
Rmodule: Automated Markov chain Monte Carlo for

arbitrarily structured correlation matrices

John Hughes

Lehigh University

Abstract

Statistical inference for correlation matrices and their functionals can be car-
ried out straightforwardly when the matrix in question has a simple struc-
ture or is unstructured. The software described in this article, R package
Rmodule, allows users to do automated inference for correlation matrices
having more complicated structures. This is a challenging problem since
updating any given correlation parameter, conditional on the present values
of the remaining correlation parameters, may entail proposing a new value
from a distribution that has disconnected support, i.e., a support comprising
two or more disjoint subintervals of (−1, 1). Rmodule solves this problem
by applying a new algorithm, the Apes of Wrath algorithm, to handle such
proposals. A package user can employ Rmodule as a component of a broader
Monte Carlo algorithm by supplying a data matrix, a correlation matrix
in symbolic form, the current state of the chain, a function that computes
the log likelihood, and, optionally, a collection of prior distributions. The
package’s flagship function then carries out a variable-at-a-time update of
all correlation parameters, and returns the new state. The sampler is quite
fast since important auxiliary functions have been implemented in C++. The
sampler is also easy to tune.

Keywords: correlation matrix, C++, Metropolis–Hastings random walk, R,
statistical inference

Email address: drjphughesjr@gmail.com (John Hughes)

Preprint submitted to SoftwareX August 18, 2023

Current code version 1.0

Permanent link to code/repository
used for this code version

Comprehensive R Archive Network
https://tinyurl.com/3azx93ed

Legal code license GPL (≥ 2)

Code versioning system used major.minor-patch

Software code languages, tools, and
services used

R and C++

Compilation requirements, operating
environments, and dependencies

R packages Rcpp and
RcppArmadillo

Support email for questions drjphughesjr@gmail.com

Table 1: Code metadata

1. Motivation and significance

If one wishes to do Bayesian (or maximum a posteriori) inference for a
correlation matrix and/or functionals (e.g., Gaussian mutual information) of
said matrix, two common approaches are the parameter-at-a-time strategy
proposed by Barnard et al. (2000) or a matrix-valued prior distribution such
as the Lewandowski–Kurowicka–Joe prior (Lewandowski et al., 2009). These
approaches are advantageous when the true correlation matrix is unstruc-
tured or has simple and/or soft constraints. These approaches are not suit-
able for correlation matrices having more complicated structures and hard
constraints since in this case it can be challenging to enforce the constraints
while also ensuring that the matrix is non-negative definite.

Consider, for example, the 4× 4 correlation matrix

R =











1 r1 r3 r4

r1 1 r5 r3

r3 r5 1 r2

r4 r3 r2 1











.

Suppose the current state of the Markov chain is

(r1, r2, r4, r5) = (−0.01,−0.18,−0.75, 0.83),

2

https://tinyurl.com/3azx93ed
drjphughesjr@gmail.com

i.e.,

R(r3) =











1 −0.01 r3 −0.75

−0.01 1 0.83 r3

r3 0.83 1 −0.18

−0.75 r3 −0.18 1











,

and we wish to update r3 conditional on this state. Then the function

f(r3) = det{R(r3)}

is the quartic function shown in Figure 1 since

det(R) = r
4

3

− 2(r1r2 + r4r5 + 1)r2

3

+ 2(r1r4 + r1r5 + r2r4 + r2r5)r3

+ r2
1
r2
2
− r2

1
− r2

2
+ r2

4
r2
5
− r2

4
− r2

5
− 2r1r2r4r5 + 1.

-1.0 -0.5 0.0 0.5 1.0

0
.0

0
.1

0
.2

0
.3

r3

f(
r
3
)

Figure 1: The complicated determinant function for the scenario described in the text

We see that f(r3) is non-negative only on the subintervals (−1,−0.71),
(−0.47, 0.38), and (0.8, 1) (gray line segments), and so a valid proposal for the
next state of r3 must fall within one of these intervals. Scenarios of this sort,
which can be arbitrarily complicated depending on the size and structure of

3

the correlation matrix, cannot be handled by the traditional methods.
Package Rmodule handles scenarios like the one described above by (1)

using a root-finding algorithm to identify the subintervals on which f(r3)
is non-negative, (2) placing the subintervals end-to-end to produce a single
subinterval, (3) mapping the new subinterval onto the real line, (4) using a
Gaussian random walk to propose a new value from the real line, (5) mapping
the proposed value back to correlation scale, i.e., (−1, 1), and (6) mapping the
single subinterval of (−1, 1) back to the original disconnected set. I call this
algorithm the Apes of Wrath algorithm because the well-known 1959 Bugs
Bunny cartoon Apes of Wrath inspired the idea of gathering the collection
of subintervals into a single subinterval. In the cartoon, Bugs crosses a rope
bridge and tries to keep Elvis, an adult male gorilla, at bay by threatening
to cut the rope if Elvis attempts to cross it. Elvis instead pulls the opposing
cliffside to him with one impressive yank of the rope (Figure 2).

Figure 2: The inspiration for the Apes of Wrath algorithm (images © Warner Bros.
Pictures)

Since it employs numerical root finding, the Apes of Wrath algorithm
can easily handle arbitrarily complicated functions f(r) = det{R(r)}. The
root finding is computationally efficient because I implemented a vectorized
version of the determinant function in C++. Steps 2–6 of the algorithm are
also implemented in C++.

Incidentally, the maps (a, b) ↔ R are given by

T (x) = tan

{

π

b− a

(

x−
a+ b

2

)}

4

and

T−1(y) =
b− a

π
arctan(y) +

a+ b

2
,

where (a, b) ⊂ (−1, 1) is the interval to be mapped. And, on a side note, the
name ‘Rmodule’ is a fun triple pun:

1. Rmodule is an R module,

2. Rmodule infers correlation matrices, which are often denoted as R, and

3. linear/matrix algebra can be expressed more generally in terms of R-
modules, where the underlying field F is replaced by ring R.

2. Software description

Package Rmodule exports exactly one function to the R namespace. The
function’s signature is as follows.

update_R(

r,

data,

R,

log.f,

log.f.args,

log.priors,

log.priors.args,

sigma,

n = 100

)

The first argument, r, is a p-vector of correlations and the current state of
the Markov chain. It is assumed that these values correspond to a valid
correlation matrix since function update R updates the state of the Markov
chain conditional on this value of the state vector.

The second argument, data, is the data matrix. This argument must be
an R matrix with each row an observation. It is assumed that the rows are
independent and have the same correlation structure. Whether the rows are
assumed to be identically distributed is up to the user and can be handled
via argument log.f.

The third argument, R, is the posited correlation matrix in symbolic form.
Since we assume this matrix has 1’s on its diagonal, the remaining entries

5

should be numbered using consecutive integers starting with 2. For example,
correlation matrix

R =











1 r1 r3 r4

r1 1 r5 r3

r3 r5 1 r2

r4 r3 r2 1











.

might be represented symbolically as

R =











1 2 4 5

2 1 6 4

4 6 1 3

5 4 3 1











.

Function update R will then update the correlations one at a time: first 2,
then 3, and so on until all p correlations have been updated.

The fourth argument, log.f, is the log objective function. The objective
function might be a likelihood or a composite likelihood or an approximate
likelihood, for example. This function must take exactly three arguments:
the data matrix, the correlation matrix (not the symbolic form of same),
and a list, log.f.args, containing any additional arguments. This function
must return exactly one scalar value, the value of the log objective function
evaluated at the given value of the correlation matrix, i.e., log f(R | data, ·),
where · denotes any additional arguments required to compute log f . This
function is used by update R to compute log f(R∗ | data, ·)−log f(R | data, ·)
in the Metropolis–Hastings acceptance probability, where R∗ is the proposal
and R is the current state.

Argument log.priors must be a list of p log prior distributions. Com-
mon choices of prior distribution are the Uniform(−1, 1) prior, the Jeffreys
prior (1 − r2)−1.5, and, more generally, (1 − r2)c, where c ∈ R. Additional
arguments for the priors can be passed as the list log.priors.args.

Argument sigma is a vector of standard deviations for the Gaussian ran-
dom walk proposals. These are the only necessary tuning parameters for the
sampler. If sigma has length 1, that value will be used for all p correlation
parameters. Otherwise sigma should have length p.

The final argument is n. This is the number of grid points to use in root
finding. The default value is 100. For some problems, a larger value may be
required to avoid overlooking roots of det(R). Note that the choice of n does

6

not affect execution time much because auxiliary function detR is a vectorized
C++ function that employs the Armadillo linear algebra library (Sanderson
and Curtin, 2016) by way of R package RcppArmadillo (Eddelbuettel and
Sanderson, 2014):

Rcpp::NumericVector detR(Rcpp::NumericVector r, int param,

const arma::mat& R, arma::mat R_)

{

arma::uword n = R.n_rows;

arma::uword m = r.length();

Rcpp::NumericVector dets(m);

arma::uword i, j;

for (arma::uword k = 0; k < m; k++)

{

for (i = 0; i < n; i++)

for (j = i + 1; j < n; j++)

if (R(i, j) == param)

{

R_(i, j) = r[k];

R_(j, i) = r[k];

}

dets[k] = det(R_);

}

return dets;

}

3. Illustrative examples

In this section I illustrate the use of Rmodule by employing the pack-
age in an algorithm that measures intra-coder and inter-coder agreement for
a biomaging study of congenital diaphragmatic hernia, in which a hole in
the diaphragm permits abdominal organs to enter the chest (Longoni et al.,
2020). The data for this example are liver-herniation scores (in {1, . . . , 5})
assigned by two coders (radiologists) to magnetic resonance images (MRI) of
the liver. The five grades are described in Table 2.

Each coder scored each of the 47 images twice, and so we can assess both

7

Table 2: Liver herniation grades for the CDH study

Grade Description

1 No herniation of liver into the fetal chest

2 Less than half of the ipsilateral thorax is occupied by the
fetal liver

3 Greater than half of the thorax is occupied by the fetal liver

4 The liver dome reaches the thoracic apex

5 The liver dome not only reaches the thoracic apex but also
extends across the thoracic midline

intra-coder and inter-coder agreement. I used the 4× 4 correlation structure

R =











1 r1 r3 r3

r1 1 r3 r3

r3 r3 1 r2

r3 r3 r2 1











.

In this scheme r1 captures intra-coder agreement for the first radiologist (first
two columns of the data matrix), r2 captures intra-coder agreement for the
second radiologist (third and fourth columns of the data matrix), and r3
measures inter-coder agreement.

I fit a Gaussian copula model to the data, assuming the rows are iid,
follow a categorical distribution, and have the underlying correlation struc-
ture just described. Rather than inferring the probabilities of the categorical
response distribution, I compute the empirical probabilities, i.e., sample pro-
portions, and focus on inferring the copula correlation matrix. This means
my approach is not fully Bayesian. Extension to a fully Bayesian procedure
would be straightforward. As for prior distributions, I assigned independent
Uniform(−1, 1) priors to r1, r2, and r3.

The R code is shown below in Figure 3. I have omitted the details of the
copula likelihood computation. The form of the copula likelihood for discrete
outcomes can be found in Xue-Kun Song (2000), for example. The code
refers to Miwa’s algorithm (Miwa et al., 2003), which I used to approximate

8

multinormal probabilities. Since the likelihood is Θ(2n) and approximation
of multinormal probabilities is expensive, computing the likelihood is the
computational bottleneck in this scenario.

Usage of the package’s flagship function, update R, appears at the end
of the code snippet. Note that I chose n = 800 as the grid size for the
root finder. For some datasets a smaller grid is sufficient to avoid numerical
problems. The default grid size is 100.

Results of the analysis are shown in Table 3. For each parameter I have
provided the estimated posterior mean, the 95% highest posterior density
interval, and the Monte Carlo standard error. We see that all three agree-
ment measures are quite high (very close to 1) and the posterior is highly
concentrated. I also used the samples to estimate, as an overall measure of
agreement for the dataset, the Gaussian mutual information −1

2
log det(R).

The estimate was 10.4, which indicates quite strong overall agreement.

Table 3: Results from analysis of the liver herniation data

Parameter Estimated Posterior Mean 95% HPD Interval MCSE

r1 0.995278 (0.991900, 0.997721) 0.000085

r2 0.999988 (0.999966, 0.999998) 0.000002

r3 0.996699 (0.995248, 0.998098) 0.000052

4. Impact

By extending the parameter-at-a-time strategy proposed by Barnard et al.
(2000), package Rmodule permits principled MCMC-based inference for ar-
bitrarily structured correlation matrices and functionals thereof. This is
immensely useful since modeling correlation structures is among the most
common and important and difficult tasks in statistical analysis. Package
Rmodule should greatly ease this burden by providing a flexible, modular,
automated, and computationally efficient means of sampling correlation ma-
trices for a very large class of statistical models. Examples include copula
models (e.g., Gaussian, Student t, χ2, Fisher), general location-scale models,
shrinkage estimation of regression coefficients, and multivariate analysis of
variance models.

9

I chose to produce package Rmodule because I wanted to use it to explore
Bayesian Gaussian copula agreement models, such as the model I applied
to the liver data in Section 3. Having Rmodule in my toolkit has allowed
me to focus on the frontend of these explorations while outsourcing the
backend work to the package. This advantageous modularization was il-
lustrated by the liver data example, wherein sampling the copula correlation
matrix could be done straightforwardly through repeated calls to function
Rmodule::update R, the setup for which was simple. I hope Rmodule will
facilitate many similar explorations by both methodologists and practition-
ers.

5. Conclusions

R package Rmodule is a software tool that permits MCMC-based inference
for arbitrarily structured correlation matrices. The package’s functionality
can easily be integrated into larger algorithms for which correlation modeling
is an important subtask. I illustrated such an integration by using Rmodule

to apply a Gaussian copula agreement model to ordinal radiologist-generated
scores from an imaging study of congenital diaphragmatic hernia.

Planned enhancements/extensions of the package include permitting Hamil-
tonian Monte Carlo (Hoffman et al., 2014; Duane et al., 1987; Neal et al.,
2011) updates in place of Gaussian random walk updates. Hamiltonian
Monte Carlo uses ideas from the Hamiltonian formulation of classical me-
chanics (Hamilton, 1833) to realize a fast-mixing Markov chain. Thus an
HMC-enabled version of Rmodule::update R would require a much shorter
sample path to provide the same quality of inference as the random walk.

Declaration of competing interest

The author declares that he has no known competing financial interests
or personal relationships that could have appeared to influence the work
reported in this paper.

Data availability

The data that support the illustration in this article are available from
the author upon reasonable request.

10

References

Barnard, J., McCulloch, R., Meng, X.L., 2000. Modeling covariance matri-
ces in terms of standard deviations and correlations, with application to
shrinkage. Statistica Sinica , 1281–1311.

Duane, S., Kennedy, A., Pendleton, B.J., Roweth, D., 1987. Hybrid Monte
Carlo. Physics Letters B 195, 216–222.

Eddelbuettel, D., Sanderson, C., 2014. RcppArmadillo: Accelerating R with
high-performance C++ linear algebra. Computational Statistics and Data
Analysis 71, 1054–1063.

Hamilton, W.R., 1833. On a General Method of Expressing the Paths of
Light, & of the Planets, by the Coefficients of a Characteristic Function.
PD Hardy.

Hoffman, M.D., Gelman, A., et al., 2014. The No-U-Turn sampler: Adap-
tively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn.
Res. 15, 1593–1623.

Lewandowski, D., Kurowicka, D., Joe, H., 2009. Generating random corre-
lation matrices based on vines and extended onion method. Journal of
Multivariate Analysis 100, 1989–2001.

Longoni, M., Pober, B.R., High, F.A., 2020. Congenital diaphragmatic hernia
overview, in: GeneReviews. University of Washington, Seattle.

Miwa, T., Hayter, A., Kuriki, S., 2003. The evaluation of general non-centred
orthant probabilities. Journal of the Royal Statistical Society Series B:
Statistical Methodology 65, 223–234.

Neal, R.M., et al., 2011. MCMC using Hamiltonian dynamics. Handbook of
Markov chain Monte Carlo 2, 2.

Sanderson, C., Curtin, R., 2016. Armadillo: A template-based C++ library
for linear algebra. Journal of Open Source Software 1, 26.

Xue-Kun Song, P., 2000. Multivariate dispersion models generated from
Gaussian copula. Scandinavian Journal of Statistics 27, 305–320.

11

library(Rmodule) # Load the package.

data = read.csv("liver.csv") # Read in the liver data.

data = as.matrix(data)

n.c = ncol(data)

Build the symbolic correlation matrix. The parameters are numbered 2, 3, and 4.

R = diag(1, n.c)

R[1, 2] = R[2, 1] = 2

R[3, 4] = R[4, 3] = 3

R[1, 3] = R[3, 1] = R[1, 4] = R[4, 1] = R[2, 3] = R[3, 2] = R[2, 4] = R[4, 2] = 4

The following function computes the copula log likelihood. The first argument

is the data matrix. The second argument is the correlation matrix (not the

symbolic matrix but the matrix carrying the current state of the chain). The

third argument is a list of additional arguments.

loglike.miwa = function(data, R, args)

{

details omitted in the interest of brevity

}

log.f = compiler::cmpfun(loglike.miwa) # Compile to gain speed.

Now compute the empirical probabilities.

prob = table(data)

prob = prob / sum(prob)

The additional arguments for log.f are the number of steps for Miwa’s method

and the empirical probabilities.

log.f.args = list(steps = 16, prob = prob)

The prior for the correlations is Uniform(-1, 1), and so the second argument,

’args’, is not needed in this example.

logP = function(r, args) dunif(r, -1, 1, log = TRUE)

Build the list of log priors and their arguments.

log.priors = list(logP, logP, logP)

log.priors.args = list(0, 0, 0) # dummy arguments in this example

m = 100000 # Simulate a sample path of length 100,000.

r.chain = matrix(0, m, 3)

r.chain[1,] = c(0.98, 0.99, 0.96) # good starting values

sigma = c(1, 4, 4) # Standard deviations for the three random

walk proposals.

for (i in 2:m)

r.chain[i,] = update_R(r.chain[i - 1,], data, R, # R in symbolic form

log.f = log.f,

log.f.args = log.f.args,

log.priors = log.priors,

log.priors.args = log.priors.args,

sigma = sigma,

n = 800) # grid size for the root finder

Figure 3: Code for using Rmodule in analyzing the liver data

12

	Motivation and significance
	Software description
	Illustrative examples
	Impact
	Conclusions

