Likelihood-Based Intrinsic Dimension Estimators


[Up] [Top]

Documentation for package ‘intRinsic’ version 0.2.0

Help Pages

autoplot.gride_bayes Plot the simulated MCMC chains
autoplot.gride_evolution Plot the evolution of 'Gride' estimates
autoplot.gride_mle Plot the simulated bootstrap sample for the MLE 'Gride'
autoplot.Hidalgo Plot the output of the 'Hidalgo' function
autoplot.twonn_bayes Plot the output of the 'TWO-NN' model estimated via the Bayesian approach
autoplot.twonn_linfit Plot the output of the 'TWO-NN' model estimated via least squares
autoplot.twonn_mle Plot the output of the 'TWO-NN' model estimated via the Maximum Likelihood approach
compute_mus Compute the ratio statistics needed for the intrinsic dimension estimation
dgera The Generalized Ratio distribution
generalized_ratios_distribution The Generalized Ratio distribution
gride 'Gride': the Generalized Ratios ID Estimator
gride_evolution 'Gride' evolution based on Maximum Likelihood Estimation
Hidalgo Gibbs sampler for the 'Hidalgo' model
id_by_class Stratification of the 'id' by an external categorical variable
print.gride_bayes Print 'Gride' Bayes object
print.gride_evolution Print 'Gride' evolution object
print.gride_mle Print 'Gride' MLE object
print.Hidalgo Print the Hidalgo object
print.hidalgo_psm Print the summary of the clustering solution
print.mus Print the ratio statistics output
print.twonn_bayes Print 'TWO-NN' Bayes object
print.twonn_dec_by Print 'TWO-NN' evolution object decimated via halving steps
print.twonn_dec_prop Print 'TWO-NN' evolution object decimated via vector of proportions
print.twonn_linfit Print TWO-NN Least Squares output
print.twonn_mle Print 'TWO-NN' MLE output
psm_and_cluster Posterior similarity matrix and partition estimation
rgera The Generalized Ratio distribution
Swissroll Generates a noise-free Swiss roll dataset
twonn 'TWO-NN' estimator
twonn_decimated Estimate the decimated 'TWO-NN' evolution with halving steps or vector of proportions