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keyplayer: An R Package for Locating
Key Players in Social Networks
by Weihua An; Yu-Hsin Liu

Abstract Interests in social network analysis have exploded in the past few years, partly thanks to
the advancements in statistical methods and computing for network analysis. A wide range of the
methods for network analysis is already covered by existent R packages. However, no comprehensive
packages are available to calcualte group centrality scores and to identify key players (who constitute
the most central group) in a network. To date, these functionalities are important because many social
and health interventions rely on key players to facilitate the intervention. Identifying key players is
challenging because players who are individually the most central are not necessarily the most central
as a group due to redundancy in their connections. In this paper we develop methods and tools for
computing group centrality scores and for identifying key players in social networks. We illustrate the
methods using both simulated and empirical examples. The package keyplayer is available at CRAN.

Introduction

Interests in social network analysis have grown rapidly in the past few years, partly thanks to the
advancements in statistical methods and computing for network analysis and partly thanks to the
increasing availability of social network data (e.g,. network data generated by social media). A wide
range of the methods for network analysis is already covered by R packages such as network, sna,
igraph, statnet, RSiena, etc. However, no comprehensive packages are available to provide group
centrality measures and to identify key players (who constitute the most central group) in a network.
To date, these functionalities are very important because many social and health interventions rely on
key players to facilitate the intervention. For example, Kelly et al. (1991) and Latkin (1998) trained
peer leaders as educators to promote HIV prevention. Campbell et al. (2008) and An (2015) used peer
leaders to facilitate smoking prevention. Borgatti (2006) and Ressler (2006) suggested removing key
figures among terrorists to most widely disrupt terrorism. More examples of this sort can be found
in Valente and Pumpuang (2007), Banerjee et al. (2013), etc. Identifying key players is challenging
because players who are individually the most central are not necessarily the most central as a group
due to redundancy in their connections. In a seminal paper, Borgatti (2006) pointed out the problem
and proposed methods for identifying key players in social networks.

To the best of our knowledge, the “keyplayer" function in UCINET (Borgatti et al., 2002) is the first
implementation of the methods as later detailed in Borgatti (2006). It has evolved from a separate
add-on to UCINET to a built-in function of UCINET. In this paper, we present the keyplayer package in
R, which differs from the “keyplayer" function in UCINET in several aspects. (1) Unlike the “keyplayer"
function in UCINET which is only applicable to binary networks, keyplayer in R can be used for
both binary and weighted networks. (2) The keyplayer package includes more centrality measures
for choosing key players than what is currently available in the “keyplayer" function in UCINET. (3)
keyplayer provides better integrations with other open-source packages in R. Overall, the “keyplayer"
function in UCINET is useful for researchers who are more familiar with UCINET and would like to
utilize other functionalities provided by UCINET, whereas keyplayer is designed for users who is more
familiar with R and who plans to do more computational work.

The influenceR package (Jacobs and Khanna, 2015) aims to provide calculations of several node
centrality measures that are previously unavailable in other packages, such as the constraint index
(Burt) and the bridging score (Valente and Fujimoto, 2010). It can also be used to identify key players
in a network. But as compared to keyplayer, it utilizes only one centrality metric when selecting
key players whereas keyplayer includes eight different metrics. Also, influenceR currently works
only for undirected networks whereas keyplayer works for both undirected and directed networks.
Both packages provide parallel computation. influenceR relies on OpenMP for parallel computation
whereas keyplayer utilizes the parallel package which is readily available in R. Last, influenceR
focuses on computing centrality measures at the node level whereas keyplayer is more interested in
providing centrality measures at the group level. Overall, keyplayer provides more comprehensive
functionalities for calculating group centrality measures and for selecting key players.

Our algorithm for identifying key players essentially consists of three steps. First, users choose a
metric to measure centrality in a network. Second, our algorithm (specifically the kpcent function) will
randomly pick a group of players and measure their group centrality. Third, our algorithm (specifically
the kpset function) will select the group of players with the highest group centrality as the desired
key players. In general, users only need to employ the kpset function by specifying a centrality metric
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and the number of key players to be selected. The function will return a set of players who are the
most central as a group. We also make the auxiliary function kpcent available, where if users specify a
centrality metric and the indices of a group of players, the function will return the centrality score of
the specified group. Thus the two functions can be used for two purposes: selecting key players or
measuring group centrality.

The paper proceeds as follows. First, we review centrality measures at individual level. Then
we present methods for measuring centrality at group level. After that, we present a greedy search
algorithm for selecting key players and outline the basic structure and the usage of the main function
kpset. To illustrate the methods and the usage of the package, we use a simulated network as well
as an empirical example based on the friendship network among managers in a company. Last, we
summarize and point out directions for improving the package in the future.

Measuring Individual Centrality

We first review the definitions of centrality measures at individual level. For conciseness, we provide
the definitions based on weighted networks, where the weight of a tie takes a continuous value
and usually measures the strength of the connection between two nodes. The definitions naturally
incorporate binary networks where the weight of a tie can only be one or zero, indicating the presence
or absence of a connection (Freeman, 1978; Wasserman and Faust, 1994; Butts, 2008).

Figure 1 shows an example of a simulated network. On the left is the adjacency matrix of the
network. On the right is the network graph. Thinking of it as a friendship network, we can see that
the strength of friendship between node 1 and node 3 is conceived differently by node 1 and node 3.
The former assigns it a weight of 3 while the latter assigns it a weight of 1. We will use this example
to illustrate the centrality measures. Calculations of four centrality measures (i.e., degree, closeness,
betweenness, and eigenvector centralities) at individual level are done using the sna package (Butts,
2008). Calculations of four other individual level of centralities and all group level of centralities are
done using our package keyplayer. To clarify, our package does not depend on sna. We use sna here
just for the sake of the example.

W =


0 1 3 0 0
0 0 0 4 0
1 1 0 2 0
0 0 0 0 3
0 2 0 0 0



Figure 1: An adjacency matrix (left) and the corresponding network graph (right)

1. Degree centrality. Degree centrality is defined as follows (Freeman, 1978; Butts, 2008).1

Di = ∑
j

wij + ∑
j

wji (1)

where wij represents the tie status from node i to node j. Thus the first term indicates the outgoing
connections from node i (i.e., outdegree) and the second term the incoming connections to node i (i.e.,
indegree). Degree centrality measures a node’s direct connectedness with other nodes in a network.
After loading the adjacency matrix in R, we can type the following in the command line of R to get the
degree, indegree, and outdegree measures for the simulated network.

> W <- matrix( c(0,1,3,0,0, 0,0,0,4,0, 1,1,0,2,0, 0,0,0,0,3, 0,2,0,0,0),
+ nrow=5, ncol=5, byrow = TRUE)
> library(sna)
> degree(W, ignore.eval=FALSE) #For binary networks, set ignore.eval=TRUE.
[1] 5 8 7 9 5
> degree(W, ignore.eval=FALSE, cmode = "indegree")
[1] 1 4 3 6 3

1It may be worth noting that Freeman (1978) distinguishes absolute and relative measures of centrality. The
definition here is based on Butts (2008) and only considers the absolute number of connections.
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> degree(W, ignore.eval=FALSE, cmode = "outdegree")
[1] 4 4 4 3 2

2. Closeness centrality. One version of the closeness centrality is due to Gil and Schmidt (1996).

Ci =
∑j d−1

ij

n− 1
(2)

where dij is the shortest path (i.e., geodistance) between nodes i and j. Closeness centrality usually
reflects a node’s capability of quickly reaching other nodes. In the above example, the tie status
indicates friendship strength. The larger the value is, the stronger a friendship is. To make the shortest
path correspond to the strongest friendship, we need to transform the tie status, for example, by taking
their inverse, before calculating the closeness centrality.

> A<- W
> A[W!=0] <- 1/W[W!=0] #Inverse the non-zero tie status
> closeness(A, ignore.eval=FALSE, cmode="suminvdir")
[1] 1.5142857 1.4285714 1.3000000 1.0500000 0.8333333
> # For undirected networks, set cmode="suminvundir"

3. Betweenness centrality. Betweenness centrality is defined as follows (Butts, 2008).

Bi = ∑
jk

gi
jk

gjk
(3)

where gjk is the number of shortest paths between nodes j and k, and gi
jk is the number of those paths

that pass node i. In the case of gjk = 0, the corresponding contribution to the betweenness score is
zero. Betweenness centrality usually measures a node’s brokerage power in a network. We can get the
betweenness centrality for the simulated network as follows.

> betweenness(A, ignore.eval=FALSE, cmode="directed")
[1] 0 1 2 3 1

4. Eigenvector centrality. Eigenvector centrality defines a node’s centrality as a weighted average
of the centrality of its neighbors (Bonacich, 1972; Butts, 2008).

Ei =
1
λ ∑

j
wijEj (4)

In matrix notations, this is equivalent to

λE = WE

where W represents the adjacency matrix and λ the largest eigenvalue of the above equation. Eigen-
vector centrality measures the extent to which a node is connected to important alters. To get the
eigenvector centrality for the adjacency matrix A, we type the following in the R command line.

> evcent(A, gmode="digraph", ignore.eval=FALSE, use.eigen=TRUE)
[1] 0.5000000+0i 0.0000000+0i 0.8660254+0i 0.0000000+0i 0.0000000+0i

where gmode = "digraph" indicates the input is for a directed network and use.eigen=TRUE requests
using the robust eigen function to calculate the eigenvectors. In this example, the eigenvector centrality
includes complex numbers, which are hard to interpret. Thus, to facilitate interpretation of the results,
it is often a good idea to symmetrize the network first because symmetric matrices always have real
eigenvalues. In the following, the symmetrization process first converts W to a binary matrix and then
treats all ties as mutual ties.

> B <- symmetrize (W)
> evcent(B)
[1] 0.3505418 0.5590326 0.4699593 0.4699593 0.3505418

5. M-reach degree centrality. M-reach degree centrality generalizes the degree centrality by
delimiting specific neighborhoods. Suppose the set of nodes that node i can reach to via M steps is F
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and the set of nodes that can reach node i via M steps is H. Building on Borgatti (2006), we define the
M-reach centrality as follows.

Mi = ∑
j∈F

mij + ∑
j∈H

mji (5)

where mij is 1 if j ∈ F and mji is 1 if j ∈ H. The first term indicates the number of nodes that node i
can reach to in M steps. The second term indicates the number of nodes that can reach to node i in M
steps. By default, the matrix is binarized before calculating the centrality. Thus, in binary networks,
the 1-reach degree centrality is the same as the degree centrality.

> # Calculations of four other individual level of centralities and
> # all group level of centralities are done by our package.
> library(keyplayer)
>
> # M-reach centraltiy
> mreach.degree(W, M = 1)

outdegree indegree total
[1,] 2 1 3
[2,] 1 3 4
[3,] 3 1 4
[4,] 1 2 3
[5,] 1 1 2

6. M-reach closeness centrality. One way to refine the M-reach degree centrality is to use (the
inverse of) geodistance to measure the tie status between nodes, just like how closeness centrality
refines degree centrality. We define the M-reach closeness centrality as below.

MCi =
∑j∈F d−1

ij

d(n− 1)
+

∑j∈H d−1
ji

d(n− 1)
(6)

where dij is the geodistance between nodes i and j, F and H are the set of nodes reachable from or to
node i via M steps, respectively. d is the maximal of d−1

ij across all pairs of i and j. The denominator
helps normalize each of the two terms to be between zero and one. When M is infinity, M-reach
closeness centrality approximates the Gil-Schmidt power index (Gil and Schmidt, 1996) and the
cohesion centrality (Borgatti, 2006).

> # As before, we first inverse the tie status, making it correspond to distance.
> mreach.closeness(A)

outdegree indegree total
[1,] 0.3785714 0.0625000 0.4410714
[2,] 0.3571429 0.3250000 0.6821429
[3,] 0.3250000 0.1875000 0.5125000
[4,] 0.2625000 0.5333333 0.7958333
[5,] 0.2083333 0.4232143 0.6315476

7. Fragmentation centrality. Fragmentation centrality measures the extent to which a network is
fragmented after a node is removed from the network (Borgatti, 2006).

Fi = 1−
∑j,k 6=i d−1

jk

d · (n− 1)(n− 2)
(7)

where djk is the geodistance between nodes j and k in the residual network after node i is removed and
d the maximal of d−1

jk across j and k. The second term in the above equation measures the cohesion of
the residual network. Thus fragmentation centrality is the opposite of the cohesion centrality.

> fragment(A)
fragment

[1,] 0.6365079
[2,] 0.7446429
[3,] 0.6733500
[4,] 0.8333333
[5,] 0.7250000

8. Diffusion centrality. Banerjee et al. (2013) proposed the diffusion centrality defined by the row
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sum of the following matrix.

S =
T

∑
t=1

Pt (8)

where P is a probability matrix in which Pij measures the probability that node i can reach to node
j.2 Each cell in the matrix S measures the aggregate propensity i can reach to j in T iterations. Each
row sum of the matrix S indicates the importance of a node in disseminating information to alters
(namely, the expected number of times that all alters receive the information from that node). Banerjee
et al. (2014) shows that as T goes to infinity the diffusion centrality can approximate the eigenvector
centrality or the Katz-Bonacich centrality (Katz 1953; Bonacich 1987). In practice, Banerjee et al. (2013)
has used the diffusion centrality to study the word-of-mouth information dissemination. Now suppose
we create a new adjacency matrix by treating non-zero elements in the original network as ones and
we also know what q is. Then we can calculate the diffusion centrality as below.

> # Create a new adjacency matrix
> g <- W
> g[W!=0] <- 1
> g

[,1] [,2] [,3] [,4] [,5]
[1,] 0 1 1 0 0
[2,] 0 0 0 1 0
[3,] 1 1 0 1 0
[4,] 0 0 0 0 1
[5,] 0 1 0 0 0
>
> # Create a matrix with the passing probabilities
> q <- matrix( c(0,.2,.6,0,0, .1,0,0,.4,0, .1,.1,0,.4,0, 0,.5,0,0,.3, 0,.4,0,0,0),
+ nrow=5, ncol=5, byrow = TRUE)
> q

[,1] [,2] [,3] [,4] [,5]
[1,] 0.0 0.2 0.6 0.0 0.0
[2,] 0.1 0.0 0.0 0.4 0.0
[3,] 0.1 0.1 0.0 0.4 0.0
[4,] 0.0 0.5 0.0 0.0 0.3
[5,] 0.0 0.4 0.0 0.0 0.0
>
> # Get the probability matrix and calculate diffusion centrality
> P <- q * g
> P

[,1] [,2] [,3] [,4] [,5]
[1,] 0.0 0.2 0.6 0.0 0.0
[2,] 0.0 0.0 0.0 0.4 0.0
[3,] 0.1 0.1 0.0 0.4 0.0
[4,] 0.0 0.0 0.0 0.0 0.3
[5,] 0.0 0.4 0.0 0.0 0.0
>
> diffusion(P, T = 5)

diffusion
[1,] 1.50832
[2,] 0.59296
[3,] 0.99968
[4,] 0.48816
[5,] 0.63488

Measuring Group Centrality

Everett and Borgatti (1999) is among the first studies that have explored ways to measure group
centralities (mainly degree, closeness, and betweenness centralities) in undirected networks. In this
paper, we provide more group centrality measures (including the eight ones outlined above) and

2In its original parametrization (Banerjee et al., 2013), P = q× g, where q is a measure of the passing probability
and g the adjacency matrix. For simplification and consistency with other centrality measures, our package asks
users to input the probability matrix P directly. With information on q and the adjacency matrix, the probability
matrix P can easily be calculated by their product. Below we show an example of how to do so.
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extend the methods to both undirected and directed networks. The basic idea is to treat a group of
nodes as a large pseudo-node. The key problem is how to measure the tie status between the group
and other outside nodes. For that purpose, we provide several criteria.

1. Minimum. According to the minimum criterion, the tie status between a group G and an outside
node j is measured as the minimum of the (nonzero) edges between nodes in the group and the
outside node.

EGj = min
g∈G

Egj

This criterion ensures that there is a shortest path between the group and the outside node. It is
useful for calculating geodistance related measures. Hence, by default we use this criterion to
calculate the group-level measures of geodistance, closeness centrality, betweenness centrality,
M-reach centralities, and fragmentation centrality.

2. Maximum. According to the maximum criterion, the tie status between a group G and an
outside node j is measured as the maximum of the (nonzero) edges between nodes in the group
and the outside node.

EGj = max
g∈G

Egj

This criterion is useful for measuring the maximal strength (not just the presence) of the
connections between the group and the outside node. By default, we use the maximum criterion
to compute the group-level degree centrality and eigenvector centrality.

3. Addition. According to the addition criterion, the tie status between a group G and an outside
node j is measured as the sum of the edges between nodes in the group and the outside node.

EGj = ∑
g∈G

Egj

This criterion is useful for measuring the overall strength of the connections between the group
and the outside node.

4. Union. The union criterion is designed for probability matrices. The tie status between a group
G and an outside node j is measured as the probability that there is at least one path connecting
the group with the outside node.

EGj = 1− ∏
g∈G

(1− Egj)

By default, we use the union criterion to calculate the group-level diffusion centrality.

In the simulated network, suppose nodes 2 and 3 are grouped together. The connection between
this group and node 4 according to the maximum criterion is EG4 = 4. Suppose we use matrix P as
a probability network. Then the union criterion gives EG4 = 1− (1− 0.4)× (1− 0.4) = 0.64. The
contract function automates these calculations and returns a reduced network matrix in which the
node index will be re-ordered with the group as the last node.

> # Group nodes 2 and 3 and measure the connections between the gropu and
> # outside nodes using the maximum criteria.
> contract(W,c(2,3),method ="max")

1 4 5 set
1 0 0 0 3
4 0 0 3 0
5 0 0 0 2
set 1 4 0 0
>
> # Group nodes 2 and 3 in the probability matrix and measure the connections
> # between the gropu and outside nodes using the union criteria.
> contract(P,c(2,3),method ="union")

1 4 5 set
1 0.0 0.00 0.0 0.68
4 0.0 0.00 0.3 0.00
5 0.0 0.00 0.0 0.40
set 0.1 0.64 0.0 0.00

Once the tie status between the group and outside nodes is measured, we can use the centrality
measures outlined above to calculate group centrality based on the reduced network. The kpcent
function implements the calculations. Note that users do not need to explicitly deploy the contract
function because kpcent automatically uses it in the background.
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> kpcent(W,c(2,3),type="degree", cmode="total", method = "max")
[1] 10
> kpcent(W,c(2,3),type="degree", cmode="total", method = "min")
[1] 6
> kpcent(W,c(2,3),type="degree", cmode="total", method = "min", binary = TRUE)
[1] 4
> kpcent(W,c(2,3),type="mreach.degree", cmode="total", M=1, binary = TRUE)
[1] 4
> kpcent(W,c(2,3),type="mreach.closeness", cmode="total", M=1, binary = TRUE)
[1] 1.333333

Selecting Key Players

Recall that the ultimate goal is to select the most central group of nodes from a network. This goal
quickly becomes challenging as the network size grows. For example, to choose five key players out of
100 nodes, there are (100

5 ) = 75, 287, 520 possible combinations. To search for the optimal set of key
players, in keyplayer we employ a greedy search algorithm as originally proposed in Borgatti (2006).
We revised the algorithm in multiple ways to enhance its usability and efficiency. The basic idea of the
algorithm is to select a set of nodes as seeds and then swap the selected nodes with unselected ones if
the swap increases the group centrality. More specifically, the algorithm proceeds as follows.

Step 1. Select an initial candidate set C. The residual set is denoted as R.

Step 2. Update the candidate set C.

1) Start with the first node in C. Try to swap it with nodes in R sequentially (loop 1). Make
the swap if it improves the centrality score of the resulting C. The number of loop 1 is
defined as the number of iterations (over the nodes in the residual set).

2) Repeat loop 1 for each node in C sequentially (loop 2). The number of loop 2 is defined as
the number of rounds (over the nodes in the candidate set).

3) Stop if (1) the change in C’s centrality score is smaller than a specified threshold or (2) the
process reaches a specified number of rounds (i.e., the number of loop 2).

Step 3. Return the final set C and the centrality score.

The function kpset implements the search algorithm. Its basic structure is shown below.

kpset(adj.matrix,size,type = "degree",M = Inf,T = ncol(adj.matrix),method = "min",binary
= FALSE,cmode = "total",large = TRUE,geodist.precomp = NULL,seed = "top",parallel =
FALSE,cluster = 2,round = 10,iteration = ncol(adj.matrix))

where the arguments are defined as follows.

• adj.matrix: Matrix indicating the adjacency matrix of the network or in the case of diffusion
centrality a probability matrix.

• size: Integer indicating the target size of players.

• type: String indicating the type of centrality measure to be used. Should be one of "degree"
for degree centrality, "closeness" for closeness centrality, "betweenness" for betweenness
centrality, "evcent" for eigenvector centrality, "mreach.degree" for M-reach degree centrality,
"mreach.closeness" for M-reach closeness centrality, "fragment" for fragment centrality, and
"diffusion" for diffusion centrality.

• M: Positive number indicating the maximum geodistance between two nodes, above which the
two nodes are considered disconnected. The default is Inf. The option is applicable to M-reach
degree, M-reach closeness, and fragmentation centralities.

• T: Integer indicating the maximum number of iterations in the communication process. For
diffusion centrality only. By default, T is the network size.

• method: Indication of which grouping criterion should be used. "min" indicates the "minimum"
criterion and is suggested for betweenness, closeness, fragmentation, and M-reach centralities.
"max" indicates the "maximum" criterion and is suggested for degree and eigenvector centralities.
"add" indicates the "addition" criterion and is suggested for degree and eigenvector centralities
as an altenative of "max". "union" indicates the "union" criterion and is suggested for diffusion
centrality. The default is "min".
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• binary: If TRUE, the input matrix is binarized. If FALSE, the edge values are considered. The
default is FALSE.

• cmode: String indicating the type of centrality being evaluated. The option is applicable to degree
and M-reach centralities. "outdegree", "indegree", and "total" refer to indegree, outdegree,
and total degree, respectively. "all" reports all the above measures. The default is to report the
total degree.

• large: Logical scalar. If TRUE (the default), the method implemented in igraph is used for
computing geodistance and related centrality measures; otherwise the method in sna is used.

• geodist.precomp: Geodistance precomputed for the network to be analyzed (optional).

• seed: String indicating the seeding method or a vector of the seeds specified by user. If "top",
players with the highest individual centrality are used as the seeds. If "random", seeds are
randomly sampled. The default is "top" for efficiency.

• parallel: Logical scalar. IF TRUE, the parallel computation is activated. The default is FALSE.

• cluster: Integer indicating the number of CPU cores to be used for parallel computation.

• round: Integer indicating the "length" of search, namely, the number of loops over the nodes in
the candidate set.

• iteration: Integer indicating the "width" of search in each round, namely, the number of loops
over the nodes in the residual set.

The greedy algorithm converges fast, but sometimes can be trapped into a local optimum. To
avoid this problem, it is recommended to run kpset several times with different seeds. To facilitate
the search in large networks, users can employ parallel computation by specifying parallel=TRUE in
kpset. During parallel computation, for each cluster and each iteration the algorithm randomly picks
a node from the candidate set and the residual set, respectively, and swaps the two if it improves the
centrality score of the candidate set. It repeats this process until exhausting the specified iterations
and rounds and then combine the results from the clusters. The following code shows how to find two
players who are the most central as a group in the simulated network.

> # In terms of indegree
> kpset(W,size=2,type="degree", cmode="indegree", method = "max")
$keyplayers
[1] 3 4

$centrality
[1] 7

> # In terms of indegree in the binarized network
> kpset(W,size=2,type="degree", cmode= "indegree", binary = TRUE, method = "max")
$keyplayers
[1] 2 4

$centrality
[1] 3

> # In terms of mreach.degree
> kpset(W,size=2,type="mreach.degree", cmode= "indegree", M=1, binary = TRUE)
$keyplayers
[1] 2 4

$centrality
[1] 3

> # In terms of mreach.closenss
> kpset(A,size=2,type="mreach.closeness", cmode= "indegree", M=1)
$keyplayers
[1] 3 4

$centrality
[1] 0.6944444

> # In terms of indegree via parallel computation using 2 CPU cores
> kpset(W,size=2,type="degree", cmode="indegree", parallel = TRUE, cluster = 2)
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$keyplayers
[1] 3 4

$centrality
[1] 7

An Empirical Example

Below we use the friendship network of 21 managers in a high-tech company (Krackhardt, 1987) to
illustrate the methods. The network graph is shown in Figure 2. Each node represents one manager.
Each tie indicates a friendship nomination from one manager to the other. The nodes are colored
according to the four departments the managers belong to. The size of each node is proportional to its
degree. As it can be seen, friendships occur predominately within departments.
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Figure 2: The Friendship Network of 21 Managers in a High-tech Company

ID Indegree Outdegree Closeness Between Evcent 2-reach 
indegree

2-reach 
closeness

Fragment. Diffusion 
(T=2)

1 5 5 0.44 60.83 0.32 11 0.40 0.71 0.68
2 5 4 0.39 29.58 0.17 8 0.33 0.70 0.52
3 2 2 0.34 0.00 0.14 6 0.20 0.68 0.28
4 5 3 0.38 46.25 0.25 14 0.48 0.70 0.44
5 6 4 0.40 13.00 0.28 7 0.33 0.69 0.55
6 3 3 0.43 79.75 0.26 10 0.33 0.74 0.45
7 0 0 0.00 0.00 0.00 0 0.00 0.65 0.00
8 3 4 0.41 5.67 0.29 9 0.30 0.69 0.56
9 4 5 0.45 47.08 0.31 8 0.30 0.70 0.66
10 0 0 0.00 0.00 0.00 0 0.00 0.65 0.00
11 1 5 0.48 20.50 0.32 3 0.10 0.69 0.66
12 5 5 0.47 88.42 0.34 11 0.40 0.74 0.68
13 3 3 0.37 1.17 0.23 7 0.25 0.68 0.43
14 0 0 0.00 0.00 0.00 0 0.00 0.65 0.00
15 2 3 0.37 1.17 0.23 6 0.20 0.68 0.43
16 2 2 0.33 0.00 0.13 8 0.25 0.68 0.29
17 3 3 0.39 27.83 0.17 8 0.28 0.69 0.42
18 2 2 0.30 0.00 0.07 5 0.18 0.68 0.27
19 6 4 0.42 44.17 0.26 7 0.33 0.70 0.53
20 0 0 0.00 0.00 0.00 0 0.00 0.65 0.00
21 3 3 0.35 8.58 0.11 7 0.25 0.68 0.39

Table 1: Centrality Scores for the Managers

We first examine the individual centrality of the managers. To make a probability matrix for
calculating the diffusion centrality, we multiply the original adjacency matrix by 0.1. The results
are presented in Table 1. To facilitate reading the results, we marked the top centrality scores in
red. Apparently, the most central manager varies by the centrality measures. In terms of indegree,
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managers 5 and 19 each receive six friend nominations and are the most central. However, in terms of
outdegree, managers 1, 9, 11, and 12 are the most central. In terms of closeness centrality, manager 11
is the most central. In terms of betweenness centrality and eigenvector centrality, manager 12 is the
most central, etc. Regarding which centrality measure should be used to select the most central player,
it depends on the objectives. If the objective is to find a manager whose opinion is respectable by most
peers, then indegree can be a suitable measure. But if the objective is to spread the information most
widely, then outdegree or closeness may be a better option.

Now suppose we want to find the three managers in this company who are the most central as a
group. Table 2 lists the results according to different centrality measures. If indegree is the preferred
centrality measure, then managers 2, 12, and 19 form the most central group. Together these three
managers can connect to 14 other managers. Note that the three managers with the highest individual
centrality do not constitute the most central group. The group indegree of managers 5, 19, and 1 (or
2 or 4) is no more than 10. Table 2 also shows that the most central group varies by the centrality
measures. Researchers should think thoroughly about which centrality measure they should use in
their specific context. In addition, sometimes there may be multiple sets of players which are equally
central as a group. In such cases, which set is to be used may not make big difference in practice. But
if examining these different sets is of interest, it is recommended to run kpset multiple times.

KP1 KP2 KP3 Score
Indegree 2 12 19 14.00
Outdegree 1 9 21 12.00
Closeness 2 9 12 0.72
Betweenness 2 12 19 130.17
Evcent 1 11 17 0.57
2-reach indegree 1 4 7 15.00
2-reach closeness 2 5 12 0.78
Fragmentation 4 9 12 0.83
Diffusion (T=2) 1 9 11 1.93

Table 2: The Three Managers Who are the Most Central as a Group

Summary

In this paper, we developed a comprehensive set of methods and tools for locating key players in
social networks. In the future, the algorithms used may be improved by choosing seeds and swaps
more strategically and by utilizing alternative optimization schemes such as simulated annealing. It is
also worth exploring how to integrate the package with other network analysis packages in R.
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