µt, σt, ξt|x)

1− pξ
pξ

φ(ξt; ξ̃, s
2
ξ)JξFix

(ξt) (19)

If the move is accepted, then θt+1 = (µ∗, σ∗, ξ∗) else θt+1 = θt.

Currently, these moves are the only available. The codes will be rewritten to allow users to define
their own moves.

8.2 Application

In this subsection, we give an illustrative application of reversible jumps Markov chains. For this
purpose, we consider the application on the dataset rainfall - see section 6.3.

First, perform a conventional Bayesian analysis.

> prrain <- prior.quant(shape = c(38.9,7.1,47), scale = c(1.5,6.3,2.6))

> n <- 10000 ; t0 <- c(50.8, 1.18, 0.65) ; s <- c(25, .35, .07) ; b <- 2000

> t0 <- c(43.2, 7.64, 0.32) ; s <- c(2, .2, .07)

> rn.post <- posterior(n, t0, prrain, "pp", data = rainfall, thresh = 40,

noy = 54, psd = s, burn = b)

Thus, from this conventional Bayesian analysis, we obtain the required quantity:

> ##The mode of the marginal posterior distribution

> ##for the shape parameter

> shapeDens <- density(rn.post[,3])

> idx <- which.max(shapeDens$y)

> xitilde <- shapeDens$x[idx]

We need to compute the integral
∫

µ,σ πc(µ, σ, ξFix)dµdσ. This is achieved using the package
adapt with the following snipet:

> library(adapt)

> dprior.fun <- function(par)

+ exp(do.call(prrain$prior, c(list(par = c(par, 0.15))), prrain[-1]))

> lower <- c(qgamma(10^-16, shape = prrain$shape[1], scale = prrain$scale[1]),

+ qgamma(10^-16, shape = prrain$shape[2], scale = prrain$scale[2]))

> upper <- c(qgamma(1-10^-16, shape = prrain$shape[1], scale = prrain$scale[1]),

+ qgamma(1-10^-16, shape = prrain$shape[2], scale = prrain$scale[2]))

> normPi0 <- adapt(2, functn = dprior.fun, lower = lower, upper =upper,

minpts = 5000)

> normPi0 <- normPi0$value

For this application, we consider a point Mass ξFix = 0.15 with probability pξ = 0.5.
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