
The“sampSurf”Class

J. H. Gove

USDA Forest Service, Northern Research Station, 271 Mast Road, Durham, NH 03824 USA

(603) 868-7667; e-mail: jgove@fs.fed.us

Thursday 14th November, 2013 11:03am

Contents

1 Introduction 1

2 The “sampSurf” Class 3

2.1 Class slots 4

2.2 More Details 5

3 Object Creation: Other Constructors 5

3.1 The full chainsaw method 8

4 Plotting With “rgl” 9

5 Other Sampling Methods 10

5.1 Point relascope sampling 10

5.2 Perpendicular distance sampling 11

5.3 Horizontal point sampling 14

6 Summary 15

Bibliography 15

1 Introduction

The sampling surface is the culmination of the different classes and methods that have been devel-
oped and discussed in other vignettes. It can be created in any one of several ways (i.e., via different
constructors); here we illustrate the overall process of creating a “sampSurf” object using one of
the constructors (others are detailed below). Please refer to the individual vignette documentation
for more details on each of the methods used below.

First we need a “Tract” object (in this case, a “bufferedTract” object) within which we can create
the sampling surface. . .

R> tra = Tract(c(x=100, y=100), cellSize = 0.5, units = ✬metric✬,

+ description = ✬a 1-hectare tract✬)

R> (btr = bufferedTract(10, tra))

--

a 1-hectare tract

--

1

The “sampSurf” Class. . . §1 Introduction Gove 2

Measurement units = metric

Area in square meters = 10000 (1 hectares)

class : bufferedTract

dimensions : 200, 200, 40000 (nrow, ncol, ncell)

resolution : 0.5, 0.5 (x, y)

extent : 0, 100, 0, 100 (xmin, xmax, ymin, ymax)

coord. ref. : NA

data source : in memory

names : surf

values : 0, 0 (min, max)

Buffer width = 10

Here we have created a 200×200 cell raster grid with resolution of 0.5 meters (i.e., 1 hectare), with
origin at (0, 0) meters. Then we create a buffered tract object with a 10-meter buffer internal to
the tract. Both versions have all data values as zero by default to begin so we can build a sampling
surface up.

Next, just create a few down logs whose centers lie within the buffer and place them in a“downLogs”
container, then make sausage sampling inclusion zones from these logs with plot radius of five
meters, and store them in a “downLogIZs” container. The final step is trivial in concept, just
accumulate all of the inclusion zones with the sampSurf constructor. . .

R> dlogs = downLogs(5, btr@bufferRect)

R> izsSA = downLogIZs(dlogs, iZone = ✬sausageIZ✬, plotRadius = 5)

R> ssSA = sampSurf(izsSA, btr)

Number of logs in collection = 5

Heaping log: 1,2,3,4,5,

R> summary(ssSA)

Object of class: sampSurf

--

sampling surface object

--

Inclusion zone objects: sausageIZ

Measurement units = metric

The “sampSurf” Class. . . §2 The “sampSurf” Class Gove 3

Number of logs = 5

True log volume = 0.52420879 cubic meters

True log length = 27.73 meters

True log surface area = 11.625916 square meters

True log coverage area = 3.698299 square meters

True log biomass = NA

True log carbon = NA

Estimate attribute: volume

Surface statistics...

mean = 0.5261683

bias = 0.0019595067

bias percent = 0.37380272

sum = 21046.732

var = 6.6386604

st. dev. = 2.5765598

cv % = 489.68358

surface max = 19.856457

total # grid cells = 40000

grid cell resolution (x & y) = 0.5 meters

of background cells (zero) = 37451

of inclusion zone cells = 2549

We can see from the summary statistics by comparing the mean of the surface with the true volume
for all logs, that the method is unbiased1. Finally, we are ready to plot the surface. . .

R> plot(ssSA, useImage=FALSE)

The result is shown in Figure 1.

2 The“sampSurf”Class

Now that we have shown the basic individual steps to creating a sampling surface we formally
introduce the class itself and its constructors.

The base class is defined with the slots. . .
1There will always be a small non-zero amount listed in the “bias” component, but this does not mean there is a

bias in a particular method. This has to do with the finite approximation we are making to the surface. The smaller

the grid cell size, the smaller the “bias” will be. This is true of any simulation method and should not be erroneously

perceived as a weakness of this particular method.

The “sampSurf” Class. . . §2 The “sampSurf” Class Gove 4

0 20 40 60 80 100

0
20

40
60

80
10

0

surf

0

5

10

15

Figure 1: Simple generic “sampSurf” object with some random logs.

R> showClass(✬sampSurf✬)

Class "sampSurf" [package "sampSurf"]

Slots:

Name: description izContainer tract estimate surfStats

Class: character izContainer Tract character list

2.1 Class slots

❼ description: Some descriptive text about this class.

❼ izContainer : An “izContainer” subclass object, which is a collection of “InclusionZone” sub-

The “sampSurf” Class. . . §3 Object Creation: Other Constructors Gove 5

class objects such as “downLogIZs” (see vignette entitled: “The InclusionZone Class” for
examples).

❼ tract : The underlying “Tract” (or subclass) object which will hold the sampling surface.

❼ estimate: The attribute estimate for the tract; i.e., volume (“volume”), or number of stems
(“Density”). The full set of attributes can be viewed by issuing the command: .Ste-

mEnv$puaEstimates within R.

❼ surfStats: A list object with the summary statistics for the sampling surface for attribute
in the estimate slot.

2.2 More Details

There are just a few things that go on behind the scenes within the construction of the sampling
surface object that are good to know (without having to look at the code). The object constructor
has two main steps. . .

1. Create “InclusionZoneGrid” objects from each of the individual sausage “InclusionZone” ob-
jects within the “downLogIZs” container.

2. Use heapIZ to accumulate the individual “InclusionZoneGrid” objects from the first step into
the tract.

The above is applied within a simple loop, one object at a time. Then when the “heaping” has been
completed, the “sampSurf” object is constructed. It may take some time to construct the object
because there is a fair bit of computation going on within these two steps.

3 Object Creation: Other Constructors

The first constructor is shown in the example above. It takes as the signature both an“izContainer”
subclass object and a“Tract”object. The second constructor for sampling surface objects generates
the stems (down logs or standing trees), inclusion zones, and surface from scratch. It takes the
number of stems and a “Tract” object, along with the type of inclusion zone to generate and
simulates the surface from that. This method is simpler if no collection of stem objects is available.
An example follows for the sausage and standUp sampling protocols. . .

R> ssSA = sampSurf(2, btr, iZone = ✬sausageIZ✬, plotRadius=5,

+ buttDiams=c(30,50), startSeed=102)

The “sampSurf” Class. . . §3 Object Creation: Other Constructors Gove 6

Number of logs in collection = 2

Heaping log: 1,2,

R> summary(ssSA)

Object of class: sampSurf

--

sampling surface object

--

Inclusion zone objects: sausageIZ

Measurement units = metric

Number of logs = 2

True log volume = 1.3466069 cubic meters

True log length = 11.58 meters

True log surface area = 13.675338 square meters

True log coverage area = 4.3518839 square meters

True log biomass = NA

True log carbon = NA

Estimate attribute: volume

Surface statistics...

mean = 1.3515718

bias = 0.0049648839

bias percent = 0.36869585

sum = 54062.872

var = 75.190628

st. dev. = 8.6712529

cv % = 641.56806

surface max = 68.194591

total # grid cells = 40000

grid cell resolution (x & y) = 0.5 meters

of background cells (zero) = 38906

of inclusion zone cells = 1094

R> ssSU = sampSurf(2, btr, iZone = ✬standUpIZ✬, plotRadius=5,

+ buttDiams=c(30,50), startSeed=102)

Number of logs in collection = 2

Heaping log: 1,2,

The “sampSurf” Class. . . §3 Object Creation: Other Constructors Gove 7

R> summary(ssSU)

Object of class: sampSurf

--

sampling surface object

--

Inclusion zone objects: standUpIZ

Measurement units = metric

Number of logs = 2

True log volume = 1.3466069 cubic meters

True log length = 11.58 meters

True log surface area = 13.675338 square meters

True log coverage area = 4.3518839 square meters

True log biomass = NA

True log carbon = NA

Estimate attribute: volume

Surface statistics...

mean = 1.3446755

bias = -0.0019313799

bias percent = -0.14342567

sum = 53787.022

var = 133.6143

st. dev. = 11.559165

cv % = 859.62485

surface max = 121.50701

total # grid cells = 40000

grid cell resolution (x & y) = 0.5 meters

of background cells (zero) = 39373

of inclusion zone cells = 627

The examples above generate the same set of logs for each example so the we can directly compare
the bias and precision of the methods. This is accomplished by passing startSeed with the same
random number seed in each call (it gets passed on to the downLogs constructor). Note especially
that we must pass along any arguments that internal constructors require. For example, within
this version of sampSurf, we know from the above example (and some knowledge of how the class
objects are constructed) that we will be creating “downLogs” and “downLogIZs” objects within this
routine. Therefore, we must, for example, pass the plotRadius argument so that the sausageIZ

constructor will know what size circular plot is required—there is no default for this argument.

The “sampSurf” Class. . . §3 Object Creation: Other Constructors Gove 8

3.1 The full chainsaw method

This protocol is somewhat of an anomaly because the inclusion zone is a point as explained in Gove
and Van Deusen (2011). However, in sampling surface simulations, all points (grid cells) within
the sausage-shaped (“fullChainSawIZ”) inclusion zone will intersect the log, and this is the whole
log inclusion zone that we want to simulate for each log. Two examples are shown below for these
respective signatures2. . .

R> izsFCS = downLogIZs(dlogs, iZone = ✬fullChainSawIZ✬, plotRadius = 5)

R> ss.ch1 = sampSurf(izsFCS, btr)

R> ss.ch2 = sampSurf(2, btr, iZone=✬fullChainSawIZ✬, plotRadius=5,

+ buttDiams=c(40,50))

Note especially that we are able to pass along other arguments as needed. For example, in the
second invocation, we pass an argument for the determination of the fixed-area plot radius used to
generate the sausage-shaped inclusion zone, as well as an argument used in sample log generation
for downLogs.

Again, the chainsaw method is somewhat an anomoly with regard to the fixed-area plot methods in
that it must visit every cell within the inclusion zone, decide whether there is a plot-log intersection,
and then calculate the volume, etc., of the intersected section. This generates a non-constant surface
within the inclusion zone and takes a long time to calculate if the resolution is high or the log and
plot radius are large, encompassing a large number of grid cells. Other areal sampling methods
also have uneven surface heights within the inclusion zone, but are more straightforward in general;
these include, e.g., omnibus perpendicular distance sampling (Ducey et al., 2008) and critical point
relascope method3 (Gove et al., 2005), as two examples.

Finally, based on the above, it is an error to specify iZone=’chainSawIZ’ in the second constructor.4

The reason is that this method is only defined for one point, which is the inclusion zone. When
the “fullChainSawIZ” method is specified, the “chainSawIZ” method is applied by the constructor
at the center of each grid point within the sausage-shaped inclusion zones. Therefore, it does not
make sense to use the “chainSawIZ” method in the call, as it would only apply to the single point
that it was defined for, not the entire “Tract”. Please see Gove and Van Deusen (2011) and The

“InclusionZone” Class vignette for more details.

2These are not run in the vignette because it takes some time to construct a full chainsaw inclusion zone, depending

upon the number of logs.
3Not yet implemented.
4Neither does it make sense to try to build a collection of these point-zones for the first constructor.

The “sampSurf” Class. . . §4 Plotting With “rgl” Gove 9

4 Plotting With “rgl”

A method has been added to the raster package generic plot3D for visualization with rgl. To
display a surface, one must first have the rgl package installed. Then simply issue the command
on the “sampSurf” class object to display it, and the rgl commands to save it to a file as desired. . .

R> require(rgl)

R> plot3D(ssSA)

R> rgl.postscript(paste(getwd(),✬/figures/ss3D.ps✬,sep=✬✬))

R> rgl.close()

Figure 2: One view of a sampling surface using rgl.

Figure 2 shows a sampling surface with a population of 25 logs. The sausage method was used to
sample the logs on a one hectare tract. This example shows one view of the surface, which may be
rotated and magnified as desired under the plot3D function used to interface with rgl.

The “sampSurf” Class. . . §5 Other Sampling Methods Gove 10

5 Other Sampling Methods

Some methods may require different arguments to the “sampSurf” constructor with first signature
argument“numeric”. In general, the help documentation is the best place to go for more information.
Here we show a couple more examples of creating sampling surfaces for different sampling methods.
The list is not exahustive compared to what is implemented within the sampSurf package. Please
see The “InclusionZone” Class vignette for the different methods available in the package.

5.1 Point relascope sampling

Here we present an illustration using the point realscope sampling (PRS) method (Gove et al.,
1999). It is instructive to compare this constructor to the previous examples. . .

R> etract = Tract(c(x=100,y=100), cellSize=0.5, units=✬English✬)

R> ebuffTr = bufferedTract(15, etract)

R> (angle = .StemEnv$rad2Deg(2*atan(1/2)))

[1] 53.130102

R> prs.as = pointRelascope(angle, units=✬English✬)

R> prs.ss = sampSurf(5, ebuffTr, iZone=✬pointRelascopeIZ✬, units=✬English✬,

+ prs=prs.as, buttDiams=c(8,16), logLens=c(6,16))

Number of logs in collection = 5

Heaping log: 1,2,3,4,5,

R> summary(prs.ss)

Object of class: sampSurf

--

sampling surface object

--

Inclusion zone objects: pointRelascopeIZ

Measurement units = English

Number of logs = 5

True log volume = 41.07627 cubic feet

The “sampSurf” Class. . . §5 Other Sampling Methods Gove 11

True log length = 52.68 feet

True log surface area = 161.77659 square feet

True log coverage area = 51.360613 square feet

True log biomass = NA

True log carbon = NA

Estimate attribute: volume

Surface statistics...

mean = 40.988786

bias = -0.08748417

bias percent = -0.21297983

sum = 1639551.4

var = 16229.541

st. dev. = 127.39521

cv % = 310.80505

surface max = 723.6507

total # grid cells = 40000

grid cell resolution (x & y) = 0.5 feet

of background cells (zero) = 35842

of inclusion zone cells = 4158

The point of the above example is that the sampling surface constructor mentioned required two
additional bits of information to be passed on to other routines. The units specifies, for example,
that the down logs to be created are in “English” units, to go along with the correct units in the
“bufferedTract” and “pointRelascope” objects. More importantly, the “pointRelascopeIZ” construc-
tor requires an argument prs which is of type “pointRelascope”, in order to define the relascope
information for the inclusion zones which will be constructed internally within this function call.
There is nothing else really new here, and nothing mysterious going on. We are just sending the
appropriate information along as required by the constructors for different objects. A plot of this
sampling surface is shown in Figure 3. More information for the inclusion zone constructor can be
found in the help: methods?pointRelascopeIZ.

R> plot(prs.ss, axes=TRUE, useImage=FALSE)

5.2 Perpendicular distance sampling

There are several variants of perpendicular distance sampling (PDS) that are supported in the
sampSurf pacakge. Here we illustrate only the “canonical” version first described by Williams and
Gove (2003). Again, please compare the constructor with that of the previous examples. . .

R> (epds = perpendicularDistance(3, units=✬English✬))

The “sampSurf” Class. . . §5 Other Sampling Methods Gove 12

0 20 40 60 80 100

0
20

40
60

80
10

0

surf

0

100

200

300

400

500

600

700

Figure 3: “sampSurf” surface with a few logs under point relascope sampling.

Object of class: perpendicularDistance

--

perpendicular distance method

--

ArealSampling...

units of measurement: English

perpendicularDistance...

kPDS factor = 3 per foot [dimensionless] for volume [surface/coverage area]

volume [surface/coverage area] factor = 7260 cubic feet [square feet] per acre

R> pds.ss = sampSurf(5, ebuffTr, iZone=✬perpendicularDistanceIZ✬, units=✬English✬,

+ pds=epds, buttDiams=c(8,16), logLens=c(6,16))

The “sampSurf” Class. . . §5 Other Sampling Methods Gove 13

Number of logs in collection = 5

Heaping log: 1,2,3,4,5,

R> summary(pds.ss)

Object of class: sampSurf

--

sampling surface object

--

Inclusion zone objects: perpendicularDistanceIZ (with PP to: volume)

Measurement units = English

Number of logs = 5

True log volume = 29.517932 cubic feet

True log length = 50.36 feet

True log surface area = 129.27472 square feet

True log coverage area = 41.051313 square feet

True log biomass = NA

True log carbon = NA

Estimate attribute: volume

Surface statistics...

mean = 29.375

bias = -0.14293174

bias percent = -0.48422005

sum = 1175000

var = 48096.645

st. dev. = 219.30947

cv % = 746.58544

surface max = 1666.6667

total # grid cells = 40000

grid cell resolution (x & y) = 0.5 feet

of background cells (zero) = 39295

of inclusion zone cells = 705

Again, because we are using a different sampling method, PDS, the constructor requires a different
type of argument passed in the signature. In this case, it is an “ArealSampling” subclass object of
class “perpendicularDistance”. The result is shown in Figure 4. More information for the inclusion
zone constructor can be found in the help: methods?perpendicularDistanceIZ.

R> plot(pds.ss, axes=TRUE, useImage=FALSE)

The “sampSurf” Class. . . §5 Other Sampling Methods Gove 14

0 20 40 60 80 100

0
20

40
60

80
10

0

surf

0

500

1000

1500

Figure 4: “sampSurf” surface with a few logs under perpendicular distance sampling.

5.3 Horizontal point sampling

Here we present an example using one of the sampling methods that have been implemented for
standing trees. Again, we use the simple constructor. . .

R> etract = Tract(c(x=209,y=209), cellSize=0.5, units=✬English✬)

R> ebuffTr = bufferedTract(30, etract)

R> aGauge = angleGauge(baf=20, units=✬English✬)

R> hps.sse = sampSurf(10, ebuffTr, iZone=✬horizontalPointIZ✬, units=✬English✬,

+ angleGauge=aGauge, dbhs=c(6,16), heights=c(16,45))

Number of trees in collection = 10

Heaping tree: 1,2,3,4,5,6,7,8,9,10,

The “sampSurf” Class. . . §6 Summary Gove 15

R> summary(hps.sse)

Object of class: sampSurf

--

sampling surface object

--

Inclusion zone objects: horizontalPointIZ

Measurement units = English

Number of trees = 10

True tree volume = 202.37309 cubic feet

True tree basal area = 8.8745073 square feet

True tree surface area = 830.40324 square feet

True tree biomass = NA

True tree carbon = NA

Estimate attribute: volume

Surface statistics...

mean = 202.28231

bias = -0.090785392

bias percent = -0.044860406

sum = 35343574

var = 98608.386

st. dev. = 314.01972

cv % = 155.23835

surface max = 1427.2389

total # grid cells = 174724

grid cell resolution (x & y) = 0.5 feet

of background cells (zero) = 110199

of inclusion zone cells = 64525

R> plot(hps.sse, axes=TRUE, useImage=FALSE)

6 Summary

Hopefully at this point the idea of how to generate sampling surfaces, and the nuances of signature
requirements for the “simple” constructor has been demonstrated. If there is any question, look at
the methods help page for the “InclusionZone” subclass you want to use, and see what is required
in its signature. The extra argument(s) must be passed to the sampSurf constructor in this case.

The “sampSurf” Class. . . §REFERENCES Gove 16

0 50 100 150 200

0
50

10
0

15
0

20
0

surf

0

200

400

600

800

1000

1200

1400

Figure 5: “sampSurf” surface with a small tree population for horizontal point sampling.

References

M. J. Ducey, M. S. Williams, J. H. Gove, and H. T. Valentine. Simultaneous unbiased estimates
of multiple downed wood attributes in perpendicular distance sampling. Canadian Journal of

Forest Research, 38:2044–2051, 2008. 8

J. H. Gove and P. C. Van Deusen. On fixed-area plot sampling for downed coarse woody debris.
Forestry, 84(2):109–117, 2011. 8

J. H. Gove, A. Ringvall, G. St̊ahl, and M. J. Ducey. Point relascope sampling of downed coarse
woody debris. Canadian Journal of Forest Research, 29(11):1718–1726, 1999. 10

J. H. Gove, M. S. Williams, G. St̊ahl, and M. J. Ducey. Critical point relascope sampling for
unbiased volume estimation of downed coarse woody debris. Forestry, 78:417–431, 2005. 8

M. S. Williams and J. H. Gove. Perpendicular distance sampling: an alternative method for

The “sampSurf” Class. . . §REFERENCES Gove 17

sampling downed coarse woody debris. Canadian Journal of Forest Research, 33:1564–1579,
2003. 11

	Introduction
	The ``sampSurf'' Class
	Class slots
	More Details

	Object Creation: Other Constructors
	The full chainsaw method

	Plotting With ``rgl''
	Other Sampling Methods
	Point relascope sampling
	Perpendicular distance sampling
	Horizontal point sampling

	Summary
	Bibliography

