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1. Introduction 

1.1. Outline 

Application examples of generalized spatial regression modeling for count data and 

continuous non-Gaussian data using the spmoran package (version 0.2.2 onward) are presented. In 

Section 2, the model is introduced. In the subsequent sections, applications of the model for disease 

mapping, spatial prediction and uncertainty modeling, and hedonic analysis are presented. 

 The R codes used are available at https://github.com/dmuraka/spmoran. Another coding 

examples focusing on Gaussian spatial regression modeling is also available on the same GitHub page. 

 

1.2. Model 
The following generalized spatial regression model (Murakami et al., 2021) is considered: 

��ሺݕ௜ሻ = ௜ݖ ௜ݖ      , = ∑ �௜,௞�௜,௞ݔ
௞=ଵ + ௜ݓ + �௜ ,௜~�ሺ0ݓ      , ܿሺ݀௜௝ሻሻ,     �௜~�ሺ0, �ଶሻ, (1) 

where ��ሺ∙ሻ is a transformation function normalizing the i-th explained variable ݕ௜, ݔ௜,௞ is the k-th 

explanatory variable, �௜,௞  is a fixed or random coefficient, which may vary spatially and/or non-

spatially (the distribution for �௜,௞  is omitted from Eq. (1) for simplicity), and ݓ௜  is a term that 

captures residual spatial dependence. Moran eigenvectors, which are spatial basis functions, are used 

to model the spatially dependent processes in �௜,௞ and ݓ௜. This model can be rewritten as follows: 

௜ݕ = ��−ଵሺݖ௜ሻ,     ݖ௜ = ∑ �௜,௞�௜,௞ݔ
௞=ଵ + ௜ݓ + �௜ ,௜~�ሺ0ݓ     , ܿሺ݀௜௝ሻሻ,     �௜~�ሺ0, �ଶሻ. (2) 

Eq. (2) suggests that ݕ௜  is assumed to have a distribution obtained by transforming a Gaussian 

distributed ݖ௜  using the ��−ଵሺ∙ሻ function. This model describes a wide variety of non-Gaussian data, 

including count data, by flexibly specifying the transformation function. 

 The transformation function is defined by concatenating D sub-transformation functions: 

��ሺݕ௜ሻ = ��� (���−భ ቀ ⋯ ��మ ቀ��భ ሺݕ௜ሻቁ ⋯ ቁ), (3) 

where ��� ሺ∙ሻ is the d-th sub-transformation function, which depends on the set of parameters ��. 

For continuous explained variables, the spmoran package provides the following specifications for ��ሺ∙ሻ (see Figure 1).  

(a) For non-negative ݕ௜, the Box–Cox transformation is available (left of Figure 1). 

(b) For non-Gaussian ݕ௜  (e.g., skew and fat-tail distribution), the SAL transformation in Eq. (4) 

(Rios and Tobar, 2019), which is a nonlinear transformation, is iterated D times to normalize ݕ௜ 
accurately (middle of Figure 1): ���ሺݕ௜ሻ = ��,ଵ + ��,ଶsinh ሺ��,ଷ arcsinhሺݕ௜ሻ − ��,ସሻ, (4) 

https://github.com/dmuraka/spmoran


where �� ∈ {��,ଵ, ��,ଶ, ��,ଷ, ��,ସ}. 

(c) For non-negative and non-Gaussian ݕ௜, the Box–Cox transformation is applied first, and the SAL 

transformation is iterated D times thereafter to normalize ݕ௜ accurately (right of Figure 1). 

 

 

Figure 1: Transformation functions for continuous variables. 

 

 
Figure 2: Results of applying the iterative SAL transformations to simulated data generated from beta, 

skew t, and Gaussian mixture distributions. The top three panels represent histograms of the simulated 

non-Gaussian data, and the bottom nine panels show the histograms after the transformations. D is the 

number of transformations. 

 



As illustrated in Figure 2, the iteration of the SAL transformations converts a wide variety of non-

Gaussian data ݕ௜ to Gaussian data ��ሺݕ௜ሻ flexibly. Thus, the generalized regression model in Eq. 

(1) is available for a wide variety of non-Gaussian data. 

This model in Eq. (1) is also available for count data by applying a (log-)Gaussian 

transformation approximating the count data distribution. The following transformations are 

implemented in the spmoran package: 

(d) For (over-dispersed) Poisson counts, a log-Gaussian approximation proposed by Murakami and 

Matsui (2021) is available (left of Figure 3). Based on these results, the accuracy of the 

approximate model is almost the same as that of conventional over-dispersed Poisson regression. 

(e) For counts that do not obey the Poisson distribution, the log-Gaussian approximation is applied 

first to normalize the data roughly, and the SAL transformation is iterated to identify the most 

likely distribution (i.e., probability mass function) (right of Figure 3). 

 

 

Figure 3: Transformation functions for count variables. 

 

 

 

 

 

 

 

 

1.3. Coding for specifying the transformation 

In the spmoran package, the transformation function ��ሺ∙ሻ in Eq. (1) is specified using the 



nongauss_y function. The following is a code (blue part) to specify (a) for non-negative ݕ௜: 
 

 

 

Here, y_nonneg = TRUE constrains the explained variables to avoid negative values. The output from 

the nongauss_y function is used as an input of the resf or resf_vc function to estimate Eq. (1). The 

transformations (b) for non-Gaussian ݕ௜ and (c) for non-negative and non-Gaussian ݕ௜ are specified 

as follows (D = 2 is assumed): 

 

 
 

 
 

where tr_num (=D) specifies the number of SAL transformations. Finally, the transformations (d) for 

over-dispersed Poisson counts and (e) for other counts are specified as follows: 

 

 

 



 
 

where y_type specifies the data type (“count” for count variables and “continuous” for continuous 

variables (default)).  

The subsequent sections present application examples of the model for count data (Section 

2) and continuous data (Sections 3 and 4). 

 

 

 

2. Example 1: Disease mapping and regression with count data 

In this section, a count regression model for epidemic data that considers spatially varying 

coefficients (SVCs), residual spatial dependence, and heterogeneity across years is demonstrated. The 

estimated model is used mainly for disease mapping and uncertainty modeling. 

 

2.1. Data 

The study described in this section uses the sf, rgeos, CARBayesdata, spdep, and spmoran 

packages:  

 

 

 

Pollution-health data (pollutionhealthdata) available from the CARBayesdata package are employed. 

The data consist of respiratory hospitalization data, air pollution data, and covariate data for greater 

Glasgow (2007–2011) by 271 Intermediate Geographies (IG).  

 

 

 



 

The explained variable (y) is the number of hospitalizations resulting from respiratory disease 

(observed). Explanatory variables (x) are the average particulate matter concentration (pm10), the 

percentage of working-age people who are in receipt of Job Seekers Allowance, a benefit paid to 

unemployed people looking for work (jsa), and the average property price (divided by 100,000) (price). 

Random effects by year are considered to estimate the heterogeneity across years (xgroup). 

Furthermore, the expected number of hospitalizations based on Scotland-wide respiratory 

hospitalization rates (expected) is used as an offset variable. These variables are specified as follows:  

 

 

 

A binary contiguity matrix generated from the spatial polygons by IGs (GGHB.IG) is used to model 

spatial dependence: 

 

 

 

As explained, Moran eigenvectors are used to model spatially dependent processes. The following is 

a code that generates eigenvectors from the W matrix:  

 

 
 

where cmat specifies a spatial proximity matrix, and s_id specifies the zone ID (the i-th row of cmat 

and the element of s_id that appears in the i-th are associated). 

 

 

 

 

 

 

 

 



 

2.2. Model 
In this section, two specifications of y are considered. The former (ng1) assumes that y obeys 

an over-dispersed Poisson distribution. The latter assumes a more general distribution and estimates it 

through the SAL transformation (ng2): 

 

 
 

 
 

 The outputs ng1 and ng2 are used as inputs for the resf function or resf_cv function. The 

resf function estimates spatial regression models without SVCs, whereas the resf_vc function 

estimates models with SVCs (see Murakami, 2017). Here, the following models are estimated.  

 

 

 

 

where mod1 and mod2 assume constant coefficients, and mod3 and mod4 assume SVCs on x. For the 

distribution of y, mod1 and mod3 assume an over-dispersed Poisson distribution, and mod2 and mod3 

adjust the distribution using the SAL transformation to identify the most likely distribution. The 

Bayesian information criterion (BIC) values are -260.1 (mod1), -256.2 (mod2), -274.2 (mod3), and -

271.7 (mod4). Here, mod3, which is an over-dispersed Poisson SVC model, is selected as the best 

model. The BIC is based on a Gaussian likelihood approximating the Poisson model, which differs 

from the conventional Poisson likelihood. 

 The estimation result of mod3 is as follows. The intercept and coefficient on price are 

estimated to vary spatially, whereas the coefficients on jsa and pm10 are estimated to be constant. As 

shown at the bottom, the BIC of mod3 is considerably better than that of the NULL model (74.9), 



which is a log-Gaussian model approximating conventional Poisson regression: 

 

 

 

 

 

 

 



 

The estimated group effects are as follows: 

 
 

Although regression coefficients for the transformed y are often difficult to interpret, marginal effect ݀ݕ௜ ⁄௜,௞ݔ݀ , which quantifies the magnitude of change in the i-th explained variable (ݕ௜) for one unit 

change in the k-th explanatory variable (ݔ௜,௞), can be evaluated using the coef_marginal function if the 

resf function is used and the coef_marginal_vc function if the resf_vc function is used: 

 

 

For example, the median of pm10 suggests that the number of hospitalizations increases 2.1441 for 

every 1.0 increase in pm10. 

The explained variables and predicted values are plotted below. This result confirms the 

accuracy of the model: 

 

 



 

In addition to the predicted values plotted above, the resf and resf_vc functions return quantiles of the 

predicted values, which are estimated based on the modeled probability density/mass function. These 

are as follows: 

 

 

 

The quantiles are useful for evaluating uncertainty in disease mapping (see below). 

 

 

 

2.3. Regression and disease mapping 

The predicted values are available for disease mapping. Here, mapping the patterns for 2007 

is considered. A code to create a dataset including observed counts in 2007 (obs), predicted counts and 

their standard errors (pred), estimated varying coefficients (b_est), and quantiles of the predicted 

values (pred_qt) is presented as follows, and the dataset is converted to sf format, which is a spatial 

data format, for mapping: 

 

 

 



The predicted counts are as mapped together with the observed counts below. The result suggests that 

the estimated model accurately identifies the spatial pattern underlying respiratory disease. 

 

 

 

 

 

The following is a code to map the percentile (0.025%, 0.50%, 0.975%) of the predicted values. This 

map suggests higher uncertainty in the central urban area and lower uncertainty in the suburban areas. 

 

 

 



Finally, the estimated spatially varying intercept and coefficients on price are plotted below: 

 

 

 

 

 
 

 

 

 

 

 

 



3. Example 2: Spatial prediction and uncertainty analysis for non-Gaussian 
data 

In this section, a non-Gaussian spatial regression modeling for spatial interpolation and 

uncertainty modeling is demonstrated. 

 

 

3.1. Data 

Here, the sf, automap, and spmoran packages are used:  

 

 

 

The meuse data, which are used in this section, consist of heavy metal concentrations (cadmium, 

copper, lead, and zinc) measured in a flood plain along the river Meuse and explanatory variates: 

 

 

 

The zinc concentration in ppm (zinc) is analyzed. As shown in the histogram below, the zinc data do 

not exhibit a Gaussian distribution: 

 

 

 

 

 

 



The following is the spatial plot of the zinc concentration: 

 

Here, dist (distance to the river Meuse), ffreq2 (1 if flooding frequency class is 2, and 0 otherwise), 

and ffreq3 (1 if flooding frequency class is 3) are used for the explanatory variables: 

 

 

 

3.2. Model 
The Moran eigenvectors, which are the basis functions used for spatial process modeling, 

are constructed as follows: 

  

 

 

First, the classical Gaussian regression model is estimated using the resf function. The error statistics, 

including the restricted log-likelihood (rlogLik), Akaike information criterion (AIC), and BIC, are as 

follows: 

 

 



 

Unfortunately, this model is not appropriate because of the non-Gaussianity of y. For non-

negative explained variables, such as zinc concentration, the user can specify y_nonneg = TRUE in 

the nongauss_y function. If it is specified, the explanatory variable y is assumed to be non-negative, 

and the Box–Cox transformation is applied: 

 

 

 

The output ng1 is used as an output of the resf function to estimate a regression model with residual 

spatial dependence and the Box–Cox transformation for y:  

 

 

 



 

The resf_vc function is available when assuming SVCs. The estimated skewness, excess kurtosis, and 

Box–Cox parameter confirm the non-Gaussianity of the data. The BIC of the model (1983.114), which 

considers residual spatial dependence, is considerably better than that of the ordinary linear regression 

model (2192.428). The accuracy of the model is confirmed. 

 In addition to the Box–Cox transformation, the SAL transformation can be iterated to 

estimate the probability density function (PDF), most likely behind y. The number of iterations is 

specified by an argument tr_num. The models with tr_num=1 (ng2) and tr_num=2 (ng3) are compared: 

 

 

 
 

The following non-Gaussian models considering residual spatial dependence are estimated: 

 

 

 

The model accuracies can be compared using the BIC (or AIC) values. Based on the BIC, mod2, which 

applies the Box–Cox transformation first and then an SAL transformation, is the best model. 

 



 

 

The estimated parameters are as follows: 

 

 

 
 

 



The estimated PDF for y can be plotted as follows: 

 

 

 

 

The estimated PDF is reasonably similar to the histogram of y.  

Although regression coefficients for transformed y are often difficult to interpret, the 

marginal effect of each explanatory variable (݀ݕ௜ ⁄௜,௞ݔ݀ ), which quantifies the magnitude of change 

in the i-th explained variable (ݕ௜ ) for one unit change in the k-th explanatory variable (ݔ௜,௞ ), is 

evaluated using the coef_marginal function: 

 

 

 

For example, the median for ffreq2 suggests that areas with flooding frequency class 2 have a 260.87 

ppm smaller median zinc concentration than other areas. 

 

 

 

 



3.3. Spatial prediction and uncertainty analysis 

The estimated model (mod2) is applied to spatially predict the zinc concentration on 3103 

grid points with a 40 × 40-m spacing (meuse.grid). Spatial coordinates (coords0) and the explanatory 

variables in the grids are used for the prediction: 

 
 

The Moran eigenvectors at the prediction sites are generated using the meigen0 function: 

 

 

 

The spatial prediction is performed using the predict0 function. If compute_quantile=TRUE, the 

quantiles for the predicted values are evaluated based on the PDF estimated in Section 1.2: 

 

 

 

The outputs are as follows: 

 

 

 

The output includes the predicted values on the original scale (pred), the predicted value on the 

transformed scale (pred_transG), and the standard error (pred_transG_se). The estimated quantiles for 

the predicted values are as follows: 

 

 

 

 



 To map the outputs, pred, pred_transG, pred_transG_se, and quantiles for the predicted 

values (pred_quantile) are summarized into a data.frame object. As a measure of uncertainty, the 

length of the 95% confidence interval for the predicted value (len95) is added. In addition, the 

predicted values of a regression kriging, which is widely used for spatial prediction, are also added 

(kpred). In sequence, the data.frame object is converted to an sf object for mapping: 

 

 

 

The prediction result (pred) and the kriging-based prediction result (kpred) are quite similar: 

 

 

 

 

 

 

 

 

 

 



As shown in the maps below exhibiting the 2.5%, 50%, and 97.5% quantiles, the predicted values 

have larger uncertainty in the northern area that faces the river Meuse: 

 

 

 

 

The map below shows the length of the 95% confidence interval (len95), which is another manner to 

visualize the uncertainty in the original scale: 

.  

 

 

 



The predicted values can also be visualized in the transformed/normalized scale: 

 

 

 

 

As shown below, in the transformed scale, the predictive errors are large in the eastern central area, 

where the samples are relatively limited (however, as observed in the maps for len95 or the quantiles, 

this error has a slight impact on the original scale as a result of the rescaling/transformation to the real 

scale). 

 

 

 



 

3.4. Limitation 

The Moran eigenvector approach provides a type of low rank approximation for spatial 

process modeling (similar to fixed rank kriging and predictive process modeling; see Sun et al., 2012). 

Although the modeling accuracy is sufficient in many cases, it can provide overly smoothed spatial 

prediction results for very large samples (e.g., N > 10,000; see, Stein, 2014). For spatial prediction 

using large samples, it should be used with caution (this approach is still useful even in such a case to 

understand underlying map patterns in a computationally efficient manner). 

 

 

 

4. Example 3: Non-Gaussian spatial hedonic analysis 

In this section, the importance of considering non-Gaussianity in hedonic housing price 

analysis is demonstrated. Gaussian and non-Gaussian SVC models are used. 

 

 

4.1. Data 

This section uses the spdep, sf, and spmoran packages: 

 

 

 

In this section, the housing data for 506 census tracts in Boston in 1970 are analyzed. The explained 

variable (y) is the median housing value in USD 1000s (CMEDV). The explained variables, whose 

coefficients are allowed to vary over space (x), those whose coefficients are assumed to be constant 

(xconst), and spatial coordinates (coords) are used in this analysis: 

 

 

 

Moran eigenvectors are extracted as follows: 

 

 



4.2. Model 
In this section, three transformation functions are considered: 

 

 
 

 
 

 
 

Although ng3 is the most flexible, it can result in overfitting. To identify the best model, the Gaussian 

SVC (mod0) and non-Gaussian SVC models (mod1, mod2, and mod3) are fitted, and their BIC values 

are compared: 

 

 

 

 

 

 

The resulting BICs are 3110.5 (mod0), 2950.5 (mod1), 2901.6 (mod2), 2931.4 (mod3), and 3178.4 for 

the ordinary linear regression model. mod2, which applies the Box-Cox transformation and an SAL 

transformation, was selected as the best model.  

The parameters estimated from mod2 are as follows: 

 



 

 

 



The “Estimated probability distribution of y” section suggests that the data are positively skewed 

(skewness > 0) and exhibit a fat tail (excess kurtosis > 0). The estimated probability density 

distribution can be visualized as follows: 

 

 

The marginal effect of each explanatory variable (݀ݕ௜ ⁄௜,௞ݔ݀  ), which quantifies the magnitude of 

change in the i-th explained variable (ݕ௜) for one unit change in the k-th explanatory variable (ݔ௜,௞), is 

evaluated using the coef_marginal function if the resf function is used and the coef_marginal_vc 

function if the resf_vc function is used, as in the present case: 

 

 

 



For example, the median of per capita crime rate (CRIM) suggests that, on average, the housing price 

decreases 0.24 (1000 USD) for every 1.0 increase of CRIM. 

The estimated SVCs on x (CRIM, AGE, and Intercept) can be plotted using the plot_s 

function. For example, SVC on CRIM, which is the first column of x, is mapped as follows: 

 

 

 

 

The output suggests a strong negative impact of CRIM in the central area. An argument pmax is useful 

for displaying statistically significant coefficients only. For example, the following is the code to 

display the coefficients that are statistically significant at the 5% level:  

 

 

 

 

This map demonstrates that the crime rate has a statistically significant negative impact on housing 

price only in the central area. Alternatively, the SVCs can be plotted using the sf package, as follows: 
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