rrapply: revisiting R-base rapply

Joris Chau
March 7, 2022

Abstract

The minimal rrapply-package contains a single function rrapply() , providing an extended
implementation of R-base’s rapply() function. Base rapply() applies a function f to all

elements of a list recursively. The rrapply() function extends base rapply() by including a
condition or predicate function for the application of £ and the option to prune or aggregate
list elements from the result. In addition, special arguments .xname , .xpos, .xparents and

.xsiblings can be used inside the £ and condition functions to access the name, location,
parents and siblings in the nested list of the list element under evaluation. rrapply() builds

upon rapply() ’s native C implementation and for this reason requires no external R-package

dependencies.

1 Quick review of rapply()

The dataset renewable_energy_by_country included in the rrapply-package lists the share of
renewable energy as a percentage in the total energy consumption per country in 2016. The dataset
is publicly available at the United Nations Open SDG Data Hub (UNSD-SDGO07)). The 249 countries
and areas are structured as a nested list based on their geographical location according to the United
Nations M49 standard (UNSD-M49)). The numeric values listed for each country are percentages,

if no data is available the country’s value is NA .

> library(rrapply)
> data("renewable_energy_by_country")
> ## display list structure (only first two elements of each node)

> str(renewable_energy_by_country, list.len = 2, give.attr = FALSE)

List of 1
$ World:List of 6
..$ Africa :List of 2
..$ Northern Africa :List of 7
..$ Algeria : num 0.08
..$ Egypt : num 5.69

[1ist output truncated]

https://unstats-undesa.opendata.arcgis.com/datasets/indicator-7-2-1-renewable-energy-share-in-the-total-final-energy-consumption-percent-3
https://unstats.un.org/unsd/methodology/m49/

..$ Sub-Saharan Africa:List of 4
..$ Eastern Africa :List of 22
..$ British Indian Ocean Territory: logi NA
..$ Burundi : num 89.2
[list output truncated]
..$ Middle Africa :List of 9
..$ Angola : num 54.6
..$ Cameroon : num 78.1
[1ist output truncated]
[list output truncated]
.$ Americas :List of 2

..$ Latin America and the Caribbean:List of 3

..$ Caribbean :List of 28
..$ Anguilla : num 0.11
..$ Antigua and Barbuda : num O

[list output truncated]

..$ Central America:List of 8
..$ Belize : num 30.3
..$ Costa Rica : num 37.2
[list output truncated]

[list output truncated]

..$ Northern America :List of 5
..$ Bermuda : num 2.11
..$ Canada : num 21.6

[list output truncated]

[1ist output truncated]

For convenience, we subset only the values for countries and areas in Oceania ,

> renewable_oceania <- renewable_energy_by_country[["World"]]["Oceania"]

> str(renewable_oceania, list.len = 3, give.attr = FALSE)

List of 1
$ Oceania:List of 4

..$ Australia and New Zealand:List of 6

..$ Australia : num 9.32
..$ Christmas Island : logi NA
..$ Cocos (Keeling) Islands : logi NA

[list output truncated]

..$ Melanesia :List of 5
..$ Fiji : num 24.4
..$ New Caledonia : num 4.03
..$ Papua New Guinea: num 50.3

[1ist output truncated]

..$ Micronesia :List of 8
..$ Guan : num 3.03
..$ Kiribati : num 45.4
..$ Marshall Islands : num 11.8

[list output truncated]

[list output truncated]

Using base rapply() , we can apply a function f to each leaf element or leaf elements of a
particular class or type. By a leaf element, we refer to any element of the list which is not itself
list-like, in this case the numeric country percentages. For instance, we can replace all NA’s by

zeros using an ifelse statement in the f function,

> na_zero_oceania_unlist <- rapply(
renewable_oceania,
f = function(x) ifelse(is.na(x), 0, x)
)

> head(na_zero_oceania_unlist)

Oceania.Australia and New Zealand.Australia

9.32

Oceania.Australia and New Zealand.Christmas Island

0.00

Oceania.Australia and New Zealand.Cocos (Keeling) Islands
0.00

Oceania.Australia and New Zealand.Heard Island and McDonald Islands
0.00

Oceania.Australia and New Zealand.New Zealand

32.76

Oceania.Australia and New Zealand.Norfolk Island

0.00

By default, the result is returned unlisted. The original list structure can be preserved via the argu-
ments how = "replace" or how = "list" . Conceptually, how = "replace" makes a complete

copy of the input list and recursively replaces the leaf elements with a class in classes by the

result of applying f . how = "list" recursively makes copies of the list-like elements of the input
list, replacing leaf elements with a class in classes by the result of applying f , and replacing
any other leaf elements by the value of deflt . how = "unlist" calls unlist() with argument
recursive = TRUE on the initial result obtained by how = "list" , thus allowing the use of the

deflt argument.

By making use of the fact that the NA ’s are of logical type and the non- NA’s are of numeric

type, another way of replacing NA ’s by zeros is via the classes argument:

> na_zero_oceania_replace <- rapply(
renewable_oceania,
f = function(x) 0,
classes = "logical",
how = "replace"
)

> str(na_zero_oceania_replace, list.len = 3, give.attr = FALSE)

List of 1
$ Oceania:List of 4

..$ Australia and New Zealand:List of 6

..$ Australia : num 9.32
..$ Christmas Island : num O
..$ Cocos (Keeling) Islands : num O

[list output truncated]

..$ Melanesia :List of 5
..$ Fiji : num 24.4
..$ New Caledonia : num 4.03

..$ Papua New Guinea: num 50.3

[list output truncated]

..$ Micronesia :List of 8
..$ Guam : num 3.03
..$ Kiribati : num 45.4
..$ Marshall Islands : num 11.8

[list output truncated]

[1ist output truncated]

Or, by combining the classes and deflt arguments together with how = "list" or how = "unlist",

> na_zero_oceania_list <- rapply(

renewable_oceania,

f = function(x) x,
classes = "numeric",
deflt = 0,
how = "list"

)

> str(na_zero_oceania_list, list.len = 3, give.attr = FALSE)

List of 1
$ Oceania:List of 4

..$ Australia and New Zealand:List of 6

..$ Australia : num 9.32
..$ Christmas Island : num O
..$ Cocos (Keeling) Islands : num O

[list output truncated]

..$ Melanesia :List of 5
..$ Fiji : num 24.4
..$ New Caledonia : num 4.03

..$ Papua New Guinea: num 50.3

[list output truncated]

..$ Micronesia :List of 8
..$ Guan : num 3.03
..$ Kiribati : num 45.4
..$ Marshall Islands : num 11.8

[list output truncated]

[list output truncated]

Each list element in renewable_energy_by_country contains an "M49-code" attribute with the
“UN Standard Country or Area Codes for Statistical Use (Series M, No. 49)”. In order to keep this
attribute when replacing NA ’s by zeros, we could modify the above call with how = "replace"

to,

> na_zero_oceania_replace_attr <- rapply(
renewable_oceania,
f = function(x) replace(x, is.na(x), 0),
how = "replace"
)

> str(na_zero_oceania_replace_attr, list.len = 2)

List of 1

$ Oceania:List of 4

..$ Australia and New Zealand:List of 6
..$ Australia : num 9.32
..— attr(x, "M49-code")= chr "036"
..$ Christmas Island : num O
..— attr(x, "M49-code")= chr "162"
[list output truncated]
..— attr(x, "M49-code")= chr "053"
..$ Melanesia :List of 5
..$ Fiji : num 24.4
..— attr(x, "M49-code")= chr "242"
..$ New Caledonia : num 4.03
..— attr(x, "M49-code")= chr "540"
[1ist output truncated]
..— attr(x, "M49-code")= chr "054"
[list output truncated]
.— attr(*, "M49-code")= chr "009"

With how = "list" , intermediate list attributes —excluding the leaf elements— are in general not
preserved. For this reason, it is probably best to use how = "replace" whenever possible if list

attributes are present and must be preserved.

> na_zero_oceania_list_attr <- rapply(
renewable_oceania,
f = function(x) replace(x, is.na(x), 0),
how = "list"
)
> ## this preserves all list attributes

> str(na_zero_oceania_replace_attr, max.level = 2)

List of 1
$ Oceania:List of 4
..$ Australia and New Zealand:List of 6
..— attr(x, "M49-code")= chr "053"
..$ Melanesia :List of 5
..— attr(x, "M49-code")= chr "054"
..$ Micronesia :List of 8
.— attr(x, "M49-code")= chr "057"
..$ Polynesia :List of 10
..— attr(x, "M49-code")= chr "061"

..— attr(x, "M49-code")= chr "009"

> ## this does not preserves all attributes!

> str(na_zero_oceania_list_attr, max.level = 2)

List of 1

$ Oceania:List of 4

..$ Australia and New Zealand:List
..$ Melanesia :List
..$ Micronesia :List
..$ Polynesia :List

2 When to use rrapply()

2.1 List pruning and unnesting

of 6
of 5
of 8
of 10

With base rapply() there is no convenient way to prune or filter leaf elements from the input list.

Using the deflt argument, we could set all leaf elements that are not subject to application of £

to e.g. NA or NULL, but we cannot drop these leaf elements altogether from the resulting list.

The rrapply() function adds an option to set the how argument to how = "prune" , in which

case all leaf elements that are not subject to application of f are pruned from the list. The original

list structure is retained, similar to the non-pruned options how = "replace" or how = "list" .

Using how = "prune" , we can drop all NA elements while preserving the original list structure:

> na_drop_oceania_list <- rrapply(
renewable_oceania,
f = function(x) x,
classes = "numeric",
how = "prune"
)

> str(na_drop_oceania_list, list.len

List of 1
$ Oceania:List of 4
..$ Australia and New Zealand:List
..$ Australia : num 9.32
..$ New Zealand: num 32.8
..$ Melanesia :List

..$ Fiji : num 24.4

= 3, give.attr = FALSE)

of 2

of 5

..$ New Caledonia : num 4.03
..$ Papua New Guinea: num 50.3

[list output truncated]

..$ Micronesia :List of 7
..$ Guanm : num 3.03
..$ Kiribati : num 45.4
..$ Marshall Islands : num 11.8

[list output truncated]

[1ist output truncated]

Instead, we can set how = "flatten" to return a flattened unnested version of the pruned list.
This is more efficient than first returning the pruned list with how = "prune" and unlisting or

flattening the list in a subsequent step.

> na_drop_oceania_flat <- rrapply(
renewable_oceania,
f = function(x) Xx,
classes = "numeric",
how = "flatten"

)

> head(na_drop_oceania_flat, n = 10)

Australia New Zealand Fiji
9.32 32.76 24.36

New Caledonia Papua New Guinea Solomon Islands

4.03 50.34 65.73
Vanuatu Guam Kiribati
33.67 3.03 45.43

Marshall Islands
11.75

Another option is to set how = "melt" to return a melted data.frame of the pruned list similar in
format to reshape2::melt() applied to a nested list. The rows of the melted data.frame contain
the node paths of the elements in the pruned list. The "value" column is a list-column with the

values of the terminal nodes analogous to the flattened list returned by how = "flatten" .

> na_drop_melt <- rrapply(
renewable_oceania,
f = function(x) x,

classes = "numeric",

how = "melt"

)
> head(na_drop_melt)

L1 L2 L3 value
1 Oceania Australia and New Zealand Australia 9.32
2 Oceania Australia and New Zealand New Zealand 32.76
3 Oceania Melanesia Fiji 24.36
4 Oceania Melanesia New Caledonia 4.03
5 Oceania Melanesia Papua New Guinea 50.34
6 Oceania Melanesia Solomon Islands 65.73
If no names are present in a sublist of the input list, how = "melt" replaces the names in the
melted data.frame by the list element indices "1", "2" | and so on:

> ## Remove all names at L2 (these arguments are explained in the following sections)
> oceania_unnamed <- rrapply(
renewable_oceania,
classes = "list",
condition = function(x, .xname) .xname == "Oceania",
f = unname
)
> na_drop_melt2 <- rrapply(
oceania_unnamed,
f = function(x) x,
classes = "numeric",
how = "melt"
)
> head(na_drop_melt2)

L1 L2 L3 value
1 Oceania 1 Australia 9.32
2 Oceania 1 New Zealand 32.76
3 Oceania 2 Fiji 24.36
4 Oceania 2 New Caledonia 4.03
5 Oceania 2 Papua New Guinea 50.34
6 Oceania 2 Solomon Islands 65.73

The dataset pokedex also included in the rrapply-package is a nested list containing 151 sub-

lists with property values of each Pokémon in Pokémon GO. The pokedex dataset differs from

renewable_energy_by_country in the sense that pokedex contains 151 repeated observations
represented as individual sublists. how = "bind" unnests nested lists containing repeated obser-
vations and returns a wide data.frame, where each individual observation (i.e. repeated sublist) is
expanded as a single row in the data.frame. Identical names between different sublists are aligned

as individual data.frame columns:

> ## Nested list of Pokemon properties in Pokemon GO
> data("pokedex")

> str(pokedex, list.len = 3)

List of 1
$ pokemon:List of 151
..$:List of 16

..$ id : int 1
..$ num : chr "001"
..$ name : chr "Bulbasaur"

[list output truncated]
.$:List of 17

..$ id : int 2
..$ num : chr "002"
..$ name : chr "Ivysaur"

[list output truncated]
.$:List of 15

..$ id : int 3
..$ num : chr "003"
..$ name : chr "Venusaur"

[list output truncated]

[list output truncated]

> ## Unnest list as a wide data.frame
> pokedex_wide <- rrapply(
pokedex,
how = "bind"
)
> head(pokedex_wide[, c(1:3, 5:7)])

pokemon.id pokemon.num pokemon.name pokemon.type
1 1 001 Bulbasaur Grass, Poison

2 2 002 Ivysaur Grass, Poison

10

3 3 003 Venusaur Grass, Poison
4 4 004 Charmander Fire
5 5 005 Charmeleon Fire
6 6 006 Charizard Fire, Flying

pokemon.height pokemon.weight

1 0.71 m 6.9 kg
2 0.99 m 13.0 kg
3 2.0l m 100.0 kg
4 0.61 m 8.5 kg
5 1.09 m 19.0 kg
6 1.70 m 90.5 kg

Remark. Repeated observations (i.e. sublists) are recognized as several sublists on the same nested
level that are either unnamed or have the same name for each sublist. Conceptually, each repeated

observation is unnested into a flat list and appended as an individual row to the wide data.frame.

2.2 Condition function

Base rapply() allows to apply f to leaf elements of certain types or classes via the classes
argument, which might not always provide sufficient control to partition leaf elements. For this
purpose, rrapply() includes an additional condition argument, which accepts any principal
argument function to use as a condition or predicate to select leaf elements to which f is applied.
Conceptually, the f function is applied to all leaf elements for which the condition function
exactly evaluates to TRUE similar to the isTRUE function. If the condition function is missing,
f is applied to all leaf elements. In combination with how = "prune" , the condition function

provides a flexible way to select and filter elements from the nested list.
Using the condition argument, we can update the above function call to better reflect our purpose:

> na_drop_oceania_list2 <- rrapply(
renewable_oceania,
condition = function(x) !is.na(x),
f = function(x) x,
how = "prune"

)

> str(na_drop_oceania_list2, list.len = 3, give.attr = FALSE)

List of 1
$ Oceania:List of 4

..$ Australia and New Zealand:List of 2

11

..$ Australia : num 9.32

..$ New Zealand: num 32.8

.$ Melanesia :List of 5
..$ Fiji : num 24.4
..$ New Caledonia : num 4.03

..$ Papua New Guinea: num 50.3

[list output truncated]

.$ Micronesia :List of 7
..$ Guam : num 3.03
..$ Kiribati : num 45.4
..$ Marshall Islands : num 11.8

[list output truncated]

[1ist output truncated]

rrapply() allows the f argument to be missing, in which case no function is applied to the
leaf elements. Using the Negate function, we can rewrite the above expression somewhat more

concisely as,

> na_drop_oceania_list3 <- rrapply(
renewable_oceania,
condition = Negate(is.na),
how = "prune"

)

> str(na_drop_oceania_list3, list.len = 3, give.attr = FALSE)

List of 1
$ Oceania:List of 4
.$ Australia and New Zealand:List of 2
..$ Australia : num 9.32

..$ New Zealand: num 32.8

.$ Melanesia :List of 5
..$ Fiji : num 24.4
..$ New Caledonia : num 4.03

..$ Papua New Guinea: num 50.3

[list output truncated]

.$ Micronesia :List of 7
..$ Guanm : num 3.03
..$ Kiribati : num 45.4
..$ Marshall Islands : num 11.8

12

[list output truncated]

[list output truncated]

A more interesting example is to consider a condition that is not also replicable using the
classes argument. For instance, we can filter all countries with a renewable energy share above

85 percent, or all countries with a renewable energy share of 0 percent:

> renewable_energy_above_85 <- rrapply(
renewable_energy_by_country,
condition = function(x) x > 85,
how = "prune"

)

> str(renewable_energy_above_85, give.attr = FALSE)

List of 1
$ World:List of 1
..$ Africa:List of 1
..$ Sub-Saharan Africa:List of 3

..$ Eastern Africa:List of 7

.$ Burundi : num 89.2
..$ Ethiopia : num 91.9
..$ Rwanda : num 86
..$ Somalia : num 94.7
..$ Uganda : num 88.6

.$ United Republic of Tanzania: num 86.1

.$ Zambia : num 88.5

..$ Middle Africa :List of 2
..$ Chad : num 85.3
..$ Democratic Republic of the Congo: num 97
..$ Western Africa:List of 1

..$ Guinea-Bissau: num 86.5

> ## passing arguments to condition via ...
> renewable_energy_equal_0 <- rrapply(

renewable_energy_by_country,

condition = ~==",
e2 =0,
how = "prune"

)

> str(renewable_energy_equal_0, give.attr = FALSE)

13

List of 1
$ World:List of 4
..$ Americas:List of 1
..$ Latin America and the Caribbean:List of 1
..$ Caribbean:List of 1
..$ Antigua and Barbuda: num O
..$ Asia :List of 1
..$ Western Asia:List of 4
..$ Bahrain: num O
..$ Kuwait : num O
..$ Oman : num O
..$ Qatar : num O
..$ Europe :List of 2
..$ Northern Europe:List of 1
..$ Channel Islands:List of 1
..$ Guernsey: num O
..$ Southern Europe:List of 1
..$ Gibraltar: num O
..$ Oceania :List of 2
..$ Micronesia:List of 1
..$ Northern Mariana Islands: num O
..$ Polynesia :List of 1

..$ Wallis and Futuna Islands: num O

Note that the NA elements are not returned, as the condition does not evaluate to TRUE for

NA values.

As the condition function is a generalization of the classes argument to have more flexible
control of the predicate, it is also possible to use the deflt argument together with how = "list"
or how = "unlist" to set a default value to all leaf elements for which the condition does not

evaluate to TRUE :

> na_zero_oceania_list2 <- rrapply(
renewable_oceania,
condition = Negate(is.na),
deflt = 0,
how = "list"

)

> str(na_zero_oceania_list2, list.len = 3, give.attr = FALSE)

14

List of 1
$ Oceania:List of 4

..$ Australia and New Zealand:List of 6

..$ Australia : num 9.32
..$ Christmas Island : num O
..$ Cocos (Keeling) Islands : num O

[list output truncated]

..$ Melanesia :List of 5
..$ Fiji : num 24.4
..$ New Caledonia : num 4.03

..$ Papua New Guinea: num 50.3

[list output truncated]

..$ Micronesia :List of 8
..$ Guanm : num 3.03
..$ Kiribati : num 45.4
..$ Marshall Islands : num 11.8

[list output truncated]

[list output truncated]

To be consistent with base rapply() , the deflt argument can still only be used together with
how = "list" or how = "unlist" . With how = "replace" , we can replace NA values by zeros

using the f function in the same way as before,

> na_zero_oceania_replace2 <- rrapply(
renewable_oceania,
condition = is.na,
f = function(x) O,
how = "replace"
)

> str(na_zero_oceania_replace2, list.len = 3, give.attr = FALSE)

List of 1
$ Oceania:List of 4

..$ Australia and New Zealand:List of 6

..$ Australia : num 9.32
..$ Christmas Island : num O
..$ Cocos (Keeling) Islands : num O

[list output truncated]

..$ Melanesia :List of 5

15

..$ Fiji : num 24.4
..$ New Caledonia : num 4.03
..$ Papua New Guinea: num 50.3

[1ist output truncated]

..$ Micronesia :List of 8
..$ Guanm : num 3.03
..$ Kiribati : num 45.4
..$ Marshall Islands : num 11.8

[1ist output truncated]

[list output truncated]

2.2.1 Using the ... argument

In base rapply() , the first argument to f always evaluates to the content of the leaf element
to which £ is applied. Any further arguments (besides the special arguments .xname , .xpos,

.xparents and .xsiblings discussed below) that are independent of the node content are sup-
plied via the dots ... argument. Since rrapply() accepts a function in two of its arguments f£
and condition , any further arguments defined via the dots also need to be defined as function
arguments in both the £ and condition function (if existing), even if they are not used in the

function itself.

To illustrate, consider the following example where we replace all NA elements by a value defined

in a separate argument newvalue :

> ## this is not ok!
> tryCatch({
rrapply(
renewable_oceania,
condition = is.na,
f = function(x, newvalue) newvalue,
newvalue = 0,
how = "replace"
)

}, error = function(error) error$message)
[1] "2 arguments passed to 'is.na' which requires 1"

> ## this is ok
> na_zero_oceania_replace3 <- rrapply(

renewable_oceania,

16

condition = function(x, newvalue) is.na(x),
f = function(x, newvalue) newvalue,
newvalue = 0,
how = "replace"

)

> str(na_zero_oceania_replace3, list.len = 3, give.attr = FALSE)

List of 1
$ Oceania:List of 4

..$ Australia and New Zealand:List of 6

..$ Australia : num 9.32
..$ Christmas Island : num O
..$ Cocos (Keeling) Islands : num O

[1ist output truncated]

..$ Melanesia :List of 5
..$ Fiji : num 24.4
..$ New Caledonia : num 4.03

..$ Papua New Guinea: num 50.3

[list output truncated]

..$ Micronesia :List of 8
..$ Guan : num 3.03
..$ Kiribati : num 45.4
..$ Marshall Islands : num 11.8

[list output truncated]

[list output truncated]

2.3 Special arguments .xname, .xpos, .xparents and .xsiblings

For illustration purposes, let us return all non-missing values in renewable_oceania as a non-

nested flattened list:

> renewable_oceania_flat <- rrapply(
renewable_oceania,
condition = Negate(is.na),
how = "flatten"
)

> head(renewable_oceania_flat)

Australia New Zealand Fiji

9.32 32.76 24.36

17

New Caledonia Papua New Guinea Solomon Islands

4.03 50.34 65.73

Suppose that we wish to apply a function to each list element that relies on the name of the node.

A possible way to achieve this using mapply() would be:

> renewable_oceania_flat_text <- mapply(

)

FUN = function(name, value) sprintf ("Renewable energy in Js: }.2f}}", name, value),
name = names (renewable_oceania_flat),
value = renewable_oceania_flat,

SIMPLIFY = FALSE

> str(renewable_oceania_flat_text, list.len = 6)

List of 22

$ Australia : chr "Renewable energy in Australia: 9.32)"

$ New Zealand : chr "Renewable energy in New Zealand: 32.76%"

$ Fiji : chr "Renewable energy in Fiji: 24.36%"

$ New Caledonia : chr "Renewable energy in New Caledonia: 4.03%"

$ Papua New Guinea : chr "Renewable energy in Papua New Guinea: 50.34%"
$ Solomon Islands : chr "Renewable energy in Solomon Islands: 65.73%"

[list output truncated]

Remark. Note that the purrr-package also contains the convenience function imap for exactly this

purpose.

In base rapply() , the f function only has access to the content of a leaf element through its

principal argument, but there is no convenient way to access the list element its name or location

from inside the £ function. This makes rapply() impractical if we want to apply a function £

that relies on e.g. the name of the leaf element as in the above example.

To address this and similar issues, rrapply() allows the use of a number of special arguments

.xname , .xpos, .xparents and .xsiblings in addition to the principal argument in the £

and condition functions. The .xname argument evaluates to the name of the leaf element. The

.xpos argument evaluates to the position of the leaf element in the nested list structured as an

integer vector. For instance, if x = list(list("y", "z")) , then an .xpos location of c(1, 2)

corresponds to the leaf element x[[1]][[2]] or equivalently x[[c(1, 2)]1] . The .xparents

argument evaluates to a vector of all parent node names in the path to the list element. The names

in .xparents are ordered by increasing depth in the nested list, with the final element always

matching to .xname . The .xsiblings argument evaluates to the parent list containing the cur-

rent list element and all of its direct siblings.

18

The arguments .xname, .xpos, .xparents and .xsiblings need to be defined explicitly as
function arguments in £ and condition whenever they are used. Note that the principal function
arguments of £ and condition always evaluate to the content of the list element, for this reason
the arguments .xname, .xpos, .xparents and .xsiblings should always be defined in addi-
tion to a principal function argument. It is allowed to use any combination of special arguments in

f and condition .

Using the .xname argument, we can reproduce the mapply() example above also from a nested

list as input:

> renewable_oceania_flat_text <- rrapply(
renewable_oceania,
f = function(x, .xname) sprintf("Renewable energy in Js: 7.2f}}", .xname, Xx),
condition = Negate(is.na),
how = "flatten"
)

> head(renewable_oceania_flat_text, n = 6)

Australia

"Renewable energy in Australia: 9.32)"

New Zealand

"Renewable energy in New Zealand: 32.76%"
Fiji

"Renewable energy in Fiji: 24.36%"

New Caledonia

"Renewable energy in New Caledonia: 4.03%"
Papua New Guinea

"Renewable energy in Papua New Guinea: 50.34%"
Solomon Islands

"Renewable energy in Solomon Islands: 65.73%"

Since these special arguments can also be used in the condition function, it is now possible to
filter elements or apply a function only to a part of the list based on the node names or their posi-

tions.

As an example, let us extract the renewable energy shares of Belgium, the Netherlands and Luxem-

bourg while preserving the nested structure of the filtered elements:

> renewable_benelux <- rrapply(

renewable_energy_by_country,

19

condition = function(x, .xname) .xname 7inj, c("Belgium", "Netherlands", "Luxembourg"),
how = "prune"

)

> str(renewable_benelux, give.attr = FALSE)

List of 1
$ World:List of 1
..$ Europe:List of 1
..$ Western Europe:List of 3
..$ Belgium : num 9.14
..$ Luxembourg : num 13.5

..$ Netherlands: num 5.78

Knowing that Europe is located under the node renewable_energy_by_country[[c(1, 5)]] , we
can filter all European countries with a renewable energy share above 50 percent by using the .xpos

argument,

> renewable_europe_above_50 <- rrapply(
renewable_energy_by_country,
condition = function(x, .xpos) identical(head(.xpos, 2), c(1L, 5L)) & x > 50,
how = "prune"

)

> str(renewable_europe_above_50, give.attr = FALSE)

List of 1
$ World:List of 1
..$ Europe:List of 2
..$ Northern Europe:List of 3
..$ Iceland: num 78.1
..$ Norway : num 59.5
..$ Sweden : num 51.4
..$ Western Europe :List of 1

..$ Liechtenstein: num 62.9

This can be done more conveniently using the .xparents argument, as this does not require us to

look up the location of Europe in the list beforehand,

> renewable_europe_above_50 <- rrapply(
renewable_energy_by_country,

condition = function(x, .xparents) "Europe'" Jinj, .xparents & x > 50,

20

how = "prune"

)

Using the .xpos argument, we could also look up the location of a particular country in the nested

list,

> (xpos_sweden <- rrapply(
renewable_energy_by_country,
condition = function(x, .xname) identical(.xname, "Sweden"),
f = function(x, .xpos) .xpos,
how = "flatten"
J))

$Sweden
[1] 1 5 214

> ## sanity check

> renewable_energy_by_country[[xpos_sweden$Sweden]]

[1] 51.35
attr(,"M49-code")

[1] n7gon

We could even use the .xpos argument to determine the maximum depth of the list or the length

of the longest sublist,

> ## maximum depth
> depth_all <- rrapply(
renewable_energy_by_country,
f = function(x, .xpos) length(.xpos),
how = "unlist"
)
> max(depth_all)

[1] 56

> ## longest sublist length
> sublist_count <- rrapply(
renewable_energy_by_country,
f = function(x, .xpos) max(.xpos),
how = "unlist"
)

> max (sublist_count)

21

(1] 28

The .xsiblings argument allows us to evaluate the sibling nodes of the current list element under
evaluation. An example usage is to look up all direct neighbors of a particular country in the nested

list:

> ## look up sibling countries of Sweden in list
> siblings_sweden <- rrapply(
renewable_energy_by_country,
condition = function(x, .xsiblings) "Sweden" 7inj, names(.xsiblings),
how = "flatten"
)

> head(siblings_sweden, n = 6)

Aland Islands Denmark Estonia Faroe Islands
NA 33.06 26.55 4.24
Finland Iceland
42.03 78.07
When unnesting nested lists containing repeated observations with how = "bind" , the .xname

.Xpos or .xparents arguments can be useful to parse only a particular set of data.frame columns:

> ## parse only Pokemon number, name and type columns
> pokedex_small <- rrapply(
pokedex,
condition = function(x, .xpos, .xname) {
length(.xpos) < 4 & .xname 7inj, c("num", "name", "type")
},
how = "bind"
)
> head(pokedex_small)

pokemon.num pokemon.name pokemon.type

1 001 Bulbasaur Grass, Poison
2 002 Ivysaur Grass, Poison
3 003 Venusaur Grass, Poison
4 004 Charmander Fire
5 005 Charmeleon Fire
6 006 Charizard Fire, Flying

22

2.4 Avoid recursing into list nodes

By default, if classes = "ANY" both base rapply() and rrapply() recurse into any list-like
element. Using classes = "list" in base rapply() has no effect as the function descends
into any list node before evaluating the classes argument. In contrast, rrapply() does detect
classes = "list" , in which case the f function is applied to list elements that satisfy the
condition function. If the condition is not satisfied for a list element, rrapply() will recurse
further into the sublist, apply the f function to the nodes that satisfy condition and so on. The
use of classes = "list" tells rrapply() to not descend into list objects by default. For this
reason this behavior can only be triggered with the classes argument and *not* through the use

of e.g. condition = is.list.

The choice classes = "list" is useful to calculate summary statistics across nodes or to look
up the position of intermediate nodes in a nested list. To illustrate, we can return the mean and

standard deviation of the renewable energy share in Europe as follows:

> rrapply(
renewable_energy_by_country,
classes = "list",
condition = function(x, .xname) .xname == "Europe",
f = function(x) list(
mean = mean(unlist(x), na.rm = TRUE),
sd = sd(unlist(x), na.rm = TRUE)
),
how = "flatten"

$Europe
$Europe$mean

[1] 22.36565

$Europe$sd
[1] 17.12639

Remark. Note that the principal x argument in the f function now evaluates to a list for the
node satisfying condition . For this reason, we first unlist the sublist before passing it to mean

and sd.

The same result could be obtained by defining a condition based on the "M49-code" attribute
of the list element. This can be convenient to filter or summarize nodes in nested lists coming from

XML (or HTML) files based on their attribute values.

23

> rrapply(
renewable_energy_by_country,
classes = "list",
condition = function(x) attr(x, "M49-code") == "150",
f = function(x) list(
mean = mean(unlist(x), na.rm = TRUE),
sd = sd(unlist(x), na.rm = TRUE)
s
how = "flatten"

$Europe
$Europe$mean

[1] 22.36565

$Europe$sd
[1] 17.12639

We can use the .xpos argument to apply the f function only at specific locations or depths in
the nested list. For instance, we could return the mean renewable energy shares for each continent

by observing that the .xpos vector of each continent has length (i.e. depth) 2:

> renewable_continent_summary <- rrapply(
renewable_energy_by_country,
classes = "list",
condition = function(x, .xpos) length(.xpos) == 2,
f = function(x) mean(unlist(x), na.rm = TRUE)
)
> ## Antarctica has a missing value

> str(renewable_continent_summary, give.attr = FALSE)

List of 1
$ World:List of 6
..$ Africa : num 54.3
..$ Americas : num 18.2

..$ Antarctica: logi NA

..$ Asia : num 17.9
..$ Europe : num 22.4
..$ Oceania : num 17.8

24

If classes = "list" ,the £ function is only applied to the (non-terminal) list nodes. If classes = "ANY"
the f function is only applied to any (terminal) non-list node. To apply f to any terminal and
non-terminal node of the nested list, we should combine classes = c("list", "ANY") . This
is illustrated by searching both terminal and non-terminal nodes for the country or region with

M49-code "155" (Western Europe):

> ## Filter country or region by M49-code
> rrapply(
renewable_energy_by_country,
classes = c("list", "ANY"),
condition = function(x) attr(x, "M49-code") == "155",
f = function(x, .xname) .xname,

how = "unlist")

World.Europe.Western Europe

"Western Europe"

Another illustration of the use of classes = "list" is to preprocess selection of list columns before

unnesting a nested list with repeated observations into a wide data.frame with how = "bind" :

> ## Simplify Pokemon evolution sublists to character vectors
> pokedex_wide2 <- rrapply(
pokedex,
classes = c("character", "list"),
condition = function(x, .xname) .xname /inj, c("name", "next_evolution", "prev_evolution"),
f = function(x) if(is.list(x)) sapply(x, “[[", "name") else x,
how = "bind"
)
> head(pokedex_wide2, n = 9)

pokemon.name pokemon.next_evolution

1 Bulbasaur Ivysaur, Venusaur
2 Ivysaur Venusaur
3 Venusaur NA
4 Charmander Charmeleon, Charizard
5 Charmeleon Charizard
6 Charizard NA
7 Squirtle Wartortle, Blastoise
8 Wartortle Blastoise
9 Blastoise NA

25

pokemon.prev_evolution
NA

Bulbasaur

Bulbasaur, Ivysaur

NA

Charmander

Charmander, Charmeleon
NA

Squirtle

© 00 N o o b W N -

Squirtle, Wartortle

2.5 Recursive list node modification

If classes = "list", rrapply() applies the f function to any list element that satisfies the
condition function, but will not recurse further into these list elements. This make it for instance

impossible to recursively update the name of each list element in a nested list, as rrapply() stops

recursing after updating the first list layer. For this purpose, set classes = "list" combined
with how = "recurse" , in which case rrapply() recurses further into any *updated* list element
after application of the f function (using how = "replace"). In this context, the condition

argument is interpreted as a passing criterion: as long as the condition and classes arguments

are satisfied, rrapply() will try to recurse further into any list-like element.
Using how = "recurse" , we can recursively replace all names in the nested list by their M49-codes:

> renewable_M49 <- rrapply(
list(renewable_energy_by_country),
classes = "list",
f = function(x) {
names (x) <- vapply(x, attr, character(1L), which = "M49-code")
return (x)
},
how = "recurse"
)
> str(renewable_M49[[1]], max.level = 3, list.len = 3, give.attr = FALSE)

List of 1
$ 001:List of 6
..$ 002:List of 2
..$ 015:List of 7

26

..$ 202:List of 4
..$ 019:List of 2

..$ 419:List of 3

..$ 021:List of 5
..$ 010: logi NA

[list output truncated]

Remark. Here we passed list(renewable_energy_by_country) to the call of rrapply() in
order to start application of the £ function at the level of the list renewable_energy_by_country

itself, instead of starting at its list elements.

2.6 Miscellaneous
2.6.1 Unmelting data.frames to lists

The option how = "melt" returns a melted data.frame similar in format as reshape2::melt()

applied to a nested list. Suppose that we have manipulated the data.frame, by e.g. filtering a
number of rows, and wish to convert it back to a nested list in order to write it to e.g. a JSON- or
XML-object. For this purpose, rrapply() includes the option how = "unmelt" , which performs
the inverse operation of how = "melt" . No skeleton object is needed in this case (as required in e.g.
base R’s relist() function), only a data.frame in the same format as returned by how = "melt" .
To illustrate, we can reconstruct a nested list from the data.frame na_drop_melt produced above

as follows,

> ## melted data.frame

> head(na_drop_melt)

L1 L2 L3 value
1 Oceania Australia and New Zealand Australia 9.32
2 Oceania Australia and New Zealand New Zealand 32.76
3 Oceania Melanesia Fiji 24.36
4 Oceania Melanesia New Caledonia 4.03
5 Oceania Melanesia Papua New Guinea 50.34
6 Oceania Melanesia Solomon Islands 65.73
> na_drop_unmelt <- rrapply(na_drop_melt, how = "unmelt")

> str(na_drop_unmelt, list.len = 3, give.attr FALSE)

List of 1
$ Oceania:List of 4

..$ Australia and New Zealand:List of 2

27

..$ Australia : num 9.32

..$ New Zealand: num 32.8

..$ Melanesia :List of 5
..$ Fiji : num 24.4
..$ New Caledonia : num 4.03

..$ Papua New Guinea: num 50.3

[list output truncated]

..$ Micronesia :List of 7
..$ Guam : num 3.03
..$ Kiribati : num 45.4
..$ Marshall Islands : num 11.8

[list output truncated]

[1ist output truncated]

Remark. how = "unmelt" is based on a greedy approach parsing data.frame rows as list elements
starting from the top of the data.frame. That is, rrapply() continues collecting children nodes as
long as the parent node name remains unchanged. If, for instance, we wish to create two separate
nodes (on the same list layer) with the name "Western Europe" , these nodes should not be listed
after one another in the melted data.frame as rrapply() will group all children under a single

"Western Europe" list element.

Remark. Internally, how = "unmelt" reconstructs a nested list from the melted data.frame and
subsequently applies the same conceptual framework as how = "replace" . Any other function
arguments, such as £ and condition , should be used in exactly the same way as one would use

them with how = "replace" applied to a nested list object.

Remark. how = "unmelt" does (currently) not restore the attributes of intermediate list nodes
and is therefore not an exact inverse of how = "melt" . Melting an already unmelted nested list

will always produce exactly the same results:

> na_drop_remelt <- rrapply(na_drop_unmelt, how = "melt")

> identical (na_drop_melt, na_drop_remelt)

[1] TRUE

2.6.2 Data.frames as lists

If classes = "ANY" , rrapply() recurses into any list-like object equivalent to base rapply() .
Since data.frames are list-like objects, the £ function is applied to the individual columns instead
of the data.frame object as a whole. To avoid this behavior, set classes = "data.frame" , in

which case the £ and condition functions are applied directly to the data.frame object itself and

28

not its columns. Note that with base rapply() using classes = "data.frame" has no effect
as rapply() descends into the columns of any data.frame object before evaluating the classes

argument.

> ## create a list of data.frames
> oceania_df <- list(
Oceania = lapply(
renewable_oceania[["Oceania"]],

FUN = function(x) data.frame(value = unlist(x))

)
> ## this does not work!
> tryCatch({
rrapply(
oceania_df,
f = function(x) subset(x, !is.na(value)), ## filter NA-rows of data.frame
how = "replace"
)

}, error = function(error) error$message)
[1] "object 'value' not found"

> ## this does work
> rrapply(
oceania_df,
classes = "data.frame",
f = function(x) subset(x, !is.na(value)),

how = "replace"

$0ceania

$0ceania$” Australia and New Zealand"
value

Australia 9.32

New Zealand 32.76

$0ceania$Melanesia
value
Fiji 24.36

29

New Caledonia 4.03
Papua New Guinea 50.34
Solomon Islands 65.73
Vanuatu 33.67

$0ceania$Micronesia

value
Guam 3.03
Kiribati 45.43
Marshall Islands 11.75

Micronesia (Federated States of) 1.64

Nauru 31.44
Northern Mariana Islands 0.00
Palau 0.02

$0ceania$Polynesia

value
American Samoa 1.00
Cook Islands 1.90
French Polynesia 11.06
Niue 22.07
Samoa 27.30
Tonga 1.98
Tuvalu 11.76

Wallis and Futuna Islands 0.00

Remark. Note that the same result can also be obtained using classes = "list" and checking

that the list element under evaluation is a data.frame:

> rrapply(
oceania_df,
classes = "list",
condition = is.data.frame,
f = function(x) subset(x, !is.na(value)),

how = "replace"

30

2.6.3 List attributes

Base rapply() may produce different results when using how = "replace" or how = "list"
when working with list attributes. The former preserves intermediate list attributes whereas the
latter does not. To avoid unexpected behavior, rrapply() always preserves intermediate list
attributes when using how = "replace", how = "list" or how = "prune" . Note that if we
set how = "flatten" , how = "melt" or how = "unlist" intermediate list attributes cannot

be preserved as the result is no longer a nested list.

> ## how = "list" now preserves all list attributes
> na_drop_oceania_list_attr2 <- rrapply(
renewable_oceania,
f = function(x) replace(x, is.na(x), 0),
how = "list"

)

> str(na_drop_oceania_list_attr2, max.level = 2)

List of 1
$ Oceania:List of 4
..$ Australia and New Zealand:List of 6
..— attr(x, "M49-code")= chr "053"
.$ Melanesia :List of 5
..— attr(x, "M49-code")= chr "054"
.$ Micronesia :List of 8
..— attr(x, "M49-code")= chr "057"
.$ Polynesia :List of 10
..— attr(x, "M49-code")= chr "061"
.— attr(x, "M49-code")= chr "009"

> ## how = '"prune" also preserves list attributes
> na_drop_oceania_attr <- rrapply(
renewable_oceania,
condition = Negate(is.na),
how = "prune"

)

> str(na_drop_oceania_attr, max.level = 2)

List of 1
$ Oceania:List of 4

..$ Australia and New Zealand:List of 2

31

..— attr(x, "M49-code")= chr "053"
..$ Melanesia :List of 5
..— attr(x, "M49-code")= chr "054"
..$ Micronesia :List of 7
..— attr(x, "M49-code")= chr "057"
..$ Polynesia :List of 8
..— attr(x, "M49-code")= chr "061"

..— attr(x, "M49-code")= chr "009"

2.7 Using rrapply() on data.frames

The previous sections explained how to avoid recursing into list-like elements using rrapply() .
However, it can also be useful to exploit the property that a data.frame is a list-like object and use
base rapply() to apply a function f to data.frame columns of certain classes. For instance, it
is straightforward to standardize all numeric columns in the iris dataset by their sample mean

and standard deviation:

> iris_standard <- rapply(iris, f = scale, classes = "numeric", how = "replace")

> head(iris_standard)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 -0.8976739 1.01560199 -1.335762 -1.311052 setosa
2 -1.1392005 -0.13153881 -1.3357562 -1.311052 setosa
3 -1.3807271 0.32731751 -1.392399 -1.311052 setosa
4 -1.5014904 0.09788935 -1.279104 -1.311052 setosa
5 -1.0184372 1.24503015 -1.335762 -1.311052 setosa
6 -0.5353840 1.93331463 -1.165809 -1.048667 setosa

Using the condition argument in rrapply() , we obtain more flexible control in selecting the
columns to which f is applied. For instance, it is now straightforward to apply the f function

only to the Sepal columns using the .xname argument:

> iris_standard_sepal <- rrapply(
iris,
condition = function(x, .xname) grepl("Sepal", .xname),
f = scale
)

> head(iris_standard_sepal)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 -0.8976739 1.01560199 1.4 0.2 setosa

32

2 -1.1392005 -0.13153881 1.4 0.2 setosa
3 -1.3807271 0.32731751 1.3 0.2 setosa
4 -1.5014904 0.09788935 1.5 0.2 setosa
5 -1.0184372 1.24503015 1.4 0.2 setosa
6 -0.5353840 1.93331463 1.7 0.4 setosa

Instead of mutating columns, we can also transmute columns (referencing to the semantics of the

dplyr -package) keeping only the columns to which f is applied by setting how = "prune" :

> iris_standard_transmute <- rrapply(
iris,
f = scale,
classes = "numeric",
how = "prune"
)

> head(iris_standard_transmute)

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 -0.8976739 1.01560199 -1.335752 -1.311052
2 -1.1392005 -0.13153881 -1.335752 -1.3110562
3 -1.3807271 0.32731751 -1.392399 -1.311052
4 -1.5014904 0.09788935 -1.279104 -1.311052
5 -1.0184372 1.24503015 -1.335752 -1.311052
6 -0.5353840 1.93331463 -1.165809 -1.048667
In order to summarize a set of selected columns, use how = "flatten" instead of how = "prune" ,

as the latter preserves list attributes —including data.frame dimensions— which should not be kept.

> ## summarize columns with how = "flatten"
> iris_standard_summarize <- rrapply(
iris,
f = summary,
classes = "numeric",
how = "flatten"
)

> iris_standard_summarize

$Sepal.Length
Min. 1st Qu. Median Mean 3rd Qu. Max.
4.300 5.100 5.800 5.843 6.400 7.900

33

$Sepal.Width
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.000 2.800 3.000 3.057 3.300 4.400

$Petal.Length
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.600 4.350 3.758 5.100 6.900

$Petal .Width
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.100 0.300 1.300 1.199 1.800 2.500

3 Using rrapply() on expressions

Unevaluated R code is parsed or captured as a set of expressions, which is a collective term used
to refer to any of the following types of objects: scalar constants e.g. TRUE or 1, symbols e.g.
quote(x) , call objectse.g. quote(x <- 1) ,expression vectorse.g. expression(a <- 1, 2 * b)
or pairlists e.g. formals(seq.default) . Call objects and expression vectors are hierarchically
structured objects, i.e. abstract syntax trees, that can be decomposed into symbols and scalar con-

stants as atomic building blocks.

Call objects and expression vectors generally behave as nested lists, e.g. subsetting a call object
works the same as subsetting a nested list. To illustrate, we can retrieve the abstract syntax tree of

a call object by recursing through the object in the same way as for a nested list:

> ## recurse through call as nested list
> ast <- function(expr) {
lapply(expr, function(x) {
if(is.call(x) || is.expression(x)) {
ast (x)
} else {
x
}
»
}
> ## decompose call object
> str(ast(quote(y <- x <- 1 + TRUE)))

34

List of 3

$: symbol <-

$: symbol y

$:List of 3
..$: symbol <-
..$: symbol x
..$:List of 3

..$: symbol +
..$: num 1

..$: logi TRUE

Given this information, we might be inclined to assume that base rapply() also recurses through
call objects and expression vectors in the same way as for nested lists, but this is unfortunately
not the case. To be precise, rapply() does accept expression vectors as input for R >= 3.6, but
effectively treats them as flat lists of call objects similar to lapply() . Call objects are not accepted

by rapply() (for any R version) and return an error.

> ## rapply on an expression vector (ok for R >= 3.6)
> tryCatch({
rapply (expression(y <- x <- 1, f(g(2 * pi))), f = identity)

}, error = function(error) error$message)

[[1]1]
y <-x<-1

[[2]1]
f(g(2 * pi))

> ## rapply on a call object (not ok!)
> tryCatch({
rapply(quote(y <- x <- 1), f = identity)

}, error = function(error) error$message)
[1] "'object' must be a list or expression"
J p

Starting from version 1.2.0 rrapply() also supports recursion of call objects and expression vec-
tors, which are treated as nested lists based on their internal abstract syntax trees. As such, all
functionality described in the previous sections extends directly to call objects and expression vec-

tors.

35

3.1 Structuring the result

When applying rrapply() (or base rapply()) to nested lists the difference between how = "replace"
and how = "list" is relatively minor. Both choices return a nested list, but only how = "list"

replaces elements not subject to £ by the argument deflt . For call objects and expression objects,

the difference is more important as how = "replace" always maintains the type of the object after
application of rrapply() , whereas how = "list" returns the object formatted as a nested list.
With how = "replace" , we can for instance directly update the abstract syntax tree of a call
object:

> call_old <- quote(y <- x <- 1 + TRUE)
> str(call_old)

language y <- x <- 1 + TRUE

> ## update call object
> call_new <- rrapply(
call_old,
classes = "logical",
f = as.numeric,
how = "replace"
)

> str(call_new)
language y <- x <- 1 + 1
Using how = "list" , we can update the abstract syntax tree and return it as a nested list:

> ## update and decompose call object
> call_ast <- rrapply(
call_old,
f = function(x) ifelse(is.logical(x), as.numeric(x), x),
how = "list"
)

> str(call_ast)

List of 3
$: symbol <-
$: symbol y
$:List of 3

..$: symbol <-

36

.$: symbol x

..$:List of 3
..$: symbol +
..$: num 1

..$: num 1

Remark. Note that in the second function call we did not use classes = "logical" to avoid that

all list elements that are not of class "logical" are replaced by the deflt argument (NULL).

The choices how = "prune" , how = "flatten" and how = "melt" return the pruned abstract
syntax tree as: a nested list, a flattened list and a melted data.frame respectively. This is identical
to application of rrapply() to the abstract syntax tree formatted as a nested list. To illustrate,

let us return all names in the abstract syntax tree of an expression vector that are not part of base

R.

\

example expression
> expr <- expression(y <- x <- 1, f(g(2 * pi)))
> ## helper function

> is_new_name <- function(x) '!exists(as.character(x), envir = baseenv())

> ## prune and decompose expression
> expr_prune <- rrapply(

expr,

classes = "name",

condition = is_new_name,

how = "prune"

)

> str(expr_prune)

List of 2
$:List of 2
.$: symbol y
..$:List of 1

..$: symbol x
$:List of 2
.$: symbol £
..$:List of 1
..$: symbol g

> ## prune and flatten expression

> expr_flatten <- rrapply(

37

expr,
classes = "name",
condition = is_new_name,
how = "flatten"

)

> str(expr_flatten)

List of 4

$: symbol y
$: symbol x
$: symbol £
$: symbol g

> ## prune and melt expression
> expr_melt <- rrapply(

expr,

classes = "name",

condition = is_new_name,

f = as.character,

how = "melt"

)

> expr_melt

L1 L2 L3 value

1 1 2 <NA> y
2 1 3 2 x
3 2 1 <NA> f
4 2 2 1 g

3.2 Avoid recursing into expression nodes

If classes = "ANY" (the default), rrapply () recurses into any list-like element, which for expres-
sion objects are: call objects, expression vectors and pairlists. To avoid recursing into list elements of
a nested list, we can use classes = "list" . Analogously, to avoid recursing into list-like elements
of the abstract syntax tree, we should use classes = "language" ,6 classes = "expression"
classes = "pairlist" or any combination thereof. If the condition and classes arguments
are not satisfied for a given list-like element, rrapply() will recurse further into the object, ap-
ply the f function to the nodes that satisfy condition and classes and so on. Note that

this behavior can only be triggered with the classes argument and not through the use of e.g.

38

condition = is.call.

To illustrate, we extract all most deeply nested call objects of the example expression above and

return these as a flat list:

> ## extract all terminal call nodes of AST
> rrapply(
expr,
classes = "language",
condition = function(x) !any(sapply(x, is.call)),

how = "flatten"

[[11]

x <- 1

[[2]1]
2 % pi

For additional details and worked out code examples, also visit the Articles section at the package

website: https://jorischau.github.io/rrapply/.

39

https://jorischau.github.io/rrapply/

	Quick review of <rapply()>
	When to use <rrapply()>
	List pruning and unnesting
	Condition function
	Using the <...> argument

	Special arguments <.xname>, <.xpos>, <.xparents> and <.xsiblings>
	Avoid recursing into list nodes
	Recursive list node modification
	Miscellaneous
	Unmelting data.frames to lists
	Data.frames as lists
	List attributes

	Using <rrapply()> on data.frames

	Using <rrapply()> on expressions
	Structuring the result
	Avoid recursing into expression nodes

