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Abstract

Model-based dose escalation designs have gained increasing interest due to the need
for more efficient and informative Phase I trials. The wide-spread implementation of such
designs has been hindered by the need for either licensing specialized commercial software
or programming the design and simulations from scratch for each project. The R-package
crmPack provides a simple and unified object-oriented framework for model-based dose
escalation designs. This enables the standard use of such designs, while being able to
flexibly adapt and extend them. The framework comprises classes and methods for the
data structure including the dose grid, statistical models including prior specification,
rules for maximum increments, next best dose, and adaptive stopping and cohort sizes.
In addition to multiple modified classic continual reassessment method and escalation
with overdose control designs with possibly advanced prior specifications (e.g., minimal
informative and mixture priors), crmPack currently features dual-endpoint (safety and
biomarker) designs and two-part designs. Optional assignment of a small number of
patients in each cohort to placebo instead of treatment enables the use in trials outside
Oncology.

Keywords: continual reassessment method, model based dose escalation, dual-endpoint design,
R, object oriented.

1. Introduction

Phase I trials that are testing new investigational agents in humans for the first time escalate
from low to high doses in a sequential fashion. This dose escalation design is necessary in
order to reduce the risk of too high and therefore too toxic doses for the probands. These
can either be healthy volunteers (e.g., in neurology) or patients (e.g., in oncology), and we
will henceforth use only the latter for ease of presentation. While higher doses of agents are
usually expected to deliver stronger pharmacodynamic effects and hence improved efficacy,
higher doses also usually cause more severe adverse events in the patients. In order to simplify
the decision making usually binary dose-limiting toxicities (DLTs) are defined (e.g., adverse
events reaching specific severity levels) before starting the trial. The maximum tolerated dose
(MTD) is then defined as the dose with a certain probability of DLTs (either using a single
value, e.g., 33%, or a range, e.g., 20 to 35%). Historically, patients were treated at the same
dose in cohorts of three, with the dose for the next cohort then being determined from the
number of DLTs having been observed in the current cohort.

Algorithmic designs like the simple 3+3 design (Carter 1973) have disadvantages that have
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been recognized in the statistics community, see e.g., Paoletti, Ezzalfani, and Le Tourneau
(2015). Fundamentally, the escalation rules of the 3+3 design do not have any statistical
justification (Storer 1989) in terms of estimating an MTD. Moreover, they cannot be extended
to address today’s Phase I trials, with extension cohorts, dose escalation of drug combinations
and optimal biological dose determination, naming just a few prominent challenges. Hence
model-based dose escalation designs like the continual reassessment method (CRM, O’Quigley,
Pepe, and Fisher 1990) have gained increasing interest due to the need for more efficient and
informative Phase I trials. These designs are based in statistical inference, with dose-toxicity
regression models as the backbone, and are therefore flexible for adaptation to various complex
trial designs. Importantly, they avoid fixing only a few dose levels in advance. For a wider
comparison of algorithmic and model based designs see e.g., Jaki, Clive, and Weir (2013).

However, the wide-spread implementation of such designs has been hindered by the need
for either licensing specialized commercial software (thus losing flexibility) or programming
the design and simulations from scratch for each project (thus losing efficiency). While the
models underlying most model-based dose escalation procedures can easily be fit in standard
software with the capability to fit generalized linear models, e.g., PROC MIXED in SAS (SAS
Institute Inc. 2003), glm in Stata (StataCorp 2015) or R (R Core Team 2016), there are still
only few software solutions available dedicated to dose escalation studies.

The commercial packages East (Cytel Inc. 2016) and ADDPLAN (ICON Plc 2016) both offer
extensions to their basic design software for dose escalation studies (ESCALATE in East
and df in ADDPLAN) implementing the algorithmic 3+3 design and various versions of the
CRM. Similarly FACTS (FACTS Development Team 2015) also offers different common dose
escalation methods. Due to the commercial nature of these implementations there is, however,
a limitation on how much the designs can be tailored towards the individual needs of the study.
Similarly static implementations of methods for dose escalation are available in the Stata
module crm (Mander 2013) which implements the CRM and the dfcrm package (Cheung
2013) in R which additionally implements the time-to-event CRM (TITE-CRM) (Cheung
and Chappell 2000). Several R-packages with extensions are available. The bcrm package
(Sweeting, Mander, and Sabin 2013) implements a variety of one and two parameter models,
and facilitates different ways to specify prior distributions, escalation and stopping rules.
The ordcrm package (Dressler and Huang 2016) implements ordinal proportional odds and
continuation ratio models for CRMs. The dfpk package (Toumazi, Ursino, and Zohar 2017)
uses pharmacokinetic data in the dose escalation.

In this paper we introduce the R-package crmPack (Sabanes Bove, Yeung, Palermo, and Jaki
2018) for dose escalation studies, which is publicly available on CRAN. While the package’s
name pays tribute to the original CRM as the first model-based dose escalation design, the
package’s functionality differs from the above existing implementations in three fundamental
ways. Firstly, it is written using S4 classes and methods (Chambers 2008), which allows
customized methodology to be added to the package while still being able to use the existing
backbone functionalities. Secondly, methods for studies with a placebo group (e.g., for healthy
volunteer studies) are readily implemented. Thirdly, dual endpoint dose escalation methods
that incorporate both safety and efficacy and allow determination of an optimal biological
dose are already available.

2. Framework
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Figure 1: Schematic of the framework. Separate design features are implemented as classes
(shown as gray boxes) and bundled together in the overarching Design object. They can be
processed with various methods (blue text) to run the dose escalation trial and produce results
(blue boxes). For example, the Data and Model objects can be processed by the mcmc method
in order to obtain posterior samples of the model parameters, and given the sample size and the
dose for the next cohort, the updated Data closes the dose escalation loop. On the higher level,
designs can be investigated with the examine and simulate methods to obtain hypothetical
trial courses and operating characteristics, respectively. Note that individual model classes
and methods are not shown here for clarity, please refer to the package documentation for
details, e.g., by calling crmPackHelp().

For describing the framework of the package we will adapt the general notation for early phase
trials from Thall (2010). Figure 1 summarizes the framework in a schematic.

Data Let x denote one specific treatment, chosen from the set of possible treatments X .
This could be one specific dose, but also more generally a vector, containing for example doses
of multiple drugs in a combination trial. After giving treatment x to a patient, the outcome y
is observed, typically a safety endpoint as e.g., the binary DLT y ∈ {0, 1}. Grouping together
nj patients in cohort j, generating the cohort j data Cj = {(xj , yj,1), . . . , (xj , yj,nj )}, we can
denote the data generated from the first N cohorts as DN = C1 ∪ · · · ∪ CN . In crmPack
the S4 class GeneralData encapsulates this notion and subclasses implement concrete data
structures.

Model The core of model-based dose escalation designs is the underlying statistical model.
Taking a Bayesian approach to inference, the model in crmPack consists of firstly the likeli-
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hood, which is either a probability density function f(y |x, θ) or a probability mass function
P(Y = y |x, θ) of y for a patient who receives treatment x assuming the parameter (vector)
θ, and secondly the prior p(θ | ξ) for θ given fixed hyperparameters ξ. In crmPack the virtual
S4 class AllModels encapsulates this notion and subclasses implement concrete models.

For example, the class LogisticLogNormal implements the logistic regression model (Neuen-
schwander, Branson, and Gsponer 2008) with

logit(P(Y = 1 |x, θ)) ≡ logit(π(x, θ)) = α0 + α1 log
( x
x∗

)
, (1)

parameter vector θ = (α0, α1), dose x > 0 and specified reference dose x∗. The prior p(θ | ξ)
is specified via a bivariate normal distribution on a transformation of θ to ensure α1 > 0:

(α0, log(α1)) | ξ ∼ N2(µ,Σ) (2)

with hyperparameters ξ = (µ,Σ) consisting of the prior mean vector µ and the prior covariance
matrix Σ.

Decision making for the next dose Another core element of a dose escalation design
concerns the decision making for the next dose xN+1 to be tested in the next cohort N + 1.
In the Thall (2010) notation, the function α is mapping the currently accumulated data DN
to the dose space X (or to dose 0, meaning to stop the trial because all doses are too toxic):

α : DN → X ∪ {0} (3)

This mapping is commonly specified via the combination of two elements: The first element
is a function τ for the maximum increments between dose levels, which can calculate from the
current data DN (including the current dose xN ) the maximum possible next dose tN+1 =
τ(DN ) for the next cohort. The second element is a rule ν indirectly acting on the current
data through the posterior distribution p(θ | DN ) and the maximum possible dose tN+1 to
finally give the next dose xN+1 = ν(p(θ | DN ), tN+1). In crmPack maximum increments are
specified by subclasses of Increments, and the next best dose rule by subclasses of NextBest.

The design class Additional features of a design concern the adaptive sizing of the next
cohort and the adaptive stopping of the trial. Those are implemented in subclasses of
CohortSize and Stopping, respectively. Moreover, the starting dose x1 is also a feature
of the design. Finally, the overall dose escalation design is bundling all the described features
together in a dedicated class typically inheriting from Design. As noted in Thall (2010), the
operating characteristics of such a complex dose escalation design can only be evaluated by
simulations. This can be done using the simulate methods for the design classes, and is
recommended to be performed for a multitude of different scenarios in order to stress-test the
design and to convince oneself of its properties. In particular, the operating characteristics
reveal whether the MTD can be estimated well by the designs. In addition, the examine

method evaluates hypothetical trial outcomes and lists the resulting trial decisions (dose for
the next cohort and trial end).

In order to illustrate the use of this object-oriented framework, the next section contains
practical examples on use of the existing functionality as well as an example for creating new
extensions.
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3. Using crmPack

We consider a trial in Type II diabetes carried out by Hoffmann-La Roche Ltd. in order to
illustrate the functionality in the package. For each patient, we observed a binary safety
(DLT) and a continuous efficacy outcome. In Section 3.1 we will show how to implement
a CRM design for dose escalation based on the safety endpoint only, while in Section 3.2
also the efficacy endpoint will be considered. Section 3.3 gives an example on extending the
crmPack functionality.

Before we start, we have to install and subsequently load our package in R:

R> library("crmPack")

Loading required package: ggplot2

Type crmPackHelp() to open help browser

Type crmPackExample() to open example

3.1. Implementing a CRM trial

Suppose that 12 dose levels ranging from 25 to 300 mg in 25 mg increments of a novel agent
are available in addition to placebo, defining our dose grid X = {0.001, 25, 50, . . . , 300}, with
x1 = 0.001 mg representing placebo and x2 = 25 being our starting dose. Note that here we
used a very small dose instead of zero for x1, since we consider here the regression model (1)
with a log transformation of the dose x (with x∗ = 100 chosen as reference dose).

Minimally informative prior Here we assume that limited prior information is avail-
able on the dose-toxicity relationship, and hence would like to use a minimally informa-
tive prior (Neuenschwander et al. 2008) which can be easily obtained with the function
MinimalInformative. Since stochastic optimization is used internally, setting of a seed is
required for reproducibility. Furthermore, it is recommended to specify a coarse dose grid
across the original dose range (excluding the placebo dose) to avoid long computation time:

R> coarseGrid <- c(25, 50, 100, 200, 300)

R> model <- MinimalInformative(dosegrid = coarseGrid, refDose = 100,

+ logNormal = TRUE, threshmin = 0.1,

+ threshmax = 0.2, seed = 432,

+ control = list(max.time = 30))$model

The resulting model (which is an object of class LogisticLogNormal) has prior parameters
µ = (−1.35, 0.74) and Σ = ( 1.51 0.18

0.18 0.21 ) and will approximately have 5% probability each for
the DLT rate to exceed 10% (threshmin argument) at the 25 mg dose and to be below 20%
(threshmax) at the 300 mg dose.

Data object definition and visualization In this simple case of a univariate dose x
resulting in binary DLT observations y, the S4 class Data can be used. Objects of this class
can be created by calling the accompanying initialization function of the same name (which
is a general convention in crmPack):
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Figure 2: Open and blinded data plots

R> PL <- 0.001

R> data <- Data(x = c(PL, 25, 25, 25, PL, 50, 50, 50, PL, 100, 100, 100),

+ y = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0),

+ cohort = c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3),

+ doseGrid = c(PL, seq(25, 300, 25)),

+ ID = 1:12,

+ placebo = TRUE)

The argument x takes the doses x1 = 0.001, x2 = 25, x3 = 50, x4 = 100 (note the repetition to
match the outcome variables yj,k) where doseGrid captures the set X of all possible doses, y
takes the binary DLTs (here y3,3 = 1 denotes the only DLT having been observed in the 3rd
patient in the 3rd cohort), while cohort groups the patients together in cohorts (here N = 3).
The option placebo is used to specify that this is a placebo controlled study, with placebo
patients included in each cohort. The lowest dose x1 is then interpreted internally as the
placebo dose. Patient IDs can be given optionally in the ID argument. The data can then be
visualized by simply applying the plot function to the object, which also allows to produce a
blinded plot (hiding patient IDs and placebo/treatment assignment) with the option blind,
see Figure 2:

R> plot(data)

R> plot(data, blind = TRUE)

Sampling from the prior and posterior Now that we have the model and the data
in place, we can use MCMC sampling for obtaining the posterior distribution of the model
parameters θ, and hence the DLT rates P(Y = 1 |x, θ), at various doses x. The MCMC
sampling can be controlled with an object of class McmcOptions, which is then provided to
the mcmc function, together with the data and the model objects:

R> options <- McmcOptions(burnin = 1000, step = 2, samples = 10000)

R> set.seed(94)

R> samples <- mcmc(data, model, options)
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Figure 3: Posterior and prior regression model fits

The posterior mean curve and 95% equi-tailed credible interval curves for the DLT rates
can be obtained by supplying the samples, model and data to the generic plot function.
Similarly we can also produce a similar plot without any data, which is then giving the prior,
see Figure 3:

R> plot(samples, model, data) + ggtitle("Posterior")

R>

R> emptydata <- Data(doseGrid = data@doseGrid, placebo = TRUE)

R> priorsamples <- mcmc(emptydata, model, options)

R> plot(priorsamples, model, emptydata) + ggtitle("Prior")

As illustrated here, the plots can be customized by using the ggplot2 (Wickham 2009) func-
tionality. We can see that while the posterior mean estimate (left panel, continuous line) is
only slightly steeper than the prior mean estimate curve (right panel, continuous line), the
posterior uncertainty is reduced due to the data (smaller credible intervals, dashed lines).

Decision making for the next dose To determine which dose to administer to the next
(cohort of) patients we begin by specifying the maximum increments function τ . In the
example below a maximum increase of 100% for doses below 100 mg, 50% for doses in the
range from 100 mg to 200 mg, and 33% for doses equal or above 200 mg is specified using the
class IncrementsRelative:

R> myIncrements <- IncrementsRelative(intervals = c(0, 100, 200),

+ increments = c(1, 0.5, 0.33))

This specific rule τ can then be evaluated on the current dataset DN by the maxDose function
to obtain the maximum next dose tN+1 = τ(DN ):

R> (nextMaxDose <- maxDose(myIncrements, data))

[1] 150
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Figure 4: Dose recommendation plot from NCRM design. Target probabilities as green bars,
overdose probabilities as red bars, maximum next dose tN+1 as vertical dashed black line,
highest dose with probability of overdosing not exceeding 25% as vertical dashed red line,
final dose recommendation with a red triangle.

We then define the function ν for selecting a dose for the next cohort. In this case we would
like to select the dose which maximizes the probability of the DLT rate being in the target
toxicity range from 20% to 35%, but with the probability of overdosing not exceeding 25%
(Neuenschwander et al. 2008), using the NextBestNCRM class:

R> myNextBest <- NextBestNCRM(target = c(0.2, 0.35), overdose = c(0.35, 1),

+ maxOverdoseProb = 0.25)

This rule can then be evaluated with the function nextBest to obtain the next dose xN+1 =
ν(DN , tN+1):

R> nextDoseRes <- nextBest(myNextBest, nextMaxDose, samples, model, data)

R> (nextDoseVal <- nextDoseRes$value)

[1] 100

The returned list also contains an accompanying plot (nextDoseRes$plot), see Figure 4.

Adaptive stopping of the trial We would like to stop the dose escalation adaptively
if the maximum sample size of n = 30 patients has been reached already, or if we have
sufficient precision for the MTD estimate. We can specify the latter condition as follows: The
probability that the next dose xN+1 is in the target toxicity range is above 50%, and at least
9 patients were already dosed within +/- 20% range of xN+1. The corresponding Stopping

class object is constructed by combining the atomic rules with logical operators as follows:
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R> myStopping1 <- StoppingMinPatients(nPatients = 30)

R> myStopping2 <- StoppingTargetProb(target = c(0.2, 0.35), prob = 0.5)

R> myStopping3 <- StoppingPatientsNearDose(nPatients = 9, percentage = 20)

R> myStopping <- myStopping1 | (myStopping2 & myStopping3)

Again, this specific rule can be evaluated by a function, here called stopTrial, for a specific
situation:

R> stopTrial(myStopping, nextDoseVal, samples, model, data)

[1] FALSE

attr(,"message")

attr(,"message")[[1]]

[1] "Number of patients is 12 and thus below the prespecified

minimum number 30"

attr(,"message")[[2]]

attr(,"message")[[2]][[1]]

[1] "Probability for target toxicity is 34 % for dose 100 and thus

below the required 50 %"

attr(,"message")[[2]][[2]]

[1] "3 patients lie within 20% of the next best dose 100. This is

below the required 9 patients"

The result FALSE means that we cannot yet stop the trial, with the attribute message giving
the results from the atomic stopping rules.

Examine the dose escalation design In the last topic of this section, we want to show
how to assess the performance of a given CRM design. We first need to specify our design
by creating an object of class Design. It contains our model, our rules for dose escalation
(Increments, nextBest, Stopping and cohortSize), the dose grid (in the example below
through the object emptydata) and our starting dose (see also Figure 1). In this case we will
use a fixed cohort size of 3 patients on active and 1 patient on placebo (“3+1”) throughout
the study:

R> mySize <- CohortSizeConst(3)

R> mySizePL <- CohortSizeConst(1)

R>

R> design <- Design(model = model, nextBest = myNextBest,

+ stopping = myStopping, increments = myIncrements,

+ cohortSize = mySize, PLcohortSize = mySizePL,

+ data = emptydata, startingDose = 25)

We can then start by looking at the single trial operating characteristics of the dose escalation
design with the function examine, which generates a data frame showing the beginning of
several hypothetical trial courses under the design. Assuming no DLTs have been seen until a
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certain dose, then the consequences of different number of DLTs being observed at this dose
are shown. For example, if we observe 3 DLTs at the starting dose of 25 mg, we would need to
stop the trial, while we would enroll another cohort at the same dose level in case of 2 DLTs.
In the last rows of the output we see that if no DLTs were observed before the 250 mg cohort,
the maximum considered dose of 300 mg dose can be reached in the next cohort if also no
DLTs are observed at 250 mg. If 1, 2 or 3 DLTs are observed, the next dose is recommended
as 225, 175 and 150 mg, respectively.

R> set.seed(23)

R> examine(design, mcmcOptions=options)

dose DLTs nextDose stop increment

1 25 0 50.000 FALSE 100

2 25 1 50.000 FALSE 100

3 25 2 25.000 FALSE 0

4 25 3 0.001 TRUE -100

...

20 175 3 100.000 FALSE -43

21 250 0 300.000 FALSE 20

22 250 1 225.000 FALSE -10

23 250 2 175.000 FALSE -30

24 250 3 150.000 FALSE -40

Simulating operating characteristics For the many trials operating characteristics, we
first have to define true scenarios, from which the data should arise. In this case, this only
requires a function that computes the probability of DLT given a dose. As an example we
use here the function contained in the slot prob of the object model:

R> myTruth <- function(dose){model@prob(dose, alpha0 = 4.5, alpha1 = 8)}

Note that any possible R-function returning a vector of probabilities upon input of the dose
vector can be used. In particular, it is trivially possible to directly specify the probability of
DLT for each dose in order to examine operating characteristics not based on any statistical
model. For example, assume 5 doses 1–5 with probabilities of DLT of 0.01, 0.02, 0.04, 0.06,
0.09, then the following code could be used:

R> doseProbMatrix <- cbind(c(1, 2, 3, 4, 5), c(0.01, 0.02, 0.04, 0.06, 0.09))

R> myTruthMatrix <-

+ function(dose){doseProbMatrix[match(dose, doseProbMatrix[, 1]), 2]}

Now we can proceed to the simulations using the function simulate:

R> mySimsTime <-

+ system.time(mySims <- simulate(design, truth = myTruth, nsim = 100,

+ seed = 819, mcmcOptions = options,

+ parallel = FALSE))[3]
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Figure 5: Simulation plot. On the top panel a summary of the trial trajectories, and on the
bottom, the proportions of doses tried, averaged over the simulated trials, are shown.

The number of simulated trials depends on the required accuracy of the results. The argument
parallel can be set to TRUE if one wishes to run the iterations in parallel on all processors
of the computer, which can yield a meaningful speedup. Here we needed 220 seconds for
100 simulated trials on an Intel Core i5-6300U CPU with 2.4 GHz.

The result is an object of class Simulations containing multiple slots, with e.g., the data slot
containing the list of simulated trials. The slots doses and stopReasons contain information
about the final MTD and the stopping reason for each trial. We can e.g., investigate the
number of patients and the MTD at the end of the third simulated trial:

R> mySims@data[[3]]@nObs

[1] 24

R> mySims@doses[3]

[1] 50

Furthermore, we can plot the Simulations object by calling the plot method on it, see
Figure 5. You can select the plots by changing the type argument of plot, which by default
is type = c("trajectory", "dosesTried").

Second, we can summarize the simulation results, and obtain a textual description of the
results:

R> simSum <- summary(mySims, truth = myTruth)

R> simSum
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Figure 6: Simulation summary plot

Summary of 100 simulations

Target toxicity interval was 20, 35 %

...

Dose most often selected as MTD: 50

Observed toxicity rate at dose most often selected: 26 %

Fitted toxicity rate at dose most often selected : mean 23 % (15 %, 29 %)

A plot of the summary results can also be produced, see Figure 6.

3.2. Dose escalation with safety and efficacy

In this section, dose escalation designs incorporating both safety (as binary DLT) and efficacy
endpoints (continuous response) will be introduced. Dual endpoint datasets are implemented
with the DualData class, where here we illustrate the addition of the efficacy data w to the
previous dataset:

R> data2 <- DataDual(x = data@x, y = data@y, placebo = TRUE,

+ w = c(0.02, 0.42, 0.59, 0.45, 0.03, 0.7, 0.6, 0.52,

+ 0.01, 0.71, 0.54, 0.45), cohort = data@cohort,

+ doseGrid = data@doseGrid, ID = data@ID)

The endpoints can be modelled jointly or separately. For joint modelling derived from Bekele
and Shen (2005), please see the package vignette and the DualEndpoint class. In the following
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section we will describe separate modelling, as proposed in Yeung, Whitehead, Reigner, Beyer,
Diack, and Jaki (2015). We will show how the dual endpoint design can help to estimate an
optimal dose level which represents the best trade-off between safety and efficacy.

Methodology Briefly introducing the methodology in current notation, assume that the
dose grid X contains k dose levels, and the logistic regression model (1) with x∗ = 1 is used
for the safety endpoint y. For the continuous efficacy endpoint w, a linear log-log model can
be used, conditional on y = 0 (no DLT):

E(w(x)) = γ + δ log{log(x+ c)} (4)

such that w(x) ∼ N(E(w(x)), σ2) with c ≥ 0 as a constant. Usually the default value c = 0
can be used, but in our case we choose c = 2 to allow for the placebo dose x = 0.001 which
is close to 0.

For both the safety and efficacy models, the prior will be expressed in form of imaginary
pseudo data (see Yeung et al. 2015, for details). Prior and posterior modal estimates of the
model parameters can then be obtained as the maximum likelihood estimates from the data
set combining pseudo data with observed data (Whitehead 2006). The variance σ2 can be
fixed or assigned an inverse gamma prior distribution.

Model classes The ModelPseudo class contains all model classes where the priors are spec-
ified in terms of pseudo data, with subclasses for safety (ModelTox) and efficacy (ModelEff).

Coming back to our example study, the pseudo data for the safety prior assumes that 3
subjects each are treated at the lowest (25 mg) and the highest (300 mg) dose level, with 1.05
and 1.8 DLTs being observed at these two dose levels, respectively. This corresponds to prior
means of 0.35 and 0.6 for the DLT probabilities. We implement model (1) with this pseudo
data prior as follows:

R> DLTmodel <- LogisticIndepBeta(binDLE = c(1.05, 1.8), DLEweights = c(3, 3),

+ DLEdose = c(25, 300), data = emptydata)

The efficacy model can similarly be specified as

R> emptydata2 <- DataDual(doseGrid = emptydata@doseGrid, placebo = TRUE)

R> Effmodel <- Effloglog(Eff = c(1.223, 2.513), Effdose = c(25, 300),

+ nu = c(a = 1, b = 0.025), data = emptydata2, c = 2)

Here the argument Eff takes the vector of pseudo efficacy responses at the two fixed dose
levels, assuming one subject is treated at each of these dose levels. The argument nu specifies
a Gamma prior distribution with shape 1 and rate 0.025 for the precision parameter of the
pseudo efficacy responses.

Decision making for the next dose A gain function is used to quantify the trade-off
between efficacy and safety, and the next dose should maximize the estimated gain modulo
safety constraints. Here we will define the gain as the expected efficacy response, with the
convention that a DLT will automatically lead to a zero efficacy response:

G(x) = P(Y = 0 |x, θ)E(w(x)) (5)
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Note that the gain function depends on the safety parameter vector θ and the efficacy param-
eters γ and δ, which will be estimated by their posterior modal estimates using the update

method:

R> newDLTmodel <- update(object = DLTmodel, data = data2)

R> newEffmodel <- update(object = Effmodel, data = data2)

With crmPack we can implement the next best dose recommendation based on maximizing
the gain function as follows:

R> GainNextBest <- NextBestMaxGain(DLEDuringTrialtarget = 0.35,

+ DLEEndOfTrialtarget = 0.3)

where DLEDuringTrialtarget specifies the maximum estimated DLT rate tolerated during
the study and DLEEndOfTrialtarget the maximum estimated DLT rate tolerated at the end
of the study. As in Section 3.1 this rule ν can be evaluated using nextBest to obtain xN+1,
after evaluating the maximum increments rule τ using maxDose to obtain tN+1:

R> (nextMaxDose <- maxDose(myIncrements, data2))

[1] 150

R> doseRecGain <- nextBest(GainNextBest, doselimit = nextMaxDose,

+ model = newDLTmodel, Effmodel = newEffmodel,

+ data = data2)

R> (nextDoseVal <- doseRecGain$nextdose)

[1] 25

The plot for the next dose allocation is contained in doseRecGain$plot and shown in Figure 7.

Stopping rules In addition to the simple stopping rule based on the maximum number
of patients in our trial, we can use another one relating to the precision of the dose with
optimum gain:

R> myStopping4 <- StoppingGstarCIRatio(targetRatio = 5,

+ targetEndOfTrial =

+ GainNextBest@DLEEndOfTrialtarget)

R> myStoppingDual <- myStopping1 | myStopping4

This stops the trial when 30 patients are reached, or when the ratio of the upper and lower
confidence interval bounds around the dose recommendation is less than 5.



Daniel Sabanés Bové, Wai Yin Yeung, Giuseppe Palermo, Thomas Jaki 15

●
TD 30 Estimate

Max Gain Estimate

TD 35 Estimate

Max
Next

0.00

0.25

0.50

0.75

1.00

0 100 200 300

Dose Level

V
al

ue
s

curves

Expected Efficacy

Gain

p(DLE)

Figure 7: Dose recommendation plot from dual endpoint design. The red, blue and green
curves correspond to the (posterior modal) estimated curves for safety, efficacy and gain,
respectively. The vertical red line in the plot shows the maximum possible dose tN+1 = 150 mg
and the vertical violet line shows the next dose xN+1 = 25 mg. The circle, square and triangle
symbols mark the estimated doses with target toxicity (75 mg for 35% DLT probability during
the trial and 50 mg for 30% DLT probability at the end of trial) and the estimated dose with
maximum gain, 0.001 mg. The numbers can be obtained from the doseRecGain list.

Simulations To simulate the operating characteristics, first a design has to be built:

R> design2 <- DualResponsesDesign(nextBest = GainNextBest, model = DLTmodel,

+ Effmodel = Effmodel, data = emptydata2,

+ stopping = myStoppingDual,

+ increments = myIncrements,

+ cohortSize = mySize, startingDose = 25)

Note that an additional slot for the efficacy model is included in this design class. We can
then specify the scenario for the simulation, by defining the true DLT and efficacy curves that
we will be using:

R> myTruthDLT<- function(dose){DLTmodel@prob(dose, phi1 = -53, phi2 = 10)}

R> myTruthEff<- function(dose){Effmodel@ExpEff(dose, theta1 = -4.8,

+ theta2 = 3.7)}

R> myTruthGain <- function(dose){myTruthEff(dose) * (1 - myTruthDLT(dose))}

Please note that the parameter names phi1, phi2, theta1 and theta2 correspond to α0, α1, γ
and δ, respectively. Simulations are again produced by the simulate function:

R> Sim1 <- simulate(object = design2, args = NULL, trueDLE = myTruthDLT,

+ trueEff = myTruthEff, trueNu = 1 / 0.025, nsim = 20,

+ seed = 819, parallel = FALSE)



16 crmPack: Model-based Dose Escalation

Note that the fixed precision nu 1/σ2 is specified instead of the variance σ2. The results of
the simulation can then be plotted and summarized as shown before.

3.3. Extending crmPack functionality

One of the big advantages of crmPack over existing R implementations is its flexible framework
based on the S4 classes and methods system (Chambers 2008) and JAGS (Plummer 2003) for
Bayesian computations. Here we will therefore illustrate how users can extend the existing
functionality easily to the specific needs of the study.

Objective The example will implement a version of the one-parameter CRM (O’Quigley
et al. 1990), which is currently not (yet) included in the package. It is based on a one-
parameter power model to describe the relationship between the binary DLT responses Y
and their corresponding dose levels x:

π(x, θ) = P(Y = 1 |x, θ) = f(x)θ (6)

Here 0 < f(x) < 1 is monotonically increasing in x and is specified by the investigator
upfront. The sequence f(x1), . . . , f(xk) along the dose grid is often called “skeleton” of the
CRM. An exponential distribution with parameter λ is imposed as the prior distribution for
the unknown parameter θ. The next dose should then be chosen such that the distance of the
posterior mean estimated DLT probability to a predefined target toxicity level is minimized.

Creating a new model To implement the one-parameter model (6) in crmPack we first
need to define an appropriate S4 class inheriting from the general model class Model:

R> .OneParExp <-

+ setClass(Class = "OneParExp", contains = "Model",

+ representation(skeletonFun = "function",

+ skeletonProbs = "numeric",

+ lambda = "numeric"))

Here we specify that the new class is called OneParExp and contains two additional slots
containing the function f(x), the resulting skeleton prior probabilities and the prior parameter
λ.

Second we have to create a convenient initialization function, which specifies the likelihood
and prior distributions in the underlying Model in JAGS. We choose to let the user supply
just the skeleton probabilities along with the intended dose grid to use. Then internally we
will create a function f(x) interpolating between the grid points (skeletonFun with inverse
invSkeletonFun), in order to obtain a general R function in slot prob for the DLT probability
π(x, θ) which is later needed by other methods. Also the inverse function

π−1(p, θ) = f−1(p1/θ) (7)

mapping a probability p to a dose x is required by some methods and should be defined (slot
dose). The likelihood with the power model is specified in datamodel and uses the Data slots
which are specified in datanames. The prior is defined in priormodel. Model parameters are
passed to JAGS via modelspecs. The init slot contains a function giving the starting values
for the MCMC sampler, and sample defines which parameter samples will be returned:
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R> OneParExp <- function(skeletonProbs, doseGrid, lambda)

+ {

+ skeletonFun <- approxfun(x = doseGrid, y = skeletonProbs, rule = 2)

+ invSkeletonFun <- approxfun(x = skeletonProbs, y = doseGrid, rule = 1)

+

+ .OneParExp(

+ skeletonFun = skeletonFun, skeletonProbs = skeletonProbs,

+ lambda = lambda,

+ datamodel = function(){

+ for (i in 1:nObs)

+ {

+ y[i] ~ dbern(p[i])

+ p[i] <- skeletonProbs[xLevel[i]]^theta

+ }},

+ datanames = c("nObs", "y", "xLevel"),

+ prob = function(dose, theta){ skeletonFun(dose)^theta },

+ dose = function(prob, theta){ invSkeletonFun(prob^(1 / theta)) },

+ priormodel = function(){ theta ~ dexp(lambda) },

+ modelspecs = function(){ list(skeletonProbs = skeletonProbs,

+ lambda = lambda) },

+ init = function(){ list(theta = 1) }, sample = "theta")

+ }

Now we can already use the model, for example in the following we specify the skeleton
probabilities via the dose grid and use a standard exponential prior for θ. The resulting
posterior fit can be plotted as usual, see Figure 8.

R> (skeletonProbs <- round(data@doseGrid / max(data@doseGrid) / 2, 2))

[1] 0.00 0.04 0.08 0.12 0.17 0.21 0.25 0.29 0.33 0.38 0.42 0.46 0.50

R> newModel <- OneParExp(skeletonProbs = skeletonProbs,

+ doseGrid = data@doseGrid, lambda = 1)

R> newSamples <- mcmc(data, newModel, options)

R> plot(newSamples, newModel, data)

Creating a new dose recommendation rule In a second step we would like to create
a new dose recommendation rule, which proposes the dose with estimated DLT probability
closest to the target. Again we start with the class, now inheriting from NextBest:

R> .NextBestMinDist <- setClass(Class = "NextBestMinDist",

+ contains = "NextBest",

+ representation(target = "numeric"))

R> NextBestMinDist <- function(target){ .NextBestMinDist(target = target) }

Note that here we keep to the convention of separate class definition and initialization function,
although there is no technical need in this case. In order to make it useable we need to define
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Figure 8: Model fit of the one parameter power model

the nextBest method for this new rule. Note that we do only specialize the method for the
first argument, such that this rule could also be used with other models.

R> setMethod("nextBest",

+ signature = signature(nextBest = "NextBestMinDist",

+ doselimit = "numeric", samples = "Samples",

+ model = "Model", data = "Data"),

+ def = function(nextBest, doselimit, samples, model, data, ...){

+ dosesOK <-

+ if(length(doselimit))

+ which(data@doseGrid <= doselimit)

+ else

+ seq_along(data@doseGrid)

+ modelfit <- fit(samples, model, data)

+ probDLT <- modelfit$middle[dosesOK]

+ doses <- modelfit$dose[dosesOK]

+ bestIndex <- which.min(abs(probDLT - nextBest@target))

+ bestDose <- doses[bestIndex]

+ return(list(value = bestDose))

+ })

In the method definition, we can use the fit function in order to obtain the estimated DLT
rates. We need to return a list from this method, since this is required by the generic
function definition. The advantage is that we could also include a plot or other supporting
information in the return value. Immediately we can now use this rule in order to obtain the
next dose recommendation, e.g., after specifying a target dose of 30%:

R> newMyNextBest <- NextBestMinDist(target = 0.3)

R> (newNextDoseVal <- nextBest(newMyNextBest, nextMaxDose,

+ newSamples, newModel, data)$value)

[1] 150
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So using this CRM, we could escalate to 150 mg, instead of just 100 mg above.

Using the new functionality These were the only necessary additions of code that we
needed to implement the one-parameter CRM with a greedy next best dose rule - from now
on we can use the new classes in the same way as classes already contained in crmPack! For
example, we can create a corresponding new Design object, examine its hypothetical trial
course and run simulations. In particular, the placebo convention automatically carries over.

4. Summary

In this paper we have introduced the R package crmPack for analyzing and evaluating dose
escalation trials. Unlike existing software the package is written to make full use of a class
structure enabling easy extensions to user-specific dose-response models, prior distributions,
escalation and stopping rules. The example in Section 3.3 demonstrated that:

1. New functionality can be added - without changing the package.

2. Only the new functionality needs to be coded in one place - no side effects need to be
considered.

3. Templates for new designs can be found by looking at the existing code in the package
- only minimal S4 and JAGS knowledge is required.

Therefore, crmPack allows the user to easily extend the package by keeping modifications local
and limited to what needs to be changed, which in our experience has been a key success factor
for the wider use of model-based dose escalation designs. The package does, however, already
include a wide range of model-based and algorithmic dose escalation procedures, which are
described in the package’s documentation available through crmPackHelp() and provide end-
users easy access to these approaches without the need for further coding. Another unique
feature of the package is the inclusion of approaches that allow placebo data, which are
routinely collected in healthy volunteer studies, to be utilized. Finally some methods (e.g.,
Bekele and Shen 2005; Yeung et al. 2015) for dose-finding incorporating safety and efficacy are
implemented already in the package. As for all designs, the underlying structure to extend to
novel dual endpoint methods is provided. Simulation facilities for all approaches and relevant
graphical displays are also available.

The package is actively developed further and new methods will be added. Future extensions
of crmPack will include model-based combination dose escalation designs, see for example
Sweeting and Mander (2012) and Riviere, Le Tourneau, Paoletti, Dubois, and Zohar (2014)
for recent reviews. Furthermore, data-augmentation CRM designs (see Liu and Ning 2013)
that allow for a decoupling of inter-cohort waiting times and DLT time windows, hence
speeding up dose escalation trials, will be included.
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