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Abstract

This document explains detailedly how to use the functions from the
BNPTSclust package, which perform the Bayesian Nonparametric Algo-
rithm for Time Series Clustering developed by Nieto-Barajas & Contreras-
Cristan (2014). Each function implements a Gibbs Sampler to approxi-
mate the posterior distribution of the parameters that will define the final
clustering. Section 1 gives a brief introduction to the problem that wants
to be solved and its relevance. Section 2 outlines some theoretical results
about how the clustering is obtained through the algorithm. Section 3
explains how to use each of the functions from the package and shows the
results of some worked examples.
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1 Introduction

Data clustering is an important aspect to consider while studying a sample
because it allows us to identify the heterogeneity present in the data. The ex-



planation of such source of heterogeneity might give us more information about
the data set which we might not have considered at first. Therefore, it is rel-
evant to have data clustering methods. In particular, a time series clustering
algorithm would let us understand which variables have the same or different
behavior through time.

Statistics has developed solutions for data clustering during the course of its de-
velopment. Nevertheless, many of them depend on the researcher’s own criteria
to determine the final groupings of the data.

The Bayesian Nonparametric Approach proposed by Nieto-Barajas and Contreras-
Cristan (2014) provides an objective time series clustering scheme, because the
clustering mechanism is decided by the model itself. The algorithm is computer
intensive, but technological developments have given feasibility to the bayesian
nonparametric tools it employs, which have had an acceptable performance so
far.

2 Theoretical bases of the model

Bayesian analysis carries out statistical inference combining the likelihood func-
tion of a sample with some prior information of the variable of interest. This
prior information is typically modeled assuming that the variable of interest
follows a probability distribution, which is known as a prior distribution. This
distribution is incorporated into the analysis through Bayes’ Theorem to obtain
the posterior distribution of the variable of interest. Inference is made once the
posterior distribution is obtained.

Lety; ={yit : t=1,....,T},i =1,...,n, denote a time series and y = {y1,...,¥n}
denote the sample of time series under consideration. Each observation is mod-
eled as if it followed a dynamic linear model of the form:

Yit = Firlir + € (1)

it = pOit—1 + Vit (2)
where € ~ N (0,02) and vy ~ N (0,07).
Equation (2) is known as the evolution equation and it represents an autore-

gressive process of order 1. Every 6;; accounts for time dependencies in the
observations.



To accomodate level, trends, seasonal and temporal components, equation (1)
is defined as:

Blyit] = pi + wig(t) + v;h(t) + 0y (3)

where p; denotes the level of the series; w; g(t) denotes a polynomial trend of
the form: wq;t 4+ wo;t? + ... + wpt™ and v;h(t) denotes seasonal components like:
vl (January) + ... + v11;I(November).

The time series will be clustered according to the parameters that determine
the mean level of the series, i.e. the parameters in vector n; = (s, wi, 14, 63).
However, not all parameters might be useful for clustering, since two series that
share the same trend and seasonalities may be desired to belong of the same
cluster, despite their level differences.

Therefore, we can separate 7; = («i, S, 0;) where a; will contain the parameters
not considered for clustering and 7; = (6, 6;) will contain the parameters used
for clustering.

Given all of these specifications, the general sampling model for each time series
will be defined as:

yi =Za;+ X0+ 0 +e,i=1,...,n. (4)

where Z and X have dimensions T' X p and T X d respectively. p represents
the number of parameters that will not be considered for clustering and d is
the number of parameters that will be taken into account for clustering. «a; is
a T x 1 vector, B is a d x 1 dimensional vector and #; has dimension T" x 1.
€ ~ Nrp(0,021).

2.1 Prior specification on

This prior specification is one of the most important for the model, because it
defines the clustering mechanism that will produce the time series groups.

The whole vector v = {71, ..., n} is assumed to come from a Poisson-Dirichlet
process denoted by PD(a, b, Gy). The parameters a and b characterize the pro-
cess completely, but the centering measure Gy can be specified externally. For
the model, it is assumed that Go = Na(5]0, 2s)x Nz (6|0, R) with 35 = diag(s3,,

.,03 ) and Rjj, = oZpl=H.

The Poisson-Dirichlet process is almost surely a discrete random measure and
it has the property that each ~; is a copy from an element in the vector v_; =
{71y s Yi=1,Vit1, -, Yn} With certain probability and it is a drawing from the
density gg associated to Gy with another probability, i.e.:



FOrbr-o) = g %ij izl ()

where (77 ;, -+, YV, 1) denotes the unique values in y_; which occur with fre-
quency nj;,j =1,...,m;.

If for two series 1, j it is the case that 7; = =;, then it will be considered that
both belong to the same group. However, we need the posterior distribution of
every 7 to be able to determine the final clustering.

Such posterior distribution cannot be expressed analytically and it must be cal-
culated numerically as explained by Nieto-Barajas, L.E. and Contreras-Cristan,
A. (2014) through a process called Gibbs sampling. This is the objective of the
functions from this package. The user supplements the file with the time series
information and the functions carry out the Gibbs sampling to approximate the
posterior distribution of ~.

2.2 Prior specification of the rest of the parameters

To approximate correctly the posterior distribution of v we need to compute
the posterior distribution of the rest of the parameters in the model too. These
distributions are approximated through Gibbs sampling as well in the functions
of the package. The prior distributions assigned to the rest of the parameters
are the following:

a; U N,N0,20),i=1,...n

€ € —
aei ~ IGa(ch,c5),i=1,...,n

ag,_ ~ IGa(cg,cf),j =1,...d

o2 ~IGa(c§,ct),k=1,...,p

o f(02,p) ox (03) 1YL

1—p2
e f(a) =mnlo(a)+ (1 —m)Be(alqs, q)
f(bla) = Ga(b+ algf, 4})

3 Functions description and examples

The functions from the package can be divided into three categories:

e Clustering functions. These are: tseriescm, tseriescqand tseriesca,
which perform time series clustering for monthly, quarterly and annual
data respectively. They implement a Gibbs sampler to approximate the
posterior distribution of the model parameters.



e Plotting functions. These are: clusterplots and diagplots, which
generate the plots of the time series clustering provided by the model and
the diagnostic plots to assess the convergence of the Gibbs sampler.

e Auxiliary functions. These are: compl1, desingmatrices and scaleandperiods,
which are for internal use and will not be explained here.

3.1 Clustering functions
3.1.1 Arguments

e data. This is a data frame that contains the time series information to
be clustered. It is assumed that the periods of the series appear as the
row names of the file.

e maxiter. Gibbs sampling is an iterative process and it requires a several
number of repetitions to achieve convergence and approximate correctly
the posterior distribution of the model parameters. maxiter is the max-
imum number of iterations that the Gibbs sampling carries out. The
default is 2000 and the user can increase the number of iterations under
the consideration that it will also take more time for the program to finish,
since it is computer intensive.

e burnin. It takes several iterations for the Gibbs sampler to become sta-
ble once the process begins. Therefore, these initial iterations are usually
discarded and are considered as a burn-in period. The default is to estab-
lish this as 10% of the maximum number of iterations desired. This can
be modified, but it must always be the case that maxiter is greater than
burnin.

e thinning. Gibbs sampling works better when only one in every few
iterations is taken into account instead of all the iterations as a whole.
This procedure is known as thinning and the default is to take one in
every five iterations as valid during Gibbs sampling.

e scale. Thisis a flag that allows the user to decide whether the time series
data should be scaled into the [0,1] interval as proposed by Nieto-Barajas
& Contreras-Cristan (2014). This scaling is done to put all time series in
a comparable scale. The default value of this variable is: TRUE. However,
if all time series are already in the same scale, the user has the option to
cluster directly with the original time series values.

e level, trend and seasonality. Remember that the observation equa-
tion of the model defines the time series as a function of their level, trend,
seasonal and temporal components, but that not all of them may be taken
into account for clustering. The temporal components are always con-
sidered for this objective, but the rest of them are left to the choice of
the user. level, trend and seasonality are just flag variables that



signal if such components will be considered for clustering. If they are
equal to FALSE, they are left out and if they are equal to TRUE, they
are included as clustering components. The default is: level = FALSE,
trend=seasonality=TRUE.

e deg. This variable defines the degree of the trend polynomial desired for
the model. The default is 2.

e cOeps,cleps,cObeta,clbeta,cOalpha,clalpha. These are the parame-
ters of the inverse gamma prior on o2, Ug, o2. Their value must be always
positive and they affect the number of groups that will be in the final
clustering. The default values are: cOeps = cObeta = cOalpha = 2 and
cleps = clbeta = clalpha = 1 which tend to generate a small number
of clusters. If the number of groups wants to be increased, then these
parameters should be given values close to zero, e.g. cOeps = cObeta =
cOalpha = 0.001 and cleps = clbeta = clalpha = 0.001.

e priora and priorb. These arguments indicate whether a prior distribu-
tion on parameters a and b should be assigned or not. If their value is
FALSE, then no prior is assigned on the parameters and their value is fixed
throughout the algorithm. If their value is TRUE, then the posterior distri-
bution of these parameters is approximated by the functions. The default
value is priora = priorb = TRUE. Of course, both arguments need not
take the same value.

e pia, q0a, qla, qOb and gqlb. This are the parameters of the prior dis-
tribution proposed for a and b. These arguments will only play a role if
priora or priorb are set to TRUE. pia must be a number in the interval
(0,1) and q0a, qla, qOb, qlb must be positive numbers. The default is
pia = 0.5 and gq0a=qla=q0b=qlb = 1

e a and b. If priora or priorb are FALSE, a and b are the fixed values
the parameters take throughout the algorithm. If priora or priorb are
TRUE, then a and b are the initial values that the parameters take for the
algorithm. Please note that a and b must always satisfy that: 0 <a <1
and a+b > 0.

e indlpml. This argument indicates if the LPML (Logarithm of Pseudo-
Marginal Likelihood) for the model is to be computed. This is a goodness
of fit measure and larger positive values indicate a better fit. If indlpml is
FALSE, then LPML is not calculated. If indlpml is TRUE, then the LPML
is computed, but this will make the functions run slower. The default
value is indlpml = FALSE, since the LPML value is not essential for the
clustering outcome.

3.1.2 Output

While the function is running, every 50 iterations a message like this will be
displayed:



Iteration Number: 1500. Progress: 75
Iteration Number: 1550. Progress: 77.5%
Iteration Number: 1600. Progress: 80%

Clearly, progress percentage depends on the maximum number of iterations
desired. When they finish, the functions will return the following variables as a
list:

e mstar. This variable contains the number of groups in the chosen cluster
configuration.

e gnstar. Each time series is identified by a number according to its column
in the file provided by the user. gnstar will contain the group number
to which each time series belongs in the final cluster configuration. For
example, if the file contains 10 time series and group 1 consists of the
series 1, 4, 7 and 10, group 2 consists of the series 2, 3, 5, 6 and 8 and
group 3 consists only of series 9, then gnstar would be defined as:

> gnstar
111221221231

e HM. This is the Heterogeneity Measure of the final cluster configuration.
The larger the value of HM, the more heterogeneous a clustering is. A
clustering with small HM and a small number of groups is preferable.

e arrho, ara and arb. At each iteration, Gibbs sampling produces a simu-
lation of the posterior distribution of the model parameters. However, the
parameters p,a and b, require an extra step in which the simulated values
are not always accepted as a sample of their posterior distribution. Hence,
the variables arrho, ara and arb contain the Acceptance Rate of the sim-
ulations for each parameter. The Acceptance Rate is simply the number
times a simulation was accepted over the total number of iterations.

e siglepssample, sig2alphasample, sig2betasample, sig2thesample
rhosample, asample, bsample and msample. The first three variables
are matrices that contain in their columns the posterior distribution sam-

ple of parameters afi, O’?lj and agk, Vi, j, k. The rest of the variables are

vectors with the posterior distribution sample of o2, p, a, b and the sample
of the number groups at each Gibbs sampling iteration saved.

e 1pml. The variable contains the value of LPML calculated for the model
if the argument indlpml was set to TRUE.

e scale. This is the same flag given as an argument to determine whether
the time series data should be scaled into the [0,1] interval as proposed

™



by Nieto-Barajas & Contreras-Cristan (2014). The plotting functions de-
scribed below will take this output and plot the time series clusters ac-
cordingly.

3.2 Plotting functions

Once the clustering functions are finished, the user can visualize the output and
assess algorithm convergence through the plotting functions.

3.2.1 Arguments

e L. List that contains the output of the clustering functions.

Besides, the function clusterplots must receive as argument the data
frame that contains the time series information.

3.2.2 Qutput

The clusterplots function returns the graphs of the time series that belong to
each cluster, for all clusters. This makes it easier to visualize and to interpret
the reason for which the algorithm determined the final cluster configuration.

The diagplots function returns three different sets of graphs:

e Trace plots. These are the first eight plots returned and they assess the
convergence of the Gibbs sampler. They are simply the plot of the sim-
ulated values of the posterior distribution of each parameter at every
iteration. If the plots are stationary, then the Gibbs sampler achieved
convergence and the final clustering configuration is acceptable.

e Histograms. These are the following eight and they give an idea of the fre-
quency in which each simulated value appears as a sample of the posterior
distribution of each parameter.

e Ergodic mean plots. The next eight plots are the ergodic mean of the
samples of the posterior distributions of the model parameters at every
iteration. The ergodic mean is just the sum of the simulated values up
to a certain iteration divided by the total number of iterations at that
point. If the plot converges to a value as the iterations increase, then it
can be considered that the Gibbs sampler achieved convergence and the
final clustering configuration is acceptable.

These are some examples of the output that each function produces. Please
note that the examples might have slight differences from what you get, due to
the probabilistic nature of the functions.



3.3 tseriescm example

This function performs the clustering algorithm for monthly time series data.
This example comes from the monthly adjusted closing prices of 58 shares from
the Mexican stock exchange market. This is the database used by Nieto-Barajas,
L.E. and Contreras-Cristan, A. (2014). The following output was obtained by
running this code:

>
>

vV Vv

data(stocks)
L <- tseriescm(stocks,maxiter = 4000,level = FALSE,trend = TRUE,seasonality
TRUE,priorb = FALSE,b = 0)
clusterplots(L,stocks)
diagplots(L)

These arguments imply that the prior on v will be a Normalized Stable Process.
The ouput is the following:

e Console output

Number of groups of the chosen cluster configuration: 11

Time series in group 1 : AC ALFAA AMXA AMXL AZTECACPO FRAGUAB GAPB GCARSOAL GFNORTEQ GIGANTE GMEXICOB GMODELO

C TDEALBI INVEXA KUOB PENOLES PINFRA QCPO SORIANAB

Time series in group 2 : ALSEA ARA BBVA C CMXCPO CICSABL COMEUBC GCC GEOB GFAMSAA GMD GRUMAB HOGARB HOMEX ICA
SAN SAREB TELMEXA URBI

Time series in group 3 : BACHCOB

Time series in group 4 : BIMBOA CEMEXA CEMEXB CYDSASAA ELEKTRA FMSAUBD GFINBURO KIMBERA KOFL MEXCHEM VALUEGFO
WALMEXV

Time
Time
Time
Time
Time
Time
Time

series
series
series
series
series
series
series

HM Measure:

in group 5 : CMOCTEZ
in group 6 : CMRB

in group 7 : GBMO

in group 8 : ICHB

in group 9 : LAMOSA
in group 10 @ TELMEXL
in group 11 : TLVACPO
150.429

Figure 1: Console output for the function tseriescm.



o Cluster plots
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Figure 2: Cluster plots for the function tseriescm.
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Figure 3: Cluster plots for the function tseriescm.
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e Trace plots
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e Histograms
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Figure 8: Histograms for the function tseriescm.
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e FErgodic Mean Plots
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Figure 9: Ergodic Mean plots for the function tseriescm.
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Figure 10: Ergodic Mean plots for the function tseriescm.
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3.4 tseriescq example

This function performs the clustering algorithm for quarterly time series data.
This example comes from quarterly average house price data in Scotland from
2003 to 2014. The output was obtained by running the following code:

vV Vv

v v i

data(houses)
L <- tseriescq(houses,maxiter = 4000,level = FALSE,trend = TRUE,seasonality
= TRUE,cOeps = 0.001,cleps = 0.001,cObeta = 0.001,clbeta = 0.001,cOalpha
0.001,clalpha = 0.001,priora = FALSE,a = 0,b = 0.25)
clusterplots(L,houses)

diagplots(L)

These arguments imply that the prior on « will be a Dirichlet Process. The
ouput is the following:

e Console output

Number of groups of the chosen cluster configuration: 9

Time series
Time series
Time series
inross

Time series
Time series
ing

in group 1 : Aberdeen.City
in group 2 : Aberdeenshire Shetland.Islands
in group 3 : Angus Dundee.City Edinburgh..City.of Eilean.Siar Moray North.Lanarkshire Perth.and.K

in group 4 : Argyll.and.Bute
in group 5 : Clackmannanshire Dumfries.and.Galloway East.Ayrshire Inverclyde South.Ayrshire Stirl

Time series in group 6 : East.Dunbartonshire East.Lothian East.Renfrewshire Midlothian Orkney.Islands Scottis
h.Borders West.Dunbartonshire

Time series in group 7 : Falkirk Fife Highland West.Lothian

Time series in group 8 : Glasgow.City North.Ayrshire Renfrewshire

Time series in group 9 : South.Lanarkshire Unallocated

HM Measure:

23.63663

Figure 11: Console output for the function tseriescq.
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o Cluster plots
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Figure 14: Cluster plots for the function tseriescq.
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e Trace plots

Trace plot of sig2eps
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Figure 15: Trace plots for the
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Figure 16: Trace plots for the
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e Histograms
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Figure 17: Histograms for the function tseriescq.
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Figure 18: Histograms for the function tseriescq.
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e FErgodic Mean Plots
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Figure 19: Ergodic Mean plots for the function tseriescq.
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Figure 20: Ergodic Mean plots for the function tseriescq.
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3.5 tseriesca example

This function performs the clustering algorithm for annual time series data.
This example comes from the yearly GDP per worker for 121 countries from
1993 to 2012. The output was obtained by running the following code:

Vv

data(gdp)

L <- tseriesca(gdp,maxiter = 4000,level = FALSE,trend = TRUE, cOeps
= 0.1,cleps = 0.1,cObeta = 0.1,clbeta = 0.1, cOalpha = 0.1,clalpha
0.1)

clusterplots(L,gdp)

diagplots(L)

\'2

v v i

These arguments imply that the prior on « will be a Dirichlet Process. The
ouput is the following:

e Console output

Nunber of groups of the chosen cluster configuration: 9

Time series in group 1 : Albania Algeria Angola Argentina Azerbaijan Bangladesh Belarus Bolivia Brazil Bulgar
ja Cambodia China Colombia Costa_Rica Dominican_Republic Ecuador Ethiopia Georgia Ghana Hong.Kong India Indon
esia Iran Iraq Jordan Kazakhstan Kenya Kuwait Kyrgyz_Republic Moldova Morocco Mozambique Myanmar Nigeria Peru
Philippines Russian_Federation South_Africa Spain Sri.Lanka St_Lucia Syrian_Arab_Republic Tajikistan Tanzani
a Thailand Turkmenistan Uganda Ukraine Uruguay Uzbekistan Vietnam Zambia

Time series in group 2 : Armenia Australia Austria Belgium Bosnia_and Herzegovina Burkina_Faso Cameroon Canad
a Chile Croatia Cyprus Czech_Republic Denmark Egypt Estonia Finland France Germany Greece Guatemala Hungary I
celand Ireland Israel Japan Korea Latvia Lithuania Macedonia Malaysia Mali Malta Mexico Netherlands New_Zeala
nd Norway Oman Pakistan Poland Portugal Romania Senegal Singapore Slovak_Republic STovenia Sudan Sweden Switz
erland Trinidad_and_Tobago Tunisia Turkey UK US

Time series in group 3 : Bahrain Italy Luxembourg Qatar

Time series in group 4 : Barbados

Time series in group 5 : Congo

Time series in group 6 : Cote_d_Ivoire Jamaica Saudi_Arabia Zimbabwe

Time series in group 7 : Madagascar

Time series in group § : Malawi Niger Venezuela

Time series in group 9 : UAE Yemen

HM Measure: 78.42339

Figure 21: Console output for the function tseriesca.
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o Cluster plots
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Figure 22: Cluster plots for the function tseriesca.
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Figure 24: Cluster plots for the function tseriesca.
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e Trace plots
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Figure 25: Trace plots for the function tseriesca.
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e Histograms
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Figure 27: Histograms for the function tseriesca.
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Figure 28: Histograms for the function tseriesca.
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e FErgodic Mean Plots
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Figure 29: Ergodic Mean plots for the function tseriescq.
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Figure 30: Ergodic Mean plots for the function tseriescq.
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