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1 Introduction

The population regression model is given by

ξ : Yi = xT
i θ + σ

√
viEi, θ ∈ Rp, σ > 0, i ∈ U,

where the population U is of size N ; the parameters θ and σ are unknown; the xi’s are known val-
ues (possibly containing outliers), xi ∈ Rp, 1 ≤ p < N ; the vi’s are known positive (heteroscedas-
ticity) constants; the errors Ei are independent and identically distributed (i.i.d.) random variables
with zero expectation and unit variance; it is assumed that

∑
i∈U xix

T
i /vi is a non-singular (p× p)

matrix.
It is assumed that a sample s is drawn from U with sampling design p(s) such that the

independence structure of model ξ is maintained. The sample regression GM -estimator of θ is
defined as the root to the estimating equation Ψ̂n(θ, σ) = 0 (for all σ > 0), where

Ψ̂n(θ, σ) =
∑
i∈s

wiΨi(θ, σ) with Ψi(θ, σ) = η

(
yi − xT

i θ

σ
√
vi

, xi

)
xi

σ
√
vi
,

where the function η : R× Rp → R parametrizes the following estimators

η(r,x) = ψ(r) M -estimator,

η(r,x) = ψ(r) · h(x) Mallows GM -estimator,

η(r,x) = ψ

(
r

h(x)

)
· h(x) Schweppe GM -estimator,

where ψ : R → R is a continuous, bounded, and odd (possibly redescending) function, and
h : Rp → R+ is a weight function.
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2 Covariance estimation

The model-based covariance matrix of θ is (Hampel, Ronchetti, Rousseeuw, and Stahel, 1986,
Chapter 6.3)

covξ(θ, σ) = M−1(θ, σ) ·Q(θ, σ) ·M−T (θ, σ) for known σ > 0, (1)

where

M(θ, σ) =
N∑
i=1

Eξ

{
Ψ′

i(θ, σ)
}
, where Ψ′

i(θ, σ) = −
∂

∂θ∗Ψi(Yi,xi;θ
∗, σ)

∣∣∣∣
θ∗=θ

,

and

Q(θ, σ) =
1

N

N∑
i=1

Eξ

{
Ψi(Yi,xi;θ, σ)Ψi(Yi,xi;θ, σ)

T
}
,

and Eξ denotes expectation with respect to model ξ. For the sample regression GM -estimator θ̂n,
the matrices M and Q must be estimated. Expressions of the generic matrices M and Q in (1)
are given as foolows.

M̂M = −ψ′ ·XTWX Q̂M = ψ2 ·XTWX M -est.

M̂Mal = −ψ′ ·XTWHX Q̂Mal = ψ2 ·XTWH2X GM -est. (Mallows)

M̂Sch = −XTWS1X Q̂Sch = XTWS2X GM -est. (Schweppe)

where

W = diagi=1,...,n{wi}, H = diagi=1,...,n{h(xi)},

ψ′ =
1

N̂

∑
i∈s

wiψ
′
(

ri
σ̂
√
vi

)
, ψ2 =

1

N̂

∑
i∈s

wiψ
2

(
ri

σ̂
√
vi

)
,

S1 = diagi=1,...,n

{
si1
}
, si1 =

1

N̂

∑
j∈s

wjψ
′
(

rj
h(xi)σ̂

√
vj

)
,

and

S2 = diagi=1,...,n

{
si2
}
, si2 =

1

N̂

∑
j∈s

wjψ
2

(
rj

h(xi)σ̂
√
vj

)
.

Remarks.

• The i-th diagonal element of S1 and S2 depends on h(xi), but the summation is over j ∈ s;
see also (Marazzi, 1987, Chapter 6).

• When W is equal to the identity matrix I, the asymptotic covariance of θ̂M is equal to
the expression in Huber (1981, Eq. 6.5), which is implemented in the R packages MASS

(Venables and Ripley, 2002) and robeth (Marazzi, 2020).
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• For the Mallows and Schweppe type GM -estimators and given that W = I, the asymptotic
covariance coincides with the one implemented in package/ library robeth for the option
“averaged”; see Marazzi (1993, Chapter 4) and Marazzi (1987, Chapter 2.6) on the earlier
ROBETH-85 implementation.

3 Implementation

The main function – which is only a wrapper function – is cov_reg_model. The following display
shows pseudo code of the main function.

cov_reg_model()

{

get_psi_function() // get psi function (fun ptr)

get_psi_prime_function() // get psi-prime function (fun ptr)

switch(type) {

case 0: cov_m_est() // M-estimator

case 1: cov_mallows_gm_est() // Mallows GM-estimator

case 2: cov_schweppe_gm_est() // Schweppe GM-estimator

}

robsurvey_error() // signal error in case of failure

}

The functions cov_m_est(), cov_mallows_gm_est(), and cov_schweppe_gm_est()

implement the covariance estimators; see below. All functions are based on the subroutines in
BLAS (Blackford et al., 2002) and LAPACK (Anderson et al., 1999).

To fix notation, denote the Hadamard product of the matrices A and B by A◦B and suppose
that
√
· is applied element by element.

3.1 M -estimator

The covariance matrix is (up to σ̂) equal to (see cov_m_est)

(XTWX)−1 (2)

and is computed as follows:

• Compute the factorization
√
w ◦X := QR (LAPACK: dgeqrf).

• Invert the upper triangular matrix R by backward substitution to get R−1 (LAPACK: dtrtri).

• Compute R−1R−T , which is equal to (2); taking advantage of the triangular shape of R−1

and R−T (LAPACK: dtrmm).
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3.2 Mallows GM -estimator

The covariance matrix is (up to σ̂) equal to (see cov_mallows_gm_est)(
XTWHX

)−1
XTWH2X

(
XTWHX

)−1 (3)

and is computed as follows:

• Compute the QR factorization:
√
w · h ◦X := QR (LAPACK: dgeqrf).

• Invert the upper triangular matrix R by backward substitution to get R−1 (LAPACK: dtrtri).

• Define a new matrix: A←
√
h ◦Q (extraction of Q matrix with LAPACK: dorgqr).

• Update the matrix: A← AR−T (taking advantage of the triangular shape of R−1; LAPACK:
dtrmm).

• Compute AAT , which corresponds to the expression in (3); (LAPACK: dgemm).

3.3 Schweppe GM -estimator

The covariance matrix is (up to σ̂) equal to (see cov_schweppe_gm_est)(
XTWS1X

)−1
XTWS2X

(
XTWS1X

)−1
. (4)

Put s1 = diag(S1), s2 = diag(S2), and let ·/· denote elemental division (i.e., the inverse of the
Hadamard product). The covariance matrix in (4) is computed as follows

• Compute the factorization
√
w ◦ s1 ◦X := QR (LAPACK: dgeqrf).

• Invert the upper triangular matrix R by backward substitution to get R−1 (LAPACK: dtrtri).

• Define a new matrix: A←
√
s2/s1 ◦Q (extraction of Q matrix with LAPACK: dorgqr).

• Update the matrix: A← AR−T (taking advantage of the triangular shape of R−1; LAPACK:
dtrmm).

• Compute AAT , which corresponds to the expression in (4); (LAPACK: dgemm).

Remark. Marazzi (1987) uses the Cholesky factorization (see his subroutines RTASKV and RTASKW)
which is computationally a bit cheaper than our QR factorization.
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