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1. Introduction

1.1. Outline

Application examples of generalized spatial regression modeling for count data and
continuous non-Gaussian data using the spmoran package (version 0.2.2 onward) are presented. In
Section 2, the model is introduced. In the subsequent sections, applications of the model for disease
mapping, spatial prediction and uncertainty modeling, and hedonic analysis are presented.

The R codes used are available at https://github.com/dmuraka/spmoran. Another coding

examples focusing on Gaussian spatial regression modeling is also available on the same GitHub page.

1.2. Model
The following generalized spatial regression model (Murakami et al., 2021) is considered:
K
ve(y) =2z, z= Z XikBig +wi + &,  wi~N(0,c(d;;), &~N(0,0%), (1)
k=1

where @g(*) is a transformation function normalizing the i-th explained variable y;, x;; is the k-th
explanatory variable, f; is a fixed or random coefficient, which may vary spatially and/or non-
spatially (the distribution for f3; ) is omitted from Eq. (1) for simplicity), and w; is a term that
captures residual spatial dependence. Moran eigenvectors, which are spatial basis functions, are used

to model the spatially dependent processes in f3; , and w;. This model can be rewritten as follows:

K

Vi=0e'(2z), z = Z XiBir + Wi +&, w;~N(0,c(d;;)), &~N(0,02). (2)
k=1

Eq. (2) suggests that y; is assumed to have a distribution obtained by transforming a Gaussian
distributed z; using the @g*(-) function. This model describes a wide variety of non-Gaussian data,
including count data, by flexibly specifying the transformation function.

The transformation function is defined by concatenating D sub-transformation functions:

Po(yi) = P, <<P9D_1 ( Pe, (wel(yi)) )) 3)

where g, (*) is the d-th sub-transformation function, which depends on the set of parameters .

For continuous explained variables, the spmoran package provides the following specifications for

@o(*) (see Figure 1).

(a) For non-negative y;, the Box—Cox transformation is available (left of Figure 1).

(b) For non-Gaussian y; (e.g., skew and fat-tail distribution), the SAL transformation in Eq. (4)
(Rios and Tobar, 2019), which is a nonlinear transformation, is iterated D times to normalize y;

accurately (middle of Figure 1):

®o,(Vi) = 04,1 + 04,5inh (045 arcsinh(y;) — 644), 4)


https://github.com/dmuraka/spmoran

where 04 € {0;1,042,043,044)

(c) For non-negative and non-Gaussian y;, the Box—Cox transformation is applied first, and the SAL

transformation is iterated D times thereafter to normalize y; accurately (right of Figure 1).
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Figure 1: Transformation functions for continuous variables.
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Figure 2: Results of applying the iterative SAL transformations to simulated data generated from beta,

skew t, and Gaussian mixture distributions. The top three panels represent histograms of the simulated

non-Gaussian data, and the bottom nine panels show the histograms after the transformations. D is the

number of transformations.



As illustrated in Figure 2, the iteration of the SAL transformations converts a wide variety of non-
Gaussian data y; to Gaussian data ¢@g(y;) flexibly. Thus, the generalized regression model in Eq.
(1) is available for a wide variety of non-Gaussian data.

This model in Eq. (1) is also available for count data by applying a (log-)Gaussian
transformation approximating the count data distribution. The following transformations are
implemented in the spmoran package:

(d) For (over-dispersed) Poisson counts, a log-Gaussian approximation proposed by Murakami and
Matsui (2021) is available (left of Figure 3). Based on these results, the accuracy of the
approximate model is almost the same as that of conventional over-dispersed Poisson regression.

(e) For counts that do not obey the Poisson distribution, the log-Gaussian approximation is applied
first to normalize the data roughly, and the SAL transformation is iterated to identify the most

likely distribution (i.e., probability mass function) (right of Figure 3).
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Figure 3: Transformation functions for count variables.

1.3. Coding for specifying the transformation

In the spmoran package, the transformation function @g(-) in Eq. (1) is specified using the



nongauss_y function. The following is a code (blue part) to specify (a) for non-negative y;:

> ng_a <- hongauss_y(y_nonneg=TRUE)
Box-cox transformation f() is applied to y to estimate
y ~ PCxb, par ) (or f(y,par)~N(xb, sig) )

- PQ): Distribution estimated through the transformation

- xb : Regression term with fixed and random coefficients in b
which is specified by resf or resf_vc function

- par: Parameter estimating data distribution

Here, y_nonneg = TRUE constrains the explained variables to avoid negative values. The output from
the nongauss_y function is used as an input of the resf or resf vc function to estimate Eq. (1). The

transformations (b) for non-Gaussian y; and (c) for non-negative and non-Gaussian y; are specified

as follows (D = 2 is assumed):

> ng_b <~ nongauss_y(tr_num=2)
2 SAL transformations are applied to y to estimate
y ~ PC xb, par )  (or f(y,par)~N(xb, sig) )

- P(): Distribution estimated through the transformation(s)

- xb : Regression term with fixed and random coefficients in b
which is specified by resf or resf_vc function

- par: Parameters estimating data distribution

> ng_c <~ nongauss_y(y_nonneg=TRUE, tr_num=2)
Box-Cox and 2 SAL transformations f() are applied to y to estimate
y ~ PCxb, par )  (or f(y,par)~N(xb, sigd )

- P(): Distribution estimated through the transformation(s)

- xb : Regression term with fixed and random coefficients in b
which is specified by resf or resf_vc function

- par: Parameters estimating data distribution

where tr_num (=D) specifies the number of SAL transformations. Finally, the transformations (d) for

over-dispersed Poisson counts and (e) for other counts are specified as follows:

> ng_d <- nongauss_y(y_type="count")
Log-Gaussian approximation estimating
y ~ oPois( mu, sig ), mu = exp( xb )

- oPois(): Overdispersed Poisson distribution

- xb : Regression term with fixed and random coefficients in b
which is specified by resf or resf_vc function

- sig : Dispersion parameter (overdispersion if sig > 1)



> ng_e <- nongauss_y(y_type="count",tr_num=2)
Log-Gaussian and 2 SAL transformations are applied to y to estimate
y ~ PC mu, par ), mu = exp( xb )

- PQ): Distribution estimated through the transformations

- xb : Regression term with fixed and random coefficients in b
which is specified by resf or resf_vc function

- par: Parameters estimating data distribution

where y_type specifies the data type (“count” for count variables and “continuous” for continuous
variables (default)).
The subsequent sections present application examples of the model for count data (Section

2) and continuous data (Sections 3 and 4).

2. Example 1: Disease mapping and regression with count data

In this section, a count regression model for epidemic data that considers spatially varying
coefficients (SVCs), residual spatial dependence, and heterogeneity across years is demonstrated. The

estimated model is used mainly for disease mapping and uncertainty modeling.

2.1. Data
The study described in this section uses the sf, rgeos, CARBayesdata, spdep, and spmoran
packages:

> library(sf);library(rgeos);library(CARBayesdata);library(spdep);library(spmoran)

Pollution-health data (pollutionhealthdata) available from the CARBayesdata package are employed.
The data consist of respiratory hospitalization data, air pollution data, and covariate data for greater

Glasgow (2007-2011) by 271 Intermediate Geographies (IG).

v

data("pollutionhealthdata™)
> head(pollutionhealthdata)

IG year observed expected pml@® jsa price
1 502000260 2007 97 98.24602 14.02699 2.25 1.150
2 502000261 2007 15 45.26085 13.30402 0.60 1.640
3 S02000262 2007 49 92.36517 13.30402 0.95 1.750
4 S02000263 2007 44 72.55324 14.00985 0.35 2.385
5 502000264 2007 68 125.41904 14.08074 0.80 1.645
6 S02000265 2007 24 55.04868 14.08884 1.25 1.760



The explained variable (y) is the number of hospitalizations resulting from respiratory disease
(observed). Explanatory variables (x) are the average particulate matter concentration (pm10), the
percentage of working-age people who are in receipt of Job Seekers Allowance, a benefit paid to
unemployed people looking for work (jsa), and the average property price (divided by 100,000) (price).
Random effects by year are considered to estimate the heterogeneity across years (xgroup).
Furthermore, the expected number of hospitalizations based on Scotland-wide respiratory

hospitalization rates (expected) is used as an offset variable. These variables are specified as follows:

y <- pollutionhealthdata[, "observed"]

X <- pollutionhealthdata[,c("jsa","price","pm1@")]
xgroup <- pollutionhealthdatal,"year"]

offset <- pollutionhealthdatal, "expected"]

V V V V

A binary contiguity matrix generated from the spatial polygons by IGs (GGHB.IG) is used to model

spatial dependence:

> data("GGHB.IG")

> W.nb  <- poly2nb(GGHB.IG)

> W.list <- nb2listw(W.nb, style = "B")
> W <- nb2mat(W.nb, style = "B")

As explained, Moran eigenvectors are used to model spatially dependent processes. The following is

a code that generates eigenvectors from the W matrix:

> s_id <- pollutionhealthdatal[,"IG"]
> meig <- meigen(cmat=W, s_id = s_id )
109/271 eigen-pairs are extracted

where cmat specifies a spatial proximity matrix, and s_id specifies the zone ID (the i-th row of cmat

and the element of s_id that appears in the i-th are associated).



2.2. Model
In this section, two specifications of 'y are considered. The former (ng1) assumes that y obeys
an over-dispersed Poisson distribution. The latter assumes a more general distribution and estimates it

through the SAL transformation (ng2):

> ngl <- nongauss_y( y_type = "count")
Log-Gaussian approximation estimating
y ~ oPois( mu, sig ), mu = exp( xb )

- oPois(): Overdispersed Poisson distribution

- xb : Regression term with fixed and random coefficients in b
which is specified by resf or resf_vc function
- sig : Dispersion parameter (overdispersion if sig > 1)

> ng2 <- nongauss_y( y_type = "count", tr_num=1 )
Log-Gaussian and 1 SAL transformations are applied to y to estimate
y ~ PC mu, par ), mu = exp( xb )

- P(): Distribution estimated through the transformations

- xb : Regression term with fixed and random coefficients in b
which is specified by resf or resf_vc function

- par: Parameters estimating data distribution

The outputs ngl and ng2 are used as inputs for the resf function or resf cv function. The
resf function estimates spatial regression models without SVCs, whereas the resf vc function

estimates models with SVCs (see Murakami, 2017). Here, the following models are estimated.

> modl <- resf(y=y, x=x, meig=meig, xgroup=xgroup,nongauss=ngl)
> modZ <- resf(y=y, x=x, meig=meig, xgroup=xgroup,nongauss=ngz)
> mod3  <- resf_vc(y=y, x=x, xgroup=xgroup, offset=offset,meig=meig,nongauss=ngl)

> mod4  <- resf_vc(y=y, x=Xx, xgroup=xgroup, offset=offset,meig=meig,nongauss=ng2)

where modl and mod?2 assume constant coefficients, and mod3 and mod4 assume SVCs on x. For the
distribution of y, mod1 and mod3 assume an over-dispersed Poisson distribution, and mod2 and mod3
adjust the distribution using the SAL transformation to identify the most likely distribution. The
Bayesian information criterion (BIC) values are -260.1 (mod1), -256.2 (mod2), -274.2 (mod3), and -
271.7 (mod4). Here, mod3, which is an over-dispersed Poisson SVC model, is selected as the best
model. The BIC is based on a Gaussian likelihood approximating the Poisson model, which differs
from the conventional Poisson likelihood.

The estimation result of mod3 is as follows. The intercept and coefficient on price are
estimated to vary spatially, whereas the coefficients on jsa and pm10 are estimated to be constant. As

shown at the bottom, the BIC of mod3 is considerably better than that of the NULL model (74.9),



which is a log-Gaussian model approximating conventional Poisson regression:

> mod3

Call:

resf_vc(y = y, X = X, xgroup = xgroup, offset = offset, meig = meig,
nongauss = ngl)

----Spatially varying coefficients on x (summary)----

Coefficient estimates:
(Intercept) jsa price pm1@
Min. :-0.6504 Min. :0.06149  Min. :-0.33538  Min. :0.02834
1st Qu.:-0.5831 1st Qu.:0.06149 1st Qu.:-0.23431 1st Qu.:0.02834
Median :-@.5526 Median :0.06149 Median :-0.19311 Median :0.02834

Mean :-0.5478  Mean :0.06149  Mean :-0.18184  Mean :0.02834
3rd Qu.:-@.5163 3rd Qu.:0.06149 3rd Qu.:-0.13469 3rd Qu.:0.02834
Max . :-0.3929  Max. :0.06149  Max. : 0.04439  Max. 10.02834

Statistical significance:
Intercept jsa price pml@

Not significant @ @ 205 %]
Significant (10% level) (4] (4] 70 4]
Significant ( 5% level) (] 0 180 %]
Significant ( 1% level) 1355 1355 900 1355

----Variance parameters-------------c-eommme o

Spatial effects (coefficients on x):

(Intercept) jsa price pml@
random_SE 0.07496275 @ ©.09383671 @
Moran.I/max(Moran.I) ©.72069442 NA 0.37600487 NA

Group effects:
xgroup
ramdom_SE ©.1219861

----Estimated probability distribution of y--------------
Estimates

skewness 1.026517

excess kurtosis 1.752394

-===Error statistics--------=sommrecercmcrcrcn e

stat
dispersion parameter 3.132744
deviance explained (%) 82.977533
Gaussian rloglLik approximating the model 173.152374
AIC -326.304748
BIC -274.189181

NULL model: glm( y ~ x, offset = log( offset ), family = poisson )
Gaussian (r)loglik approximating the model: -19.4258
( AIC: 48.85159, BIC: 74.9@938 )



The estimated group effects are as follows:

> mod33$b_g
(1

Estimate SE  t_value
xgroup_2007 ©.052882464 0.02678485 1.974343
xgroup_2008 0.107183516 0.02409724 4.447959
xgroup_2009 ©.007175285 0.02767944 ©.259228
xgroup_2010 -0.083975107 0.02474086 -3.394187
xgroup_2011 -0.083266159 NA NA

Although regression coefficients for the transformed y are often difficult to interpret, marginal effect
dy;/dx;, which quantifies the magnitude of change in the i-th explained variable (y;) for one unit
change in the k-th explanatory variable (x; ), can be evaluated using the coef marginal function if the

resf function is used and the coef marginal vc function if the resf vc function is used:

> coef_marginal_vc(mod3)
Call:
coef_marginal_vc(mod = mod3)

----Marginal effects from x (dy_i/dx_i) (summary)----

(Intercept) jsa price pml@

Mode:logical  Min. 1 1.333  Min. :-34.568 Min. :0.6144

NA's:1355 1st Qu.: 3.584 1st Qu.:-17.135 1st Qu.:1.6520
Median : 4.652 Median :-12.722 Median :2.1441
Mean : 4.915  Mean :-13.342  Mean :2.2654
3rd Qu.: 5.979 3rd Qu.: -9.379 3rd Qu.:2.7556
Max . :11.795  Max. : 7.291  Max. :5.4363

Note: Medians are recommended summary statistics

For example, the median of pm10 suggests that the number of hospitalizations increases 2.1441 for
every 1.0 increase in pm10.
The explained variables and predicted values are plotted below. This result confirms the

accuracy of the model:

> plot(y,mod3$pred[,1])
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In addition to the predicted values plotted above, the resf and resf vc functions return quantiles of the
predicted values, which are estimated based on the modeled probability density/mass function. These

are as follows:

> mod3$pred_quantile[1:2,]
go.01 g@.025 g9.05 qo.1 9.2 qa.3 qe.4 qa.5 q0.6
1 52.05107 56.02032 59.67535 64.18632 70.1076@ 74.71338 78.88783 83.00021 87.32698
2 16.12654 17.23963 18.25821 19.50748 21.13521 22.39256 23.52602 24.63725 25.80097
q9.7 9.8 gqo.9 q9.95 g9.975 q@.99
92.20619 98.26375 107.32872 115.4419 122.97388 132.35148
2

1
2 27.10695 28.71957 31.11597 33.2450 35.20924 37.63946

The quantiles are useful for evaluating uncertainty in disease mapping (see below).

2.3. Regression and disease mapping

The predicted values are available for disease mapping. Here, mapping the patterns for 2007
is considered. A code to create a dataset including observed counts in 2007 (obs), predicted counts and
their standard errors (pred), estimated varying coefficients (b_est), and quantiles of the predicted
values (pred_qt) is presented as follows, and the dataset is converted to sf format, which is a spatial

data format, for mapping:

obs <- y[pollutionhealthdatal, "year"] == 2007]

pred <- mod3$pred[pollutionhealthdatal,"year"] == 2007, ]

b_est <- mod3$b_vc[pollutionhealthdatal,"year"] == 2007,]
pred_qt<- mod3$pred_quantile[pollutionhealthdatal,"year"] == 2007,]

poly <- st_as_sf(GGHB.IG)
poly <- cbind(poly, obs, pred, b_est, pred_qt)

V V.V V¥V V V V



The predicted counts are as mapped together with the observed counts below. The result suggests that

the estimated model accurately identifies the spatial pattern underlying respiratory disease.

> plot(poly[,c("obs","pred")],axes=TRUE, 1lwd=0.1, key.pos = 1)

obs pred
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The following is a code to map the percentile (0.025%, 0.50%, 0.975%) of the predicted values. This

map suggests higher uncertainty in the central urban area and lower uncertainty in the suburban areas.

v

plot(poly[,c("q@.025","q@.5","q0.975")],axes=TRUE, 1wd=0.1, key.pos = 1)
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Finally, the estimated spatially varying intercept and coefficients on price are plotted below:

> plot(poly[,"X.Intercept."],axes=TRUE,lwd=0.1, key.pos = 1)

X.Intercept.
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1
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> plot(poly[,"price"],axes=TRUE,1lwd=0.1, key.pos = 1)
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3. Example 2: Spatial prediction and uncertainty analysis for non-Gaussian
data

In this section, a non-Gaussian spatial regression modeling for spatial interpolation and

uncertainty modeling is demonstrated.
3.1. Data
Here, the sf, automap, and spmoran packages are used:

> library(sf);library(automap);library(spmoran)

The meuse data, which are used in this section, consist of heavy metal concentrations (cadmium,

copper, lead, and zinc) measured in a flood plain along the river Meuse and explanatory variates:

> data(meuse)

> meuse[1:5,]

X y cadmium copper lead zinc elev dist om ffreq soil lime landuse dist.m
1 181072 333611 11.7 85 299 1022 7.909 ©.00135803 13.6 1 1 1 Ah 50
2 181025 333558 8.6 81 277 1141 6.983 0.01222430 14.0 1 1 1 Ah 30
3 181165 333537 6.5 68 199 640 7.800 ©.10302900 13.0 1 1 1 Ah 150
4 181298 333484 2.6 81 116 257 7.655 @.19009400 8.0 1 2 (] Ga 270
5 181307 333330 2.8 48 117 269 7.480 0.27709000 8.7 1 2 @ Ah 380

The zinc concentration in ppm (zinc) is analyzed. As shown in the histogram below, the zinc data do

not exhibit a Gaussian distribution:

>y <-meuse$zinc
> hist(y)

Histogram of y
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The following is the spatial plot of the zinc concentration:

zinc
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Here, dist (distance to the river Meuse), ffreq2 (1 if flooding frequency class is 2, and 0 otherwise),

and ffreq3 (1 if flooding frequency class is 3) are used for the explanatory variables:

X <-data. frame(dist= meuse[,"dist"],
ffreq2=ifelse(meuse$ffreg==2,1,0),
ffreq3=ifelse(meuse$ffreq==3,1,0))

4+ o+ ¥

3.2. Model
The Moran eigenvectors, which are the basis functions used for spatial process modeling,

are constructed as follows:

> meig <-meigen(coords)
25/155 eigen-pairs are extracted

First, the classical Gaussian regression model is estimated using the resf function. The error statistics,
including the restricted log-likelihood (rlogLik), Akaike information criterion (AIC), and BIC, are as

follows:

> mod® <-resf(y=y, x=x,meig=meig)

> mod@$e

stat
resid_SE 172.9239783
adjR2(cond) 0.7720376
rloglLik -1032.7022760
AIC 2079.4045520

BIC 2100.7085278



Unfortunately, this model is not appropriate because of the non-Gaussianity of y. For non-
negative explained variables, such as zinc concentration, the user can specify y nonneg = TRUE in
the nongauss_y function. If it is specified, the explanatory variable y is assumed to be non-negative,

and the Box—Cox transformation is applied:

> ngl  <-nongauss_y(y_nonneg=TRUE)
Box-cox transformation f() is applied to y to estimate
y ~ PCxb, par ) (or f(y,par)~N(xb, sig) )

- P(): Distribution estimated through the transformation

- xb : Regression term with fixed and random coefficients in b
which is specified by resf or resf_vc function

- par: Parameter estimating data distribution

The output ngl is used as an output of the resf function to estimate a regression model with residual

spatial dependence and the Box—Cox transformation for y:

> modl <-resf(y=y,x=x, meig=meig, nongauss=ngl)
> modl

Call:

resf(y = y, x = X, meig = meig, nongauss = ngl)

----Coefficients----------——--ccocommo-

Estimate SE t_value p_value
(Intercept) 3.1550749 0.01777841 177.466681 0.000000e+00
dist -0.5160247 0.07024097 -7.346492 1.956835e-11
ffreq2 -0.1248181 ©.01390843 -8.974277 2.664535e-15
ffreq3 -0.1318089 0.02119947 -6.217554 6.298492e-09

----Variance parameter--------------—--——————

Spatial effects (residuals):
(Intercept)

random_SE 0.09615471

Moran.I/max(Moran.I) ©.41327562

----Estimated probability distribution of y-----------—---
Estimates

skewness 2.488325

excess kurtosis 7.972227

(Box-Cox parameter: -0.263962)

----Error statistics----------oc o

stat
resid_SE 0.0581104
adjR2(cond) ©0.8453350
rlogLik -971.3835963
AIC 1958.7671926
BIC 1983.1145935

NULL model: Im( y ~ x )
(r)loglik: -1083.6@05 ( AIC: 2177.211, BIC: 2192.428 )



The resf vc function is available when assuming SVCs. The estimated skewness, excess kurtosis, and
Box—Cox parameter confirm the non-Gaussianity of the data. The BIC of the model (1983.114), which
considers residual spatial dependence, is considerably better than that of the ordinary linear regression
model (2192.428). The accuracy of the model is confirmed.

In addition to the Box—Cox transformation, the SAL transformation can be iterated to
estimate the probability density function (PDF), most likely behind y. The number of iterations is

specified by an argument tr_num. The models with tr num=1 (ng2) and tr num=2 (ng3) are compared:

> ng2 <-nongauss_y(y_nonneg=TRUE, tr_num=1)
Box-Cox and 1 SAL transformations f() are applied to y to estimate
y ~ PC xb, par )  (or f(y,par)~N(xb, sig) )

- P(): Distribution estimated through the transformation(s)

- xb : Regression term with fixed and random coefficients in b
which is specified by resf or resf_vc function

- par: Parameters estimating data distribution

> ng3  <-nongauss_y(y_nonneg=TRUE, tr_num=2)
Box-Cox and 2 SAL transformations f() are applied to y to estimate
y ~ PCxb, par > (or f(y,par)~N(xb, sig) )

- P(): Distribution estimated through the transformation(s)

- xb : Regression term with fixed and random coefficients in b
which is specified by resf or resf_vc function

- par: Parameters estimating data distribution

The following non-Gaussian models considering residual spatial dependence are estimated:

> mod2 <-resf(y=y, x=x,meig=meig, nongauss=ngz)
> mod3 <-resf(y=y, x=x,meig=meig, nongauss=ng3)

The model accuracies can be compared using the BIC (or AIC) values. Based on the BIC, mod2, which

applies the Box—Cox transformation first and then an SAL transformation, is the best model.



> mod2%e

stat
resid_SE 0.3976609
adjR2(cond) 0.8341787
rloglLik -958.5890848
AIC 1937.1781696
BIC 1967.6124208
> mod3$e

stat
resid_SE 0.3996559
adjR2(cond) 0.8277254
rloglik -958.8305130
AIC 1945.6610260
BIC 1988.2689776

The estimated parameters are as follows:

> mbdZ <-resf(y=y, x=x,meié=meig, nongauss=ngz)

> mod2
Calls:

resf(y = y, x = x, meig = meig, nongauss = ng2)

----Coefficients---------=---—--—-

Estimate SE
(Intercept) 1.2100004 0.11458914
dist -3.5209129 0.45132654
ffreq2 -0.7826159 0.09477395
ffreq3 -0.8259699 0.14323514

----Variance parameter------------

Spatial effects (residuals):
(Intercept)

random_SE 0.6035734

Moran.I/max(Moran.I)  ©.3693597

t_value p_value
10.559468 0.000000e+00
-7.801254 1.716405e-12
-8.257712 1.421085e-13
-5.766531 5.544422¢-08

----Estimated probability distribution of y------------——-

Estimates
skewness 1.717799
excess kurtosis 3.327901
(Box-Cox parameter: -0.2819055)

----Error statistics--------------

stat
resid_SE 0.3976609
adjR2(cond) 0.8341787
rlogLik -958.5890848
AIC 1937.1781696
BIC 1967.6124208

NULL model: Im( y ~ x )

(r)loglik: -1@83.605 ( AIC: 2177.211, BIC: 2192.428 )



The estimated PDF for y can be plotted as follows:

> plut(modZSpdf,type:"l”)
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Although regression coefficients for transformed y are often difficult to interpret, the

marginal effect of each explanatory variable (dy;/dx; ), which quantifies the magnitude of change

in the i-th explained variable (y;) for one unit change in the k-th explanatory variable (x;;), is

evaluated using the coef marginal function:

> coef_marginal(mod2)
Call:
coef_marginal(mod = mod2)

----Marginal effects from x (dy_i/dx_i) (summary)

(Intercept) dist

Mode:logical Min. :-3832.

NA's:155 1st Qu.:-1858.
Median :-1173.
Mean :-1195.
3rd Qu.: -368.
Max. : -98.

79
62
63
47
10
77

ffreg2
Min. :-851.94
1st Qu.:-413.13
Median :-260.87

Mean :-265.73
3rd Qu.: -81.82
Max . : -21.95

Note: Medians are recommended summary statistics

ffreqg3
Min :-899.13
1st Qu.:-436.01
Median :-275.32
Mean -280.45
3rd Qu.: -86.35
Max . -23.17

For example, the median for ffreq2 suggests that areas with flooding frequency class 2 have a 260.87

ppm smaller median zinc concentration than other areas.



3.3. Spatial prediction and uncertainty analysis
The estimated model (mod2) is applied to spatially predict the zinc concentration on 3103
grid points with a 40 x 40-m spacing (meuse.grid). Spatial coordinates (coords0) and the explanatory

variables in the grids are used for the prediction:

> data(meuse.grid)

> coords@<-meuse.grid[,c("x","y")]

x@ <-data.frame(dist= meuse.grid$dist,
ffreq2=ifelse(meuse.grid$ffreg==2,1,0),
ffreq3=ifelse(meuse.grid$ffreq==3,1,0))

+ 4+ v

The Moran eigenvectors at the prediction sites are generated using the meigen0 function:

> meigd <-meigen@(meig=meig, coords@=coords®d)
> pres  <-predict@(mod=mod2,x@=x@,meig@=meig®, compute_quantile = TRUE)

The spatial prediction is performed using the predict0 function. If compute quantile=TRUE, the

quantiles for the predicted values are evaluated based on the PDF estimated in Section 1.2:

> meigd <-meigen@(meig=meig, coords@=coords®d)
> pres  <-predict@(mod=mod2,x@=x@,meig@=meig®, compute_quantile = TRUE)

The outputs are as follows:

> pres$pred[1:2,]

pred pred_transG pred_transG_se xb sf_residual
1 916.2723 1.191011 0.4128080 1.21 -0.018989791
2 923.0430 1.201812 0.4132363 1.21 -0.008188592

The output includes the predicted values on the original scale (pred), the predicted value on the
transformed scale (pred_transG), and the standard error (pred_transG_se). The estimated quantiles for

the predicted values are as follows:

> pres$pred_quantile[1:2,]
g0.01 g@.025 q0.05 gqo.1 qe.2 9.3 0.4 g0.5
1 414.9931 482.7518 544.3806 618.7869 714.1259 786.9783 852.3321 916.2723
2 419.2256 487.3734 549.2768 624.0092 719.8005 793.0283 858.7385 923.0430
g@.6 qo.7 q0.8 0.9 q@.95 g0@.975 q0.99
1 983.2187 1058.455 1151.664 1291.096 1416.133 1532.610 1678.346
2 990.3854 1066.082 1159.881 1300.232 1426.124 1543.421 1690.210



To map the outputs, pred, pred_transG, pred transG se, and quantiles for the predicted
values (pred quantile) are summarized into a data.frame object. As a measure of uncertainty, the
length of the 95% confidence interval for the predicted value (len95) is added. In addition, the
predicted values of a regression kriging, which is widely used for spatial prediction, are also added

(kpred). In sequence, the data.frame object is converted to an sf object for mapping:

> pred <- data.frame(coordsQ,pred=pres$pred[,"pred"],

+ 1en95=pres$pred_quantile$qd.975 - pres$pred_quantile$q@.0z25,
+ pred_transG=pres$pred[, "pred_transG"],

+ pred_transG_se=pres$pred[, "pred_transG_se"],

+ pres$pred_quantile,

+ kpred=exp(kres$krige_output$varl.pred))

> coordinates(pred)<-c("x","y")

> pred_sf <-st_as_sf(pred)

The prediction result (pred) and the kriging-based prediction result (kpred) are quite similar:

> plot(pred_sf[,c("pred","kpred")], pch=20, axes=TRUE, key.pos = 1)
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As shown in the maps below exhibiting the 2.5%, 50%, and 97.5% quantiles, the predicted values

have larger uncertainty in the northern area that faces the river Meuse:

> plot(pred_sf[,c("q0.025","q0.5","q0.975")], pch=20, axes=TRUE, key.pos = 1)
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The map below shows the length of the 95% confidence interval (Ien95), which is another manner to

visualize the uncertainty in the original scale:

len95
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The predicted values can also be visualized in the transformed/normalized scale:

> plot(pred_sf[,"pred_transG"], pch=20, axes=TRUE, key.pos = 1)

pred transG
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As shown below, in the transformed scale, the predictive errors are large in the eastern central area,
where the samples are relatively limited (however, as observed in the maps for len95 or the quantiles,
this error has a slight impact on the original scale as a result of the rescaling/transformation to the real

scale).

> plot(pred_sf[,"pred_transG_se"], pch=2@, axes=TRUE, key.pos = 1)

pred transG se
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3.4. Limitation

The Moran eigenvector approach provides a type of low rank approximation for spatial
process modeling (similar to fixed rank kriging and predictive process modeling; see Sun et al., 2012).
Although the modeling accuracy is sufficient in many cases, it can provide overly smoothed spatial
prediction results for very large samples (e.g., N > 10,000; see, Stein, 2014). For spatial prediction
using large samples, it should be used with caution (this approach is still useful even in such a case to

understand underlying map patterns in a computationally efficient manner).

4. Example 3: Non-Gaussian spatial hedonic analysis

In this section, the importance of considering non-Gaussianity in hedonic housing price

analysis is demonstrated. Gaussian and non-Gaussian SVC models are used.

4.1. Data

This section uses the spdep, sf, and spmoran packages:

> library(spdep);library(sf);library(spmoran)

In this section, the housing data for 506 census tracts in Boston in 1970 are analyzed. The explained
variable (y) is the median housing value in USD 1000s (CMEDV). The explained variables, whose
coefficients are allowed to vary over space (x), those whose coefficients are assumed to be constant

(xconst), and spatial coordinates (coords) are used in this analysis:

> data(boston)

>y <- boston.c[, "CMEDV"]
= % <- boston.c[,c("CRIM", "AGE")]
> xconst <- boston.c[,c("ZN","DIS","RAD","NOX", "TAX","RM", "PTRATIO", "B")]

> coords <- boston.c[,c("LON","LAT")]

Moran eigenvectors are extracted as follows:

> meig <- meigen(coords=coords)
55/506 eigen-pairs are extracted



4.2. Model

In this section, three transformation functions are considered:

> ngl <- nongauss_y(y_nonneg=TRUE)
Box-cox transformation f() is applied to y to estimate
y ~ P(C xb, par )  (or f(y,par)~N(xb, sig) )

- P(): Distribution estimated through the transformation

- xb : Regression term with fixed and random coefficients in b
which is specified by resf or resf_vc function

- par: Parameter estimating data distribution

> ngé <- nongauss_y(y_nonneg=TRUE, tr_num=1)
Box-Cox and 1 SAL transformations f() are applied to y to estimate
y ~ PC xb, par ) Cor f(y,par)~N(xb, sig) )

- P(): Distribution estimated through the transformation(s)

- xb : Regression term with fixed and random coefficients in b
which is specified by resf or resf_vc function

- par: Parameters estimating data distribution

> ng3 <- nongauss_y(y_nonneg=TRUE, tr_num=2)
Box-Cox and 2 SAL transformations f() are applied to y to estimate
y ~ P(C xb, par )  (or f(y,par)~N(xb, sig) )

- PQ): Distribution estimated through the transformation(s)

- xb : Regression term with fixed and random coefficients in b
which is specified by resf or resf_vc function

- par: Parameters estimating data distribution

Although ng3 is the most flexible, it can result in overfitting. To identify the best model, the Gaussian
SVC (mod0) and non-Gaussian SVC models (mod1, mod2, and mod3) are fitted, and their BIC values

are compared:

> mod@ <- resf_vc(y=y,x=x, x_nvc=TRUE,xconst=xconst,meig=meig )

> modl <- resf_vc(y=y,x=x, x_nvc=TRUE,xconst=xconst,meig=meig, nongaus=ngl )
> mod2 <- resf_vc(y=y,x=x, x_nvc=TRUE,xconst=xconst,meig=meig, nongaus=ngZ )
> mod3 <- resf_vc(y=y,x=x, x_nvc=TRUE,xconst=xconst,meig=meig, nongaus=ng3 )

The resulting BICs are 3110.5 (mod0), 2950.5 (mod1), 2901.6 (mod2), 2931.4 (mod3), and 3178.4 for
the ordinary linear regression model. mod2, which applies the Box-Cox transformation and an SAL
transformation, was selected as the best model.

The parameters estimated from mod2 are as follows:



> mod2

Call:

resf_vc(y = y, x = X, Xconst = xconst, x_nvc
nongauss = ng2)

TRUE, meig = meig,

----Spatially and non-spatially varying coefficients on x (summary)----

Coefficient estimates:

(Intercept) CRIM AGE
Min. :-0.02244  Min.  :-0.2740242 Min. :-0.018914
1st Qu.:-0.02244 1st Qu.:-0.0599508 1st Qu.:-0.010591
Median :-0.02244 Median :-0.0322745 Median :-0.007599
Mean :-0.02244 Mean  :-0.0329763 Mean :-0.007425
3rd Qu.:-0.02244 3rd Qu.: ©0.0004135 3rd Qu.:-0.004354
Max. :-0.02244  Max. : 0.1070968  Max. : 0.005453
Statistical significance:
Intercept CRIM AGE
Not significant 506 410 117
Significant (10% level) @ 18 24
Significant ( 5% level) @ 19 52
Significant ( 1% level) @ 59 313
---=Constant coefficients on xconst-----=-=vecerrcmrcnmreennees
Estimate SE  t_value p_value
ZN 0.002027180 ©.0011645284 1.740773 8.243151e-02
DIS -0.131266652 ©.0237841152 -5.519089 5.869668e-08
RAD 0.052234354 @.0085592354 6.102689 2.312320e-09
NOX -3.124557004 0.4565365150 -6.844046 2.632916e-11
TAX -0.001635874 0.0003135737 -5.216872 2.823456e-07
RM @.506995252 @.0296312602 17.110148 0.000000e+00
PTRATIO -0.056300954 ©.0135694652 -4.149092 4.017337e-05
B 0.002452484 0.0002849729 8.0606026 ©.000000e+00
----Variance parameters---------ccccmcmcmmmc e
Spatial effects (coefficients on x):
(Intercept) CRIM AGE

random_SE 3.398454e-06 ©.12892890 0.007028641
Moran.I/max(Moran.I) 4.631293e-01 ©.05171784 @.273869153

Non-spatial effects (coefficients on x):
CRIM AGE
random_SE @.003807227 @

----Estimated probability distribution of y----===--=ee---

Estimates
skewness 1.200526
excess kurtosis 1.765607

(Box-Cox parameter: 1.691544)

-=--Error statistics--=-==--mmmmmmme e

stat
resid_SE 0.3303358
adjR2(cond) 0.8881671
rloglik -1382.3284183
AIC 2808.6568365
BIC 2901.6406432

NULL model: Im( y ~ x + xconst )

(r)loglik: -1551.857 ( AIC: 3127,715, BIC: 3178.433 )



The “Estimated probability distribution of y” section suggests that the data are positively skewed
(skewness > 0) and exhibit a fat tail (excess kurtosis > 0). The estimated probability density
distribution can be visualized as follows:

> plot(mod2$pdf,type="1")
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The marginal effect of each explanatory variable (dy;/dx;; ), which quantifies the magnitude of
change in the i-th explained variable (y;) for one unit change in the k-th explanatory variable (x; ;), is
evaluated using the coef marginal function if the resf function is used and the coef marginal vc

function if the resf vc function is used, as in the present case:

> coef_marginal_vc(mod2)
Call:
coef_marginal_vc(mod = mod2)

----Marginal effects from x (dy_i/dx_i) (summary)----

(Intercept) CRIM AGE
Mode:logical Min. :-3.186702  Min. :-0.32519
NA's:506 1st Qu.:-0.485693 1st Qu.:-0.08374

Median :-0.240681 Median :-0.05859
Mean :-0.285872 Mean :-0.05956
3rd Qu.: 0.003341 3rd Qu.:-0.03813

Max. 1 1.443992  Max. 1 0.09132
----Marginal effects from xconst (dy_i/dx_i)(summary)----
ZN DIS RAD NOX
Min. :0.01145  Min. :-2.7675  Min. :0.295@  Min. :-65.88

1st Qu.:0.01209 1st Qu.:-1.2022 1st Qu.:@.3114 1st Qu.:-28.62
Median :0.01402 Median :-0.9079 Median :0.3613 Median :-21.61
Mean :0.01841 Mean :-1.1922  Mean :0.4744  Mean :-28.38
3rd Qu.:0.01857 3rd Qu.:-0.7826 3rd Qu.:0.4784 3rd Qu.:-18.63

Max. :0.04274  Max. :-0.7412  Max. :1.1013  Max. :-17.64
TAX RM PTRATIO B

Min. 1-0.034490  Min. 1 2.863  Min. :-1.1870  Min. 10.01385
1st Qu.:-0.014982 1st Qu.: 3.023 1st Qu.:-0.5156 1st Qu.:0.01462
Median :-@.011315 Median : 3.507 Median :-0.3894 Median :0.01696
Mean :-0.014857 Mean : 4.605 Mean :-0.5113 Mean 10.02227
3rd Qu.:-0.009753 3rd Qu.: 4.643 3rd Qu.:-©0.3357 3rd Qu.:0.02246
Max . :-0.009238  Max. :10.689  Max. :-0.3179  Max. 10.05171

Note: Medians are recommended summary statistics



For example, the median of per capita crime rate (CRIM) suggests that, on average, the housing price

decreases 0.24 (1000 USD) for every 1.0 increase of CRIM.
The estimated SVCs on x (CRIM, AGE, and Intercept) can be plotted using the plot_s

function. For example, SVC on CRIM, which is the first column of x, is mapped as follows:

> plot_s(mod2,1)
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The output suggests a strong negative impact of CRIM in the central area. An argument pmax is useful
for displaying statistically significant coefficients only. For example, the following is the code to

display the coefficients that are statistically significant at the 5% level:

> plot_s(mod2,1,pmax=0.05)

CRIM
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-0.25

This map demonstrates that the crime rate has a statistically significant negative impact on housing

price only in the central area. Alternatively, the SVCs can be plotted using the sf package, as follows:



> boston.tr <- boston.tr@[order(boston.tr@3$TOWNNO),1:8]
> b_est <- mod2$b_vc

> boston.tr <- cbind(boston.tr, b_est)

> names(boston.tr)

[1] "poltract” "TOWN" "TOWNNO"

[4] "TRACT" "LON" "LAT™

[7] "MEDV" " CMEDV" "X.Intercept."
[10] "CRIM" "AGE" "geometry"

> plot(boston.tr[,"CRIM"],axes=TRUE,1lwd=0.1, key.pos = 1)
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