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Abstract

Boosting is a popular machine learning algorithm in regression and classification prob-
lems. Boosting can combine a sequence of regression trees to obtain accurate prediction.
In the presence of outliers, traditional boosting, based on optimizing convex loss functions,
may show inferior results. In this article, a unified robust boosting is proposed for more
resistant estimation. The method utilizes a recently developed concave-convex family for
robust estimation, composite optimization by conjugation operator, and functional decent
boosting. As a result, an iteratively reweighted boosting algorithm can be conveniently
constructed with existing software. Applications in robust regression, classification and
Poisson regression are demonstrated in the R package ccboost.
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1. Introduction

Boosting is a powerful supervised machine learning algorithm. As an ensemble method,
boosting combines many weak learners to generate a strong prediction. As a functional decent
method, boosting has a wide applications in regression and classification problems. Friedman
(2001); Friedman, Hastie, and Tibshirani (2000); Bühlmann and Hothorn (2007) discussed
boosting for a variety of convex loss functions. To deal with outliers, robust estimation has
been brought into boosting in order to provide more accurate estimation. Wang (2018a,b)
proposed robust functional gradient boosting for nonconvex loss functions. These methods
applied majorization-minimization (MM) scheme, an extension of the popular expectation-
maximization (EM) algorithm in statistics.

Recently, Wang (2020) innovatively proposed a unified robust loss function family, the con-
cave convex (CC) family, and introduced the composite optimization by conjugation operator
(COCO) to obtain the CC-estimation. The CC-family includes traditional robust loss func-
tions such as the Huber loss, robust hinge loss for support vector machine, and robust expo-
nential family for generalized linear models. The COCO algorithm is an iteratively reweighted
estimation and can be conveniently implemented from the existing methods and software. In
this article, we integrate the COCO and boosting to obtain CC-estimation in the context of
function estimation, which is more broad than the linear predictor function in Wang (2020).
For instance, the CC-boosting algorithm permits function space derived from the regression
trees. We illustrate the proposed algorithm through the ccboost R package with applications
to robust exponential family, including regression, binary classification and Poisson regression.



2 Unified Robust Boosting

Concave g(z)

hcave

{

z if z ≤ σ2/2

σ(2z)
1

2 − σ2

2 if z > σ2/2

acave







σ2(1− cos( (2z)
1
2

σ
)) if z ≤ σ2π2/2

2σ2 if z > σ2π2/2

bcave σ2

6

(

1− (1− 2z
σ2 )

3I(z ≤ σ2/2)
)

ccave σ2
(

1− exp(−z
σ2 )

)

dcave 1
1−exp(−σ) log(

1+z
1+z exp(−σ))

ecave







2 exp(− δ

σ
)

√
πσδ

z if z ≤ δ

erf(
√

z
σ
)− erf(

√

δ
σ
) +

2 exp(− δ

σ
)

√
πσδ

δ if z > δ

gcave

{

δσ−1

(1+δ)σ+1 z if z ≤ δ
1
σ
( z
1+z

)σ − 1
σ
( δ
1+δ

)σ + δσ

(1+δ)σ+1 if z > δ

where δ =

{

→ 0+ if 0 < σ < 1
σ−1
2 if σ ≥ 1

tcave min(σ, z), σ ≥ 0

Table 1: Concave component with σ > 0 except for tcave with σ ≥ 0.

2. Robust CC-boosting

2.1. CC-function estimation

To unify robust estimation, Wang (2020) proposed the concave convex (CC) family with
functions Γ satisfying the following conditions:

i. Γ = g ◦ s

ii. g is a nondecreasing closed concave function on range s

iii. ∂(−g(z)) ∀z ∈ range s is nonempty and bounded

iv. s is convex on R.

Table 1 lists some concave component. The convex component includes common loss func-
tions in regression and classification such as least squares and logistic function. More broadly,
the convex component contains the negative log-likelihood function in the exponential fam-
ily adopted by the generalized linear models. Since the convex component can be non-
differentiable, subgradient and subdifferential are useful tools. For instance, the tcave is
not differentiable at z = σ, but is quite useful to truncate loss functions. Given a set of obser-
vations (xi, yi), i = 1, ..., n where yi ∈ R and xi = (xi1, ..., xip)

⊺ ∈ R
p, denote Ω the linear span

of a set H of base learners including regression trees and linear predictor functions. Denote
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f = (f(x1), ..., f(xn))
⊺, f ∈ Ω. We aim to minimize an empirical loss function

n
∑

i=1

ℓ(yi, f(xi)). (1)

Here ℓ is a member of the CC-family, ℓ = g ◦ s = g(s(u)) = g(s(y, f)). To simplify notations,
f and f(x) are interchanged sometimes. For i = 1, ..., n, ui is defined below:

ui =











yi − fi, for regression,

yifi, for classification with yi ∈ [−1, 1],

fi, for exponential family.

(2)

Robust function estimation can be accomplished by the following algorithm.

Algorithm 1 CC-Function Estimation Algorithm

1: Input: training samples {(x1, y1), ..., (xn, yn)}, concave component g with parameter σ,
convex component s, starting point f (0) and iteration count K.

2: for k = 1 to K do
3: Compute zi = s(yi, f

(k−1)
i ), i = 1, ..., n

4: Compute subgradient v
(k)
i via v

(k)
i ∈ ∂(−g(zi)) or zi ∈ ∂ϕ(v

(k)
i ), i = 1, ..., n

5: Compute f (k) = argminf∈Ω
∑n

i=1 s(yi, fi)(−v
(k)
i )

6: end for
7: Output: v

(K)
i and f (K).

We have the convergence results for the COCO algorithm.

Theorem 1. Suppose that g is a concave component in the CC-family, and g is bounded below.

The loss function values ρ(f (k)) ,
∑n

i=1 ℓ(yi, f
(k)
i ) generated by Algorithm 1 are nonincreasing

and converge.

This result is a generalization of Theorem 4 in Wang (2020) in which the function is restricted
to a linear predictor function. Here we study more broadly defined function spaces. On the
other hand, if H is a space of linear models, Theorem 1 indeed coincides with the results in
Wang (2020). The proof follows the same argument of Theorem 4 in Wang (2020), hence only
a sketch is outlined. Define the surrogate loss function:

Q(f |f (k)) =

n
∑

i=1

s(yi, fi)(−v
(k+1)
i ) + ϕ(v

(k+1)
i ).

Apply the well-known results on the conjugation operator, we then have

ρ(f (k+1)) ≤ Q(f (k+1)|f (k)) ≤ Q(f (k)|f (k)) = ρ(f (k)). (3)

Step 5 in the algorithm is equivalent to minimizing Q(f |f (k)) since ϕ(v
(k+1)
i ) is a constant

with respect to f . The conclusion of the theorem follows.

2.2. Boosting algorithm for function estimation

An important question is how to compute step 5 in Algorithm 1. Here we adopt weighted
boosting algorithm. Boosting as a method for function estimation has been well studied by
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Friedman et al. (2000); Friedman (2001). Boosting can be utilized to fit a variety of models
with different base learners, including linear least squares, smoothing splines and regression
trees (Bühlmann and Hothorn 2007; Wang 2018b). For ease of notation, we first consider
unweighted estimation:

argmin
f∈Ω

n
∑

i=1

s(yi, fi). (4)

In a boosting algorithm, the solution is an additive model given by

f̂i = FM (xi) =
M
∑

i=1

tm(xi), (5)

where FM (xi) is stagewisely constructed by sequentially adding an update tm(xi) to the
current estimate Fm−1(xi):

Fm(xi) = Fm−1(xi) + tm(xi),m = 1, ...,M. (6)

There are different ways to compute tm(x) = (tm(x1), ..., tm(xn))
⊺: gradient and Newton-

type update are the most popular (Sigrist 2020). When the second derivative of loss function
exists, the Newton-type update is preferred over gradient update to achieve fast convergence:

tm(x) = argmin
f∈H

n
∑

i=1

hm,i(−
dm,i

hm,i
− f(xi))

2, (7)

where the first and second derivatives of the loss function s for observations i are given by:

dm,i =
∂

∂f
s(yi, f)|f=Fm−1(xi), (8)

hm,i =
∂2

∂f2
s(yi, f)|f=Fm−1(xi). (9)

For quadratic loss s(yi, f) = (yi−f)2

2 , we obtain hm,i = 1. In this case, the Newton-update
becomes the gradient update. Furthermore, the weighted minimization problem in step 5 of
Algorithm 1 can be solved with the weighted boosting algorithm.

2.3. Penalized estimation

To avoid overfitting, we can add the objective function with a regularization term:

n
∑

i=1

ℓ(yi, f̂i) +

M
∑

m=1

Λ(tm), (10)

where Λ penalizes the model complexity. If H is the space of linear regression with a p-
dimensional predictor, i.e., tm(xi) = x⊺

iβm,βm = (β1m, ..., βpm)⊺, denote

Λ(tm) =
1

2
λ

p
∑

j=1

β2
jm + α

p
∑

j=1

|βjm|, (11)
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where λ ≥ 0, α ≥ 0. Note that Λ(tm) provides shrinkage estimators and can conduct variable
selection. Suppose thatH is the space of regression trees. Each regression tree splits the whole
predictor space into disjoint hyper-rectangles with sides parallel to the coordinate axes (Wang
2018b). Specifically, denote the hyper-rectangles in the m-th boosting iteration Rjm, j =
1, ..., J . Let tm(xi) = βjm,xi ∈ Rjm, i = 1, ..., n, j = 1, ..., J . With γ ≥ 0, the penalty can be
defined as in Chen and Guestrin (2016):

Λ(tm) = γJ +
1

2
λ

p
∑

j=1

β2
jm + α

p
∑

j=1

|βjm|. (12)

A different penalized estimation is to implement a shrinkage parameter 0 < ν ≤ 1 in the
update (6):

Fm(xi) = Fm−1(xi) + νtm(xi),m = 1, ...,M. (13)

2.4. Implementation and tuning parameter selection

In summary, we use Algorithm 1 coupled with the boosting algorithm to minimize the fol-
lowing objective function:

n
∑

i=1

ℓ(yi, f̂i), (14)

where f̂i is given by (5). There are two layers of iterations: the outer layer is the CC iteration
and the inner layer is the boosting iterations. An early stop of iterations in boosting doesn’t
guarantee convergence. On the other hand, the output f (K) may overfit the data. In this
case, we may consider a two stage process: In the first stage, apply Algorithm 1 to obtain
optimal weights of observations. In the second stage, we can use a data-driven method such
as cross-validation to select optimal boosting iteration M , penalty numbers γ for trees, λ
and α. The same strategy can also be applied to the robust parameter σ. However, since
this parameter is typically considered a hyperparameter, a more computationally convenient
approach in the literature is to conduct estimation for different values of σ and compare the
results. One can begin with a large value σ with less robust estimation, and move towards
smaller value σ for more robust results.

The source version of the ccboost package is freely available from the Comprehensive R Archive
Network (http://CRAN.R-project.org). The reader can install the package directly from
the R prompt via

R> install.packages("ccboost")

All analyses presented below are contained in a package vignette. The rendered output of the
analyses is available by the R-command

R> library("ccboost")

R> vignette("ccbst", package = "ccboost")

To reproduce the analyses, one can invoke the R code

R> edit(vignette("ccbst", package = "ccboost"))

http://CRAN.R-project.org
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3. Data examples

3.1. Robust boosting for regression

In this example, we predict median value of owner-occupied homes in suburbs of Boston,
with data publicly available from the UCI machine learning data repository. There are 506
observations and 13 predictors. A different robust estimation can be found in Wang (2020).

R> urlname <- "https://archive.ics.uci.edu/ml/"

R> filename <- "machine-learning-databases/housing/housing.data"

R> dat <- read.table(paste0(urlname, filename), sep = "",

+ header = FALSE)

R> dat <- as.matrix(dat)

R> colnames(dat) <- c("CRIM", "ZN", "INDUS", "CHAS", "NOX",

+ "RM", "AGE", "DIS", "RAD", "TAX", "PTRATIO", "B",

+ "LSTAT", "MEDV")

R> p <- dim(dat)[2]

We fit a CC-boosting model with concave component bcave and convex component least
squares. The observation weights are plotted. We also display the values of the 4 observations
with the smallest weights. These observations are considered outliers. We can plot the original

R> library("ccboost")

R> fit.ls <- ccboost(dat[, -p], dat[, p], cfun = "bcave",

+ s = 10, dfun = "gaussian", verbose = 0, max.depth = 2,

+ nrounds = 50)

R> plot(fit.ls$weight_update)

R> id <- sort.list(fit.ls$weight_update)[1:4]

R> text(id, fit.ls$weight_update[id] - 0.02, id, col = "red")
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median housing price vs the predicted values. Not surprisingly, those 4 observations with the
smallest weights have poor predictions. We can view feature importance/influence from the
learned model. The figure shows that the top two factors to predict median housing price
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R> plot(dat[, p], predict(fit.ls, newdata = dat[, -p]))

R> text(dat[id, p], predict(fit.ls, newdata = dat[id, -p]) -

+ 1, id, col = "red")
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are average number of rooms per dwelling (RM) and percentage values of lower status of the
population (LSTAT).

R> importance_matrix <- xgboost::xgb.importance(model = fit.ls)

R> xgboost::xgb.plot.importance(importance_matrix = importance_matrix)
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R> gr <- xgboost::xgb.plot.tree(model = fit.ls, trees = 0:1)
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3.2. Robust logistic boosting

A binary classification problem was proposed by Long and Servedio (2010). Response variable
y is randomly chosen to be -1 or +1 with equal probability. We randomly generate symbols
A, B and C with probability 0.25, 0.25 and 0.5, respectively. The predictor vector x with 21
elements is generated as follows. If A is obtained, xj = y, j = 1, ..., 21. If B is generated,
xj = y, i = 1, ..., 11, xj = −y, j = 12, ..., 21. If C is generated, xj = y, where j is randomly
chosen from 5 out of 1-11, and 6 out of 12-21. For the remaining j ∈ (1, 21), xj = −y. We
generate training data n = 400 and test data n = 200.

We fit a robust logistic boosting model with concave component acave, where the maximum
depth of a tree is 5. Other concave components in Table 1 can be applied similarly. We can

R> set.seed(1947)

R> dat <- dataLS(ntr = 400, nte = 200, percon = 0)

R> fit1 <- ccboost(dat$xtr, dat$ytr, cfun = "acave", s = 3,

+ dfun = "binomial", verbose = 0, max.depth = 5, nrounds = 50)

R> plot(fit1$weight_update)
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compute prediction error of test data at each boosting iteration. Furthermore, we simulate
data with 10% contamination of response variables, and compute CC-boosting again. In the
third robust logistic boosting, we reduce parameter value σ (s in the ccboost function) for
more robust estimation. As a result, some observations would have decreased weights in the
model.
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R> err1 <- rep(NA, 100)

R> for (i in 1:100) {

+ pred1 <- predict(fit1, newdata = dat$xte, ntreelimit = i)

+ err1[i] <- mean(sign(pred1) != dat$yte)

+ }

R> plot(err1, type = "l")
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R> dat2 <- dataLS(ntr = 400, nte = 200, percon = 0.1)

R> fit2 <- ccboost(dat2$xtr, dat2$ytr, cfun = "acave", s = 3,

+ dfun = "binomial", verbose = 0, max.depth = 5, nrounds = 50)

R> plot(fit2$weight_update)
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R> err2 <- rep(NA, 100)

R> for (i in 1:100) {

+ pred2 <- predict(fit2, newdata = dat2$xte, ntreelimit = i)

+ err2[i] <- mean(sign(pred2) != dat2$yte)

+ }

R> plot(err2, type = "l")
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R> fit3 <- ccboost(dat2$xtr, dat2$ytr, cfun = "acave", s = 1,

+ dfun = "binomial", verbose = 0, max.depth = 5, nrounds = 50)

R> plot(fit3$weight_update)
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R> err3 <- rep(NA, 100)

R> for (i in 1:100) {

+ pred3 <- predict(fit3, newdata = dat2$xte, ntreelimit = i)

+ err3[i] <- mean(sign(pred3) != dat2$yte)

+ }

R> plot(err3, type = "l")
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3.3. Robust Poisson boosting

A survey collected from 3066 Americans was studied on health care utilization in lieu of doc-
tor office visits (Heritier, Cantoni, Copt, and Victoria-Feser 2009). The data contained 24
risk factors. Robust Poisson regression was conducted in Wang (2020). Here robust Poisson
boosting model is fitted with concave component ccave. The observation weights are esti-
mated. The doctor office visits in two years are highlighted for the 8 smallest weights, ranging
from 200 to 750. We can view feature importance/influence from the learned model. The

R> data(docvisits, package = "mpath")

R> x <- model.matrix(~age + factor(gender) + factor(race) +

+ factor(hispan) + factor(marital) + factor(arthri) +

+ factor(cancer) + factor(hipress) + factor(diabet) +

+ factor(lung) + factor(hearth) + factor(stroke) +

+ factor(psych) + factor(iadla) + factor(adlwa) + edyears +

+ feduc + meduc + log(income + 1) + factor(insur) +

+ 0, data = docvisits)

R> fit.pos <- ccboost(x, docvisits$visits, cfun = "ccave",

+ s = 20, dfun = "poisson", verbose = 0, max.depth = 1,

+ nrounds = 50)

R> plot(fit.pos$weight_update)

R> id <- sort.list(fit.pos$weight_update)[1:8]

R> text(id, fit.pos$weight_update[id] - 0.02, docvisits$visits[id],

+ col = "red")
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figure shows that the top two reasons of doctor office visits are heart disease and psychiatric
problems.

4. Conclusion

In this article we propose CC-boosting as a unified robust boosting algorithm, and illustrate its
applications in regression, classification and Poisson regression. The method can be used for
outlier detection and can reduce the impact of outliers. Based on existing weighted boosting
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R> importance_matrix <- xgboost::xgb.importance(model = fit.pos)

R> xgboost::xgb.plot.importance(importance_matrix = importance_matrix)
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software, we can determine variable importance and explore the trees from the boosting
algorithm. The R ccboost is a useful tool in the machine learning applications.
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