interscal, symscal, iscal (symbolicDA)

Multidimensional scaling for symbolic interval-valued data

Symbolic multidimensional scaling aims to present relations between objects treated as
hypercubes in multidimensional space. To allow interpretation and graphical representation of
the results usually two-dimensional space is used.

Most of symbolic multidimensional scaling methods require interval dissimilarity matrix as
input. This matrix can be obtained from n judges, opinions or from a dissimilarity measure
for interval-valued variables that produces interval-valued dissimilarities (see: Lechevallier
2001).

Fig. 1 presents main two main approaches in symbolic multidimensional scaling, classical
approach — also known as “symbolique-numerique-symbolique” proposed by E. Diday in
1978 — and symbolic multidimensional scaling based on interval-valued distances. The fig. 1

presents also main methods for each approach.
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Fig. 1. Different approaches in multidimensional scaling of interval-valued symbolic data
Source: Petka 2010.




The classical approach is based on transformation of symbolic variables to classical varia-

bles. It allows to present symbolic objects as points, but transformation causes some infor-

mation loss about original data structure.

Methods based on symbolic dissimilarity measures don’t cause loss of information, but the

result symbolic objects are treated as points. Symbolic objects shouldn’t be treated as points

due to the fact that they are not points in multidimensional space. That’s why symbolic multi-

dimensional scaling methods based on interval-valued dissimilarities should be applied.

Algorithm of the Interscal method (Denoeux, Masson 2000, Lechevallier 2001):

1. Obtain interval-valued dissimilarities either by using interval-valued variables or judg-

ments, opinions of n respondents, experts, etc.

2. Construct A matrix of interval-valued dissimilarities, where & is the upper bound of dis-

similarity between i-th and j-th object, §; is the lower bound of dissimilarity between i-th

and j-th object.

3. Construct A matrix defined as follows:
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4. Find the matrix B =—%JZ(2)J with J the centering matrix.

5. Find eigenvalues @2 and eigenvectors P of matrix B.

6. Compute 2n points in S-dimensions using the formula: vy, = p; &

s=12,...,S.
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When applying I-STRESS loss function, that can be interpreted in the same way as well-
known STRESS, construct the center coordinates X and spreads of rectangle R for each

object i and each dimension s as follows:
L (y2i,s + y2i+l,s)
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Compute I-STRESS value.
Algorithms of I-Scal and SymScal methods differ only in type of loss function applied.

I-Scal uses normalized I-STRESS, SymScal uses unnormalized STRESS-Sym. The both algo-

rithms are the same in other parts.

Algorithm of I-Scal method, SymScal respectively, (see: Groenen et. al. 2006; Groenen et.

al. 2005):

1.

Obtain interval-valued dissimilarities either by using interval-valued variables or judg-
ments, opinions of n respondents, experts, etc.

Set matrix X, to initial matrix for coordinate centers of rectangles (I-Scal random start
point) or obtain matrix X, by applying Interscal (I-Scal rational start point).

Set matrix R, to initial matrix of nonnegative values for rectangles widths (1-Scal random
start point) or obtain matrix R, from Interscal (I-Scal rational start point).

Set maximum iteration number T and the convergence criterion & to a small positive
value —e.g. 10°°.

Set iteration counter k=1 and X ; =X, and R ; =R,.

While I-STRESS, , —I-STRESS, <¢ and k<t:

a) k=k+1,

b) set Y, =X,, and Q, =R, ;.

For every dimension

c) compute AY and B (see: Groenen et. al. 2006 for details).

d) compute and update matrix X of coordinate centers for rectangles.

e) compute A® and b{® (see: Groenen et. al. 2006 for details).

f) compute and update matrix of nonnegative values of rectangle width R.

g) Set X, =X and R, =R.

The I-STRESS loss function, that takes values between 0 and 1, is defined as follows (see:

Groenen et. al. 2006):
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where: oF(X,R)=3"7 w[s) - dO (X R)] + + W w50 —d®O (xR

X,R — matrices of rectangle centers (X) and rectangles span (R),

w; — weights,

s{") and 5" — upper and lower distances between i-th and j-th hiperrectangle,

d{ and dS-— upper and lower distances between rectangles.
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