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Multidimensional scaling for symbolic interval-valued data 

 

Symbolic multidimensional scaling aims to present relations between objects treated as 

hypercubes in multidimensional space. To allow interpretation and graphical representation of 

the results usually two-dimensional space is used. 

Most of symbolic multidimensional scaling methods require interval dissimilarity matrix as 

input. This matrix can be obtained from n  judges, opinions or from a dissimilarity measure 

for interval-valued variables that produces interval-valued dissimilarities (see: Lechevallier 

2001). 

Fig. 1 presents main two main approaches in symbolic multidimensional scaling, classical 

approach – also known as ”symbolique-numerique-symbolique” proposed by E. Diday in 

1978 – and symbolic multidimensional scaling based on interval-valued distances. The fig. 1 

presents also main methods for each approach. 
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Fig. 1. Different approaches in multidimensional scaling of interval-valued symbolic data 

Source: Pełka 2010. 



The classical approach is based on transformation of symbolic variables to classical varia-

bles. It allows to present symbolic objects as points, but transformation causes some infor-

mation loss about original data structure.  

Methods based on symbolic dissimilarity measures don’t cause loss of information, but the 

result symbolic objects are treated as points. Symbolic objects shouldn’t be treated as points 

due to the fact that they are not points in multidimensional space. That’s why symbolic multi-

dimensional scaling methods based on interval-valued dissimilarities should be applied. 

Algorithm of the Interscal method (Denoeux, Masson 2000, Lechevallier 2001): 

1. Obtain interval-valued dissimilarities either by using interval-valued variables or judg-

ments, opinions of n  respondents, experts, etc. 

2. Construct Δ  matrix of interval-valued dissimilarities, where ij  is the upper bound of dis-

similarity between i-th and j-th object, ij  is the lower bound of dissimilarity between i-th 

and j-th object. 

3. Construct Δ
~

 matrix defined as follows: 
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4. Find the matrix JΔJB
)2(~

2

1
  with J  the centering matrix. 

5. Find eigenvalues 2
Φ  and eigenvectors P  of matrix B . 

6. Compute n2  points in S-dimensions using the formula: ssisis py   for ni 2,,2,1   and 

Ss ,,2,1  . 



7. When applying I-STRESS loss function, that can be interpreted in the same way as well-

known STRESS, construct the center coordinates X  and spreads of rectangle R  for each 

object i  and each dimension s  as follows: 
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8. Compute I-STRESS value. 

Algorithms of I-Scal and SymScal methods differ only in type of loss function applied.  

I-Scal uses normalized I-STRESS, SymScal uses unnormalized STRESS-Sym. The both algo-

rithms are the same in other parts. 

Algorithm of I-Scal method, SymScal respectively, (see: Groenen et. al. 2006; Groenen et. 

al. 2005): 

1. Obtain interval-valued dissimilarities either by using interval-valued variables or judg-

ments, opinions of n  respondents, experts, etc. 

2. Set matrix 0X  to initial matrix for coordinate centers of rectangles (I-Scal random start 

point)  or obtain matrix 0X  by applying Interscal (I-Scal rational start point). 

3. Set matrix 0R  to initial matrix of nonnegative values for rectangles widths (I-Scal random 

start point) or obtain matrix 0R  from Interscal (I-Scal rational start point). 

4. Set maximum iteration number T  and the convergence criterion   to a small positive 

value – e.g. 610 . 

5. Set iteration counter 1k  and 01 XX   and 01 RR  . 

6. While  kk STRESS-ISTRESS-I 1  and tk  : 

a) 1 kk , 

b) set 1 kk XY  and 1 kk RQ . 

For every dimension 

c) compute )1(
sA  and )1(

sB  (see: Groenen et. al. 2006 for details). 

d) compute and update matrix X  of coordinate centers for rectangles. 

e) compute )2(
sA  and )2(

sb  (see: Groenen et. al. 2006 for details). 

f) compute and update matrix of nonnegative values of rectangle width R . 

g) Set XX k  and RR k . 

The I-STRESS loss function, that takes values between 0 and 1, is defined as follows (see: 

Groenen et. al. 2006): 
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RX,  matrices of rectangle centers  X  and rectangles span  R , 

ijw  weights, 

)(U
ij  and )(L

ij  upper and lower distances between i-th and j-th hiperrectangle, 

)(U
ijd  and )(L

ijd  upper and lower distances between rectangles. 
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