
Non-Metric Space Library (NMSLIB) Manual

Bilegsaikhan Naidan1 and Leonid Boytsov2

1 Department of Computer and Information Science,
Norwegian University of Science and Technology,

Trondheim, Norway

2 Language Technologies Institute,
Carnegie Mellon University,

Pittsburgh, PA, USA
srchvrs@cs.cmu.edu

Maintainer: Leonid Boytsov

Version 1.5

Monday 22nd August, 2016

Abstract. This document describes a library for similarity searching.
Even though the library contains a variety of metric-space access meth-
ods, our main focus is on search methods for non-metric spaces. Because
there are fewer exact solutions for non-metric spaces, many of our meth-
ods give only approximate answers. Thus, the methods are evaluated in
terms of efficiency-effectiveness trade-offs rather than merely in terms of
their efficiency. Our goal is, therefore, to provide not only state-of-the-
art approximate search methods for both non-metric and metric spaces,
but also the tools to measure search quality. We concentrate on techni-
cal details, i.e., how to compile the code, run the benchmarks, evaluate
results, and use our code in other applications. Additionally, we explain
how to extend the code by adding new search methods and spaces.

1 Introduction

1.1 History, Objectives, and Principles

Non-Metric Space Library (NMSLIB) is an efficient cross-platform similarity
search library and a toolkit for evaluation of similarity search methods. The goal
of the project is to create an effective and comprehensive toolkit for searching
in generic non-metric spaces. Being comprehensive is important, because no
single method is likely to be sufficient in all cases. Because exact solutions are
hardly efficient in high dimensions and/or non-metric spaces, the main focus is
on approximate methods.

NMSLIB is an extendible library, which means that is possible to add new
search methods and distance functions. NMSLIB can be used directly in C++

2 Bilegsaikhan Naidan and Leonid Boytsov

and Python (via Python bindings, see § 2.6). In addition, it is also possible to
build a query server (see § 2.5), which can be used from Java (or other languages
supported by Apache Thrift). Java has a native client, i.e., it works on many
platforms without requiring a C++ library to be installed.

Even though our methods are generic, they often outperform specialized
methods for the Euclidean and/or angular distance (i.e., for the cosine simi-
larity). Tables 1 and 2 contain results (as of May 2016) of NMSLIB compared
to the best implementations participated in a public evaluation code-named
ann-benchmarks. Our main competitors are:

– A popular library Annoy, which uses a forest of random-projection KD-trees
[48].

– A new library FALCONN, which is a highly-optimized implementation of
the multiprobe LSH [3]. It uses a novel type of random projections based on
the fast Hadamard transform.

The benchmarks were run on a c4.2xlarge instance on EC2 (using a previously
unseen subset of 5K queries). The benchmarks employ two data sets:

– GloVe: 1.2M 100-dimensional word embeddings trained on Tweets;
– 1M of 128-dimensional SIFT features.

Most search methods were implemented by Bileg(saikhan) Naidan and Leo(nid)
Boytsov.3 Additional contributors are listed on the GitHub page. Bileg and Leo
gratefully acknowledge support by the iAd Center 4 and the Open Advancement
of Question Answering Systems (OAQA) group 5.

The code written by Bileg and Leo is distributed under the business-friendly
Apache License. However, some third-party contributions are licensed differently.
For more information regarding licensing and acknowledging the use of the li-
brary resource, please refer to § 10.

The design of the library was influenced by and superficially resembles the
design of the Metric Spaces Library [25]. Yet our approach is different in many
ways:

– We focus on approximate6 search methods and non-metric spaces.
– We simplify experimentation, in particular, through automatically measur-

ing and aggregating important parameters related to speed, accuracy, index
size, and index creation time. In addition, we provide capabilities for test-
ing in both single- and multi-threaded modes to ensure that implemented
solutions scale well with the number of available CPUs.

– We care about overall efficiency and aim to implement methods that have
runtime comparable to an optimized production system.

3 Leo(nid) Boytsov is a maintainer.
4 https://web.archive.org/web/20160306011711/http://www.iad-center.com/
5 http://oaqa.github.io/
6 An approximate method may not return a true nearest-neighbor or all the points

within a given query ball.

https://github.com/erikbern/ann-benchmarks
https://github.com/erikbern/ann-benchmarks
https://github.com/spotify/annoy
https://github.com/FALCONN-LIB/FALCONN
http://nlp.stanford.edu/projects/glove/
http://corpus-texmex.irisa.fr/
https://github.com/searchivarius/NonMetricSpaceLib
http://apache.org/licenses/LICENSE-2.0
https://web.archive.org/web/20160306011711/http://www.iad-center.com/
http://oaqa.github.io/

NMSLIB Manual 3

Fig. 1: 1.19M vectors from GloVe (100 dimensions, trained from tweets), cosine
similarity.

Fig. 2: 1M SIFT features (128 dimensions), Euclidean distance.

4 Bilegsaikhan Naidan and Leonid Boytsov

Search methods for non-metric spaces are especially interesting. This domain
does not provide sufficiently generic exact search methods. We may know very
little about analytical properties of the distance or the analytical representation
may not be available at all (e.g., if the distance is computed by a black-box
device [49]). In many cases it is not possible to search exactly and instead one
has to resort to approximate search procedures.

This is why methods are evaluated in terms of efficiency-effectiveness trade-
offs rather than merely in terms of their efficiency. As mentioned previously,
we believe that there is no “one-size-fits-all” search method. Therefore, it is
important to provide a variety of methods each of which may work best for
some specific classes of data.

Our commitment to efficiency affected several design decisions:

– The library is implemented in C++;
– We focus on in-memory indices and, thus, do not require all methods to ma-

terialize a disk-based version of an index (this reduces programming effort).
– We provide efficient implementations of many distance functions, which rely

on Single Instruction Multiple Data (SIMD) CPU commands and/or ap-
proximation of computationally intensive mathematical operations (see § 8).

It is often possible to demonstrate a substantial reduction in the number of
distance computations compared to sequential searching. However, such reduc-
tions may entail additional computations (i.e., extra book-keeping) and do not
always lead to improved overall performance [7]. To eliminate situations where
book-keeping costs are “masked” by inefficiencies of the distance function, we
pay special attention to distance function efficiency.

1.2 Problem Formulation

Similarity search is an essential part of many applications, which include, among
others, content-based retrieval of multimedia and statistical machine learning.
The search is carried out in a finite database of objects {oi}, using a search query
q and a dissimilarity measure (the term data point or simply a point is often
used a synonym to denote either a data object or a query). The dissimilarity
measure is typically represented by a distance function d(oi, q). The ultimate
goal is to answer a query by retrieving a subset of database objects sufficiently
similar to the query q. These objects will be called answers. Note that we use
the terms distance and the distance function in a broader sense than some of
the textbooks: We do not assume that the distance is a true metric distance.
The distance function can disobey the triangle inequality and/or be even non-
symmetric.

Two retrieval tasks are typically considered: a nearest neighbor and a range
search. The nearest neighbor search aims to find the least dissimilar object, i.e.,
the object at the smallest distance from the query. Its direct generalization is
the k-nearest neighbor search (the k-NN search), which looks for the k most
closest objects. Given a radius r, the range query retrieves all objects within a

NMSLIB Manual 5

query ball (centered at the query object q) with the radius r, or, formally, all
the objects {oi} such that d(oi, q) ≤ r. In generic spaces, the distance is not
necessarily symmetric. Thus, two types of queries can be considered. In a left
query, the object is the left argument of the distance function, while the query
is the right argument. In a right query, q is the first argument and the object is
the second, i.e., the right, argument.

The queries can be answered either exactly, i.e., by returning a complete
result set that does not contain erroneous elements, or, approximately, e.g.,
by finding only some answers. Thus, the methods are evaluated in terms of
efficiency-effectiveness trade-offs rather than merely in terms of their efficiency.
One common effectiveness metric is recall. In the case of the nearest neighbor
search, it is computed as an average fraction of true neighbors returned by the
method. If ground-truth judgements (produced by humans) are available, it is
also possible to compute an accuracy of a k-NN based classification (see § 3.5.2).

2 Getting Started

2.1 What’s new in version 1.5 (major changes)

– We have adopted a new method: a hierarchical (navigable) small-world graph
(HNSW), contributed by Yury Malkov [37], see § 5.5.2.

– We have improved performance of two core methods SW-graph (§ 5.5.1) and
NAPP (5.4.5).

– We have written basic tuning guidelines for SW-graph, HNSW, and NAPP
6.

– We have modified the workflow of our benchmarking utility experiment and
improved handling of the gold standard data, see § 3.4.6;

– We have updated the API so that methods can save and restore indices, see
§ 7.3.

– We have implemented a server, which can have clients in C++, Java, Python,
and other languages supported by Apache Thrift, see § 2.5.

– We have implemented generic Python bindings that work for non-vector
spaces, see § 2.6.

– Last, we retired older methods permutation, permutation incsort, and
permutation vptree. The latter two methods are superseded by proj incsort

and proj vptree, respectively.

2.2 Prerequisites

NMSLIB was developed and tested on 64-bit Linux. Yet, almost all the code can
be built and run on 64-bit Windows (two notable exceptions are: LSHKIT and
NN-Descent). Building the code requires a modern C++ compiler that supports
C++11. Currently, we support GNU C++ (≥ 4.7), Intel compiler (≥ 14), Clang
(≥ 3.4), and Visual Studio (≥ 12)7. Under Linux, the build process relies on

7 One can use the free express version.

6 Bilegsaikhan Naidan and Leonid Boytsov

CMake. Under Windows, one could use Visual Studio projects stored in the
repository. These projects are for Visual Studio 14 (2015). However, they can be
downgraded to work with Visual Studio 12 (see § 3.2).

More specifically, for Linux we require:

1. A 64-bit distributive (Ubuntu LTS is recommended)
2. GNU C++ (≥ 4.7), Intel Compiler (≥ 14), Clang (≥ 3.4)
3. CMake (GNU make is also required)
4. Boost (dev version ≥ 48, Ubuntu package libboost1.48-all-dev or newer

libboost1.54-all-dev)
5. GNU scientific library (dev version, Ubuntu package libgsl0-dev)
6. Eigen (dev version, Ubuntu package libeigen3-dev)

For Windows, we require:

1. A 64-bit distributive (we tested on Windows 8);
2. Visual Studio Express (or Professional) version 12 or later;
3. Boost is not required to build the core library and test utilities, but it

is necessary to build some applications, including the main testing binary
experiment.exe (see § 3.2).

Efficient implementations of many distance functions (see § 8) rely on SIMD
instructions, which operate on small vectors of integer or floating point numbers.
These instructions are available on most modern processors, but we support only
SIMD instructions available on recent Intel and AMD processors. Each distance
function has a pure C++ implementation, which can be less efficient than an
optimized SIMD-based implementation.

On Linux, SIMD-based implementations are activated automatically for all
sufficiently recent CPUs. On Windows, only SSE2 is enabled by default8. Yet,
it is necessary to manually update project settings to enable more recent SIMD
extensions (see §3.2).

Scripts to generate and process data sets are written in Python. We also pro-
vide a sample Python script to plot performance graphs: genplot configurable.py
(see § 3.7). In addition to Python, this plotting script requires Latex and PGF.

2.3 Installing C++11 Compilers

Installing C++11 compilers can be tricky, because they are not always provided
as a standard package. This is why we briefly review the installation process
here. In addition, installing compilers does not necessarily make them default
compilers. One way to fix this is on Linux is to set environment variables CXX

and CC. For the GNU 4.7 compiler:

export CXX=g++-4.7 CC=gcc-4.7

For the Clang compiler:

8 Because SSE2 is available on all 64-bit computers.

https://github.com/searchivarius/nmslib/blob/v1.5/scripts/genplot_configurable.py

NMSLIB Manual 7

export CXX=clang++-3.4 CC=clang-3.4

For the Intel compiler:

export CXX=icc CC=icc

It is, perhaps, the easiest to obtain Visual Studio by simply downloading it
from the Microsoft web-site. We were able to build and run the 64-bit code using
the free distributive of Visual Studio Express 14 (also called Express 2015) and
Visual Studio 12 (Express 2013). The professional (and expensive) version of
Visual Studio is not required.

To install GNU C++ version 4.7 on newer Linux distributions (in particular,
on Ubuntu 14) with the Debian package management system, one can simply
type:

sudo apt-get install gcc-4.7 g++-4.7

At the time of this writing, GNU C++ 4.8 was available as a standard package
as well.

However, this would not work on older distributives of Linux. One may need
to use an experimental repository as follows:

sudo add-apt-repository ppa:ubuntu-toolchain-r/test

sudo apt-get update

sudo apt-get install gcc-4.7 g++-4.7

If the script add-apt-repository is missing, it can be installed as follows:

sudo apt-get install python-software-properties

More details can be found on the AskUbuntu web-site.
Similarly to the GNU C++ compiler, to install a C++11 version of Clang

on newer Debian-based distributives one can simply type:

sudo apt-get install clang-3.6

However, for older distributives one may need to add a non-standard reposi-
tory. For Debian and Ubuntu distributions, it is easiest to add repositories from
the LLVM web-site. For example, if you have Ubuntu 12 (Precise), you need to
add repositories as follows:9

sudo add-apt-repository \

"deb http://llvm.org/apt/precise/ llvm-toolchain-precise main"

sudo add-apt-repository \

"http://llvm.org/apt/precise/ llvm-toolchain-precise main"

sudo add-apt-repository \

"deb http://llvm.org/apt/precise/ llvm-toolchain-precise-3.4 main"

sudo add-apt-repository \

9 Do not forget to remove deb-src for source repositories. See the discussion here for
more details.

https://www.microsoft.com/en-us/download/default.aspx
http://askubuntu.com/questions/113291/how-do-i-install-gcc-4-7
http://llvm.org/apt/
http://askubuntu.com/questions/160511/why-does-add-apt-repository-fail-to-add-source-repositories
http://askubuntu.com/questions/160511/why-does-add-apt-repository-fail-to-add-source-repositories

8 Bilegsaikhan Naidan and Leonid Boytsov

"http://llvm.org/apt/precise/ llvm-toolchain-precise-3.4 main"

sudo add-apt-repository \

"deb http://ppa.launchpad.net/ubuntu-toolchain-r/test/ubuntu \

precise main"

Then, Clang 3.4 (and LLDB debugger) can be installed by typing:

sudo apt-get install clang-3.4 lldb-3.4

The Intel compiler can be freely used for non-commercial purposes by some
categories of users (students, academics, and active open-source contributors).
It is a part of C++ Composer XE for Linux and can be obtained from the Intel
web site. After downloading and running an installation script, one needs to
set environment variables. If the compiler is installed to the folder /opt/intel,
environment variables are set by a script as follows:

/opt/intel/bin/compilervars.sh intel64

2.4 Quick Start on Linux

To build the project, go to the directory similarity search and type:

cmake .

make

This creates several binaries in the directory similarity search/release, most
importantly, a benchmarking utility experiment, which carries out experiments,
and testing utilities bunit, test integer, and bench distfunc. A more detailed
description of the build process on Linux is given in § 3.1.

2.5 Query Server (Linux-only)

The query server requires Apache Thrift. We used Apache Thrift 0.9.2, but,
perhaps, newer versions will work as well. To install Apache Thrift, you need to
build it from source. This may require additional libraries. On Ubuntu they can
be installed as follows:

sudo apt-get install libboost-dev libboost-test-dev \

libboost-program-options-dev libboost-system-dev \

libboost-filesystem-dev libevent-dev \

automake libtool flex bison pkg-config \

g++ libssl-dev libboost-thread-dev make

To simplify the building process of Apache Thrift, one can disable unnecessary
languages:

./configure --without-erlang --without-nodejs --without-lua \

--without-php --without-ruby --without-haskell \

--without-go --without-d

http://software.intel.com/en-us/non-commercial-software-development
http://software.intel.com/en-us/non-commercial-software-development
https://github.com/searchivarius/nmslib/tree/v1.5/similarity_search
https://thrift.apache.org/docs/BuildingFromSource

NMSLIB Manual 9

After Apache Thrift is installed, you need to build the library itself. Then,
change the directory to query server/cpp client server and type make (the make-
file may need to be modified, if Apache Thrift is installed to a non-standard
location). The query server has a similar set of parameters to the benchmarking
utility experiment. For example, you can start the server as follows:

./query_server -i ../../sample_data/final8_10K.txt -s l2 -p 10000 \

-m sw-graph -c NN=10,efConstruction=200,initIndexAttempts=1

There are also three sample clients implemented in C++, Python, and Java.
A client reads a string representation of the query object from the standard
stream. The format is the same as the format of objects in a data file. Here is an
example of searching for ten vectors closest to the first data set vector (stored
in row one) of a provided sample data file:

export DATA_FILE=../../sample_data/final8_10K.txt

head -1 $DATA_FILE | ./query_client -p 10000 -a localhost -k 10

It is also possible to generate client classes for other languages supported by
Thrift from the interface definition file, e.g., for C#. To this end, one should
invoke the thrift compiler as follows:

thrift --gen csharp protocol.thrift

For instructions on using generated code, please consult the Apache Thrift tu-
torial.

2.6 Python bindings (Linux-only)

We provide basic Python bindings (for Linux and Python 2.7).
To build bindings for dense vector spaces (see § 4 for the description of

spaces), build the library first. Then, change the directory to python vect bindings

and type:

make

sudo make install

For an example of using our library in Python, see the script test nmslib vect.py.
Generic vector spaces are supported as well (see python gen bindings). How-

ever, they work only for spaces that properly define define serialization and
de-serialization (see a brief description in § 7.2).

2.7 Quick Start on Windows

Building on Windows is straightforward. Download Visual Studio 2015 Express
for Desktop. Download and install respective Boost binaries. Please, use the de-
fault installation directory on disk c: (otherwise, it will be necessary to update
project files).

https://github.com/searchivarius/nmslib/blob/v1.5/query_server/cpp_client_server
https://github.com/searchivarius/nmslib/blob/v1.5/query_server/cpp_client_server
https://github.com/searchivarius/nmslib/blob/v1.5/query_server/python_client/
https://github.com/searchivarius/nmslib/blob/v1.5/query_server/java_client/
https://github.com/searchivarius/nmslib/blob/v1.5/query_server/protocol.thrift
https://thrift.apache.org/tutorial/
https://thrift.apache.org/tutorial/
https://github.com/searchivarius/nmslib/blob/v1.5/python_vect_bindings/test_nmslib_vect.py
https://github.com/searchivarius/nmslib/blob/v1.5/python_gen_bindings
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
http://sourceforge.net/projects/boost/files/boost-binaries/1.59.0/boost_1_59_0-msvc-14.0-64.exe/download

10 Bilegsaikhan Naidan and Leonid Boytsov

Afterwards, one can simply use the provided Visual Studio solution file. The
solution file references several project (*.vcxproj) files: NonMetricSpaceLib.vcxproj
is the main project file that is used to build the library itself. The output is stored
in the folder similarity search\x64. A more detailed description of the build
process on Windows is given in § 3.2.

Note that the core library, the test utilities, as well as examples of the stan-
dalone applications (projects sample standalone app1 and sample standalone app2)
can be built without installing Boost.

3 Building and running the code (in detail)

A build process creates several important binaries, which include:

– NMSLIB library (on Linux libNonMetricSpaceLib.a), which can be used
in external applications;

– The main benchmarking utility experiment (experiment.exe on Windows)
that carries out experiments and saves evaluation results;

– A tuning utility tune vptree (tune vptree.exe on Windows) that finds
optimal VP-tree parameters (see § 5.1.1 and our paper for details [8]);

– A semi unit test utility bunit (bunit.exe on Windows);
– A utility bench distfunc that carries out integration tests (bench distfunc.exe

on Windows);

A build process is different under Linux and Windows. In the following sec-
tions, we consider these differences in more detail.

3.1 Building under Linux

Implementation of similarity search methods is in the directory similarity search.
The code is built using a cmake, which works on top of the GNU make. Before
creating the makefiles, we need to ensure that a right compiler is used. This
is done by setting two environment variables: CXX and CC. In the case of GNU
C++ (version 4.7), you may need to type:

export CCX=g++-4.7 CC=gcc-4.7

In the case of the Intel compiler, you may need to type:

export CXX=icc CC=icc

If you do not set variables CXX and CC, the default C++ compiler is used (which
can be fine, if it is the right compiler already).

To create makefiles for a release version of the code, type:

cmake -DCMAKE_BUILD_TYPE=Release .

If you did not create any makefiles before, you can shortcut by typing:

https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/NonMetricSpaceLib.sln
https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/src/NonMetricSpaceLib.vcxproj

NMSLIB Manual 11

cmake .

To create makefiles for a debug version of the code, type:

cmake -DCMAKE_BUILD_TYPE=Debug .

When makefiles are created, just type:

make

If cmake complains about the wrong version of the GCC, it is most likely that you
forgot to set the environment variables CXX and CC (as described above). If this
is the case, make these variables point to the correction version of the compiler.
Important note: do not forget to delete the cmake cache and make file, before
recreating the makefiles. For example, you can do the following (assuming the
current directory is similarity search):

rm -rf `find . -name CMakeFiles` CMakeCache.txt

Also note that, for some reason, cmake might sometimes ignore environmental
variables CXX and CC. In this unlikely case, you can specify the compiler directly
through cmake arguments. For example, in the case of the GNU C++ and the
Release build, this can be done as follows:

cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_COMPILER=g++-4.7 \

-DCMAKE_GCC_COMPILER=gcc-4.7 CMAKE_CC_COMPILER=gcc-4.7 .

The build process creates several binaries. Most importantly, the main bench-
marking utility experiment. The directory similarity search/release con-
tains release versions of these binaries. Debug versions are placed into the folder
similarity search/debug.

Important note: a shortcut command:

cmake .

(re)-creates makefiles for the previously created build. When you type cmake .

for the first time, it creates release makefiles. However, if you create debug make-
files and then type cmake ., this will not lead to creation of release makefiles!

If the user cannot install necessary libraries to a standard location, it is still
possible to build a project. First, download Boost to some local directory. As-
sume it is $HOME/boost download dir. Then, set the corresponding environment
variable, which will inform cmake about the location of the Boost files:

export BOOST_ROOT=$HOME/boost_download_dir

Second, the user needs to install the additional libraries. Assume that the
lib-files are installed to $HOME/local lib, while corresponding include files are
installed to $HOME/local include. Then, the user needs to invoke cmake with
the following arguments (after possibly deleting previously created cache and
makefiles):

12 Bilegsaikhan Naidan and Leonid Boytsov

cmake . -DCMAKE_LIBRARY_PATH=$HOME/local_lib \

-DCMAKE_INCLUDE_PATH=$HOME/local_include \

-DBoost_NO_SYSTEM_PATHS=true

Note the last option. Sometimes, an old version of Boost is installed. Setting the
variable Boost NO SYSTEM PATHS to true, tells cmake to ignore such an installa-
tion.

To use the library in external applications, which do not belong to the library
repository, one needs to install the library first. Assume that an installation loca-
tion is the folder NonMetrLibRelease in the home directory. Then, the following
commands do the trick:

cmake \

-DCMAKE_INSTALL_PREFIX=$HOME/NonMetrLibRelease \

-DCMAKE_BUILD_TYPE=Release .

make install

A directory sample standalone app contains two sample programs (see files
sample standalone app1.cc and sample standalone app2.cc) that use NMSLIB
binaries installed in the folder $HOME/NonMetrLibRelease.

3.1.1 Developing and Debugging on Linux There are several debuggers
that can be employed. Among them, some of the most popular are: gdb (a
command line tool) and a ddd (a GUI wrapper for gdb). For users who prefer
IDEs, one good and free option is Eclipse IDE for C/C++ developers. It is not
the same as Eclipse for Java and one needs to download this version of Eclipse
separately.. An even better option is, perhaps, CLion. However, it is not free.10

After downloading and decompressing, e.g. as follows:

tar -zxvf eclipse-cpp-europa-winter-linux-gtk-x86_64.tar.gz

one can simply run the binary eclipse (in a newly created directory eclipse).
On the first start, Eclipse will ask you select a repository location. This would be
the place to store the project metadata and (optionally) actual project source
files. The following description is given for Eclipse Europe. It may be a bit
different with newer versions of Eclipse.

After selecting the workspace, the user can import the Eclipse project stored
in the GitHub repository. Go to the menu File, sub-menu Import, category
General and choose to import an existing project into the workspace as shown
in Fig. 3. After that select a root directory. To this end, go to the direc-
tory where you checked out the contents of the GitHub repository and enter
a sub-directory similarity search. You should now be able to see the project
Non-Metric-Space-Library as shown in Fig 4. You can now finalize the import
by pressing the button Finish.

10 There are a few categories of people, including students, who can ask for a free
license, though.

https://github.com/searchivarius/nmslib/blob/v1.5/sample_standalone_app
https://github.com/searchivarius/nmslib/blob/v1.5/sample_standalone_app/sample_standalone_app1.cc
https://github.com/searchivarius/nmslib/blob/v1.5/sample_standalone_app/sample_standalone_app2.cc
http://www.eclipse.org/ide/
http://www.eclipse.org/ide/
https://www.jetbrains.com/clion/

NMSLIB Manual 13

Fig. 3: Selecting an existing project to import

Next, we need to set some useful settings. Most importantly, we need to
enable indexing of source files. This would allow us to browse class hierarchies,
as well as find declarations of variables or classes. To this end, go to the menu
Window, sub-menu Preferences and select a category C++/indexing (see Fig. 5).
Then, check the box Index all files. Eclipse will start indexing your files with
the progress being shown in the status bar (right down corner).

The user can also change the editor settings. We would strongly encourage
to disable the use of tabs. Again, go the menu Window, sub-menu Preferences,
and select a category General/Editors/Text Editors. Then, check the box
Insert spaces for tabs. In the same menu, you can also change the fonts
(use the category General/Appearance/Colors and Fonts).

In a newer Eclipse version, disabling tabs is done differently. To this end, go
to the menu Window, sub-menu Preferences, and select a category C++/Code

Style/Formatter. Then, you need to create a new profile and make this profile
active. In the profile, change the tab policy to Spaces only.

It is possible to build the project from Eclipse (see the menu Project). How-
ever, one first needs to generate makefiles as described in § 3.1. The current
limitation is that you can build either release or the debug version at a time.
Moreover, to switch from one version to another, you need to recreate the make-
files from the command line.

14 Bilegsaikhan Naidan and Leonid Boytsov

Fig. 4: Importing an existing project

After building you can debug the project. To do this, you need to create
a debug configuration. As an example, one configuration can be found in the
project folder launches. Right click on the item sample.launch, choose the
option Debug as (in the drop-down menu), and click on sample (in the pop-up
menu). Do not forget to edit command line arguments before you actually debug
the application!

After switching to a debug perspective, the Eclipse may stop the debugger
in the file dl-debug.c as shown in Fig. 7. If this happened, simply, press the
continue icon a couple of times until the debugger enters the code belonging to
the library.

Additional configurations can be created by right clicking on the project
name (left pane), selecting Properties in the pop-up menu and clicking on
Run/Debug settings. The respective screenshot is shown in Fig. 6.

Note that this manual contains only a basic introduction to Eclipse. If the
user is new to Eclipse, we recommend reading additional documentation available
online.

3.2 Building under Windows

Download Visual Studio 2015 Express for Desktop. Download and install respec-
tive Boost binaries. Please, use the default installation directory on disk c:. In

http://www.eclipse.org/ide/
http://www.eclipse.org/ide/
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
http://sourceforge.net/projects/boost/files/boost-binaries/1.59.0/boost_1_59_0-msvc-14.0-64.exe/download

NMSLIB Manual 15

Fig. 5: Enabling indexing of the source code

the end of the section, we explain how to select a different location of the Boost
files, as well as to how downgrade the project to build it with Visual Studio 2013
(if this is really necessary).

After downloading Visual Studio and installing Boost (version 59, 64-bit
binaries, for MSVC-14), it is straightforward to build the project using the pro-
vided Visual Studio solution file. The solution file references several (sub)-project
(*.vcxproj) files, which can be built either separately or all together.

The main sub-project is NonMetricSpaceLib, which is built before any other
sub-projects. Sub-projects: sample standalone app1, sample standalone app2

are examples of using the library in a standalone mode. Unlike building under
Linux, we provide no installation procedure yet. In a nutshell, the installation
consists in copying the library binary as well as the directory with header files.

There are three possible configurations for the binaries: Release, Debug, and
RelWithDebInfo (release with debug information). The corresponding output
files are placed into the subdirectories:

similarity_search\x64\Release,

similarity_search\x64\Debug,

similarity_search\x64\RelWithDebInfo.

https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/NonMetricSpaceLib.sln
https://github.com/searchivarius/nmslib/tree/v1.5/similarity_search/include

16 Bilegsaikhan Naidan and Leonid Boytsov

Fig. 6: Creating a debug/run configuration

Unlike other compilers, there seems to be no way to detect the CPU type in
the Visual Studio automatically.11 And, by default, only SSE2 is enabled (be-
cause it is supported by all 64-bit CPUs). Therefore, if the user’s CPU supports
AVX extensions, it is recommended to modify code generation settings as shown
in the screenshot in Fig. 8. This should be done for all sub-projects and all
binary configurations. Note that you can set a property for all projects at once,
if you select all the sub-projects, right-click, and then choose Properties in the
pop-up menu.

The core library, the semi unit test binary as well as examples of the stan-
dalone applications can be built without installing Boost. However, Boost li-
braries are required for the binaries experiment.exe, tune vptree.exe, and
test integr.exe.

We would re-iterate that one needs 64-bit Boost binaries compiled with the
same version of the Visual Studio as the NMSLIB binaries. If you download the
installer for Boost 59 and install it to a default location, then you do not have to
change project files. Should you install Boost into a different folder, the location
of Boost binaries and header file need to be specified in the project settings for
all three build configurations (Release, Debug, RelWithDebInfo). An example
of specifying the location of Boost libraries (binaries) is given in Fig. 9.

11 It is not also possible to opt for using only SSE4.

https://en.wikipedia.org/wiki/Advanced_Vector_Extensions
http://sourceforge.net/projects/boost/files/boost-binaries/1.59.0/boost_1_59_0-msvc-14.0-64.exe/download
http://sourceforge.net/projects/boost/files/boost-binaries/1.59.0/boost_1_59_0-msvc-14.0-64.exe/download
http://en.wikipedia.org/wiki/SSE4

NMSLIB Manual 17

Fig. 7: Starting a debugger

Fig. 8: Enabling advanced SIMD Instructions in the Visual Studio

18 Bilegsaikhan Naidan and Leonid Boytsov

Fig. 9: Specifying Location of Boost libraries

In the unlikely case that the user has to use older Visual Studio 12, the project
files are to be downgraded. To do so, one have to manually edit every *.vcxproj

file by replacing each occurrence of <PlatformToolset>v140</PlatformToolset>
with <PlatformToolset>v120</PlatformToolset>. Additionally, one has to
download Boost binaries compatible with the older Visual studio and modify
the project files accordingly. In particular, one may need to modify options
Additional Include Directories and Additional Library Directories.

3.3 Testing the Correctness of Implementations

We have two main testing utilities bunit and test integr (experiment.exe
and test integr.exe on Windows). Both utilities accept the single optional
argument: the name of the log file. If the log file is not specified, a lot of infor-
mational messages are printed to the screen.

The bunit verifies some basic functitionality akin to unit testing. In partic-
ular, it checks that an optimized version of the, e.g., Eucledian, distance returns
results that are very similar to the results returned by unoptimized and simpler
version. The utility bunit is expected to always run without errors.

The utility test integr runs complete implementations of many methods
and checks if several effectiveness and efficiency characteristics meet the ex-
pectations. The expectations are encoded as an array of instances of the class
MethodTestCase (see the code here). For example, we expect that the recall (see

https://github.com/searchivarius/nmslib/tree/v1.5/similarity_search/test/test_integr.cc#L65

NMSLIB Manual 19

§ 3.5.2) fall in a certain pre-recorded range. Because almost all our methods are
randomized, there is a great deal of variance in the observed performance char-
acteristics. Thus, some tests may fail infrequently, if e.g., the actual recall value
is slightly lower or higher than an expected minimum or maximum. From an
error message, it should be clear if the discrepancy is substantial, i.e., something
went wrong, or not, i.e., we observe an unlikely outcome due to randomization.
The exact search method, however, should always have an almost perfect recall.

Variance is partly due to using low-dimensional test sets. In the future, we
plan to change this. For high-dimensional data sets, the outcomes are much more
stable despite the randomized nature of most implementations.

Finally, one is encouraged to run a small-scale test using the script test run.sh
on Linux (test run.bat on Windows). The test includes several important meth-
ods, which can be very efficient. Both the Linux and the Windows scripts expect
some dense vector space file (see § 4 and § 9) and the number of threads as the
first two parameters. The Linux script has an additional third parameter. If the
user specifies 1, the software creates a plot (see § 3.7). On Linux, the user can
verify that for the Colors data set [25] the plot looks as follows:

0.92 0.94 0.96 0.98 1

101

102

recall

im
p
r.

in
effi

ci
en

cy
(l

o
g
.

sc
a
le

)

Improvement in efficiency vs recall

HNSW

NAPP

SW-graph

VP-tree

On Windows, the script test run.bat creates only the data (output file K1̄0.dat)
and the report file (output file K1̄0.rep). The report file can be checked man-
ually. The data file can be used to create a plot via Excel or Google Docs.

https://github.com/searchivarius/nmslib/blob/v1.5/scripts/test_run.sh
https://github.com/searchivarius/nmslib/blob/v1.5/scripts/test_run.sh

20 Bilegsaikhan Naidan and Leonid Boytsov

3.4 Running Benchmarks

There are no principal differences in benchmarking on Linux and Windows.
There is a single benchmarking utility experiment (experiment.exe on Win-
dows) that includes implementation of all methods. It has multiple options,
which specify, among others, a space, a data set, a type of search, a method to
test, and method parameters. These options and their use cases are described
in the following subsections. Note that unlike older versions it is not possible to
test multiple methods in a single run. However, it is possible to test the single
method with different values of query-time parameters.

3.4.1 Space and distance value type A distance function can return an
integer (int), a single-precision (float), or a double-precision (double) real
value. A type of the distance and its value is specified as follows:

-s [--spaceType] arg space type, e.g., l1, l2, lp:p=0.25

--distType arg (=float) distance value type:

int, float, double

A description of a space may contain parameters (parameters may not contain
whitespaces). In this case, there is colon after the space mnemonic name followed
by a comma-separated (not spaces) list of parameters in the format: <parameter
name>=<parameter value>. Currently, this is used only for Lp spaces. For in-
stance, lp:0.5 denotes the space L0.5. A detailed list of possible spaces and
respective distance functions is given in Table 3 in § 4.

For real-valued distance functions, one can use either single- or double-
precision type. Single-precision is a recommended default. One example of integer-
valued distance function the Levenshtein distance.

3.4.2 Input Data/Test Set There are two options that define the data to
be indexed:

-i [--dataFile] arg input data file

-D [--maxNumData] arg (=0) if non-zero, only the first

maxNumData elements are used

The input file can be indexed either completely, or partially. In the latter case,
the user can create the index using only the first --maxNumData elements.

For testing, the user can use a separate query set. It is, again, possible to
limit the number of queries:

-q [--queryFile] arg query file

-Q [--maxNumQuery] arg (=0) if non-zero, use maxNumQuery query

elements(required in the case

of bootstrapping)

NMSLIB Manual 21

If a separate query set is not available, it can be simulated by bootstrapping.
To this, end the --maxNumData elements of the original data set are randomly
divided into testing and indexable sets. The number of queries in this case is de-
fined by the option --maxNumQuery. A number of bootstrap iterations is specified
through an option:

-b [--testSetQty] arg (=0) # of sets created by bootstrapping;

Benchmarking can be carried out in either a single- or a multi-threaded mode.
The number of test threads are specified as follows:

--threadTestQty arg (=1) # of threads

3.4.3 Query Type Our framework supports the k-NN and the range search.
The user can request to run both types of queries:

-k [--knn] arg comma-separated values of k

for the k-NN search

-r [--range] arg comma-separated radii for range search

For example, by specifying the options

--knn 1,10 --range 0.01,0.1,1

the user requests to run queries of five different types: 1-NN, 10-NN, as well
three range queries with radii 0.01, 0.1, and 1.

3.4.4 Method Specification Unlike older versions it is possible to test only
a single method at a time. To specify a method’s name, use the following option:

-m [--method] arg method/index name

A method can have a single set of index-time parameters, which is specified via:

-c [--createIndex] arg index-time method(s) parameters

In addition to the set of index-time parameters, the method can have multiple
sets of query-time parameters, which are specified using the following (possibly
repeating) option:

-t [--queryTimeParams] arg query-time method(s) parameters

For each set of query-time parameters, i.e., for each occurrence of the option
--queryTimeParams, the benchmarking utility experiment, carries out an eval-
uation using the specified set of queries and a query type (e.g., a 10-NN search
with queries from a specified file). If the user does not specify any query-time
parameters, there is only one evaluation to be carried out. This evaluation uses
default query-time parameters. In general, we ensure that whenever a query-time
parameter is missed, the default value is used.

22 Bilegsaikhan Naidan and Leonid Boytsov

Similar to parameters of the spaces, a set of method’s parameters is a comma-
separated list (no-spaces) of parameter-value pairs in the format: <parameter
name>=<parameter value>. For a detailed list of methods and their parameters,
please, refer to § 5.

Note that a few methods can save/restore (meta) indices. To save and load
indices one should use the following options:

-L [--loadIndex] arg a location to load the index from

-S [--saveIndex] arg a location to save the index to

When the user defines the location of the index using the option --loadIndex,
the index-time parameters may be ignored. Specifically, if the specified index
does not exist, the index is created from scratch. Otherwise, the index is loaded
from disk. Also note that the benchmarking utility does not override an already
existing index (when the option --saveIndex is present).

If the tests are run the bootstrapping mode, i.e., when queries are randomly
sampled (without replacement) from the data set, several indices may need to be
created. Specifically, for each split we create a separate index file. The identifier
of the split is indicated using a special suffix. Also note that we need to memorize
which data points in the split were used as queries. This information is saved in
a gold standard cache file (see § 8). Thus, saving and loading of indices in the
bootstrapping mode is possible only if gold standard caching is used.

3.4.5 Saving and Processing Benchmark Results The benchmarking
utility may produce output of three types:

– Benchmarking results (a human readable report and a tab-separated data
file);

– Log output (which can be redirected to a file);
– Progress bars to indicate the progress in index creation for some methods

(cannot be currently suppressed);

To save benchmarking results to a file, on needs to specify a parameter:

-o [--outFilePrefix] arg output file prefix

As noted above, we create two files: a human-readable report (suffix .rep) and
a tab-separated data file (suffix .data). By default, the benchmarking utility
creates files from scratch: If a previously created report exists, it is erased. The
following option can be used to append results to the previously created report:

-a [--appendToResFile] do not override information in results

For information on processing and interpreting results see § 3.5. A description
of the plotting utility is given in § 3.7.

By default, all log messages are printed to the standard error stream. How-
ever, they can also be redirected to a log-file:

-l [--logFile] arg log file

NMSLIB Manual 23

3.4.6 Efficiency of Testing Except for measuring methods’ performance,
the following are the most expensive operations:

– computing ground truth answers (also known as gold standard data);
– loading the data set;
– indexing.

To make testing faster, the following methods can be used:

– Caching of gold standard data;
– Creating gold standard data using multiple threads;
– Reusing previously created indices (when loading and saving is supported

by a method);
– Carrying out multiple tests using different sets of query-time parameters.

By default, we recompute gold standard data every time we run benchmarks,
which may take long time. However, it is possible to save gold standard data
and re-use it later by specifying an additional argument:

-g [--cachePrefixGS] arg a prefix of gold standard cache files

The benchmarks can be run in a multi-threaded mode by specifying a parameter:

--threadTestQty arg (=1) # of threads during querying

In this case, the gold standard data is also created in a multi-threaded mode
(which can also be much faster). Note that NMSLIB directly supports only an
inter-query parallelism, i.e., multiple queries are executed in parallel, rather than
the intra-query parallelism, where a single query can be processed by multiple
CPU cores.

Gold standard data is stored in two files. One is a textual meta file that
memorizes important input parameters such as the name of the data and/or
query file, the number of test queries, etc. For each query, the binary cache files
contains ids of answers (as well as distances and class labels). When queries are
created by random sampling from the main data set, we memorize which objects
belong to each query set.

When the gold standard data is reused later, the benchmarking code verifies
if input parameters match the content of the cache file. Thus, we can prevent an
accidental use of gold standard data created for one data set while testing with
a different data set.

Another sanity check involves verifying that data points obtained via an
approximate search are not closer to the query than data points obtained by
an exact search. This check has turned out to be quite useful. It has helped
detecting a problem in at least the following two cases:

– The user creates a gold standard cache. Then, the user modifies a distance
function and runs the tests again;

– Due to a bug, the search method reports distances to the query that are
smaller than the actual distances (computed using a distance function). This
may occur, e.g., due to a memory corruption.

24 Bilegsaikhan Naidan and Leonid Boytsov

When the benchmarking utility detects a situation when an approximate
method returns points closer than points returned by an exact method, the
testing procedure is terminated and the user sees a diagnostic message (see
Table 1 for an example).

... [INFO] >>>> Computing effectiveness metrics for sw-graph

... [INFO] Ex: -2.097 id = 140154 -> Apr: -2.111 id = 140154 1 - ratio: -0.0202 diff: -0.0221

... [INFO] Ex: -1.974 id = 113850 -> Apr: -2.005 id = 113850 1 - ratio: -0.0202 diff: -0.0221

... [INFO] Ex: -1.883 id = 102001 -> Apr: -1.898 id = 102001 1 - ratio: -0.0202 diff: -0.0221

... [INFO] Ex: -1.6667 id = 58445 -> Apr: -1.6782 id = 58445 1 - ratio: -0.0202 diff: -0.0221

... [INFO] Ex: -1.6547 id = 76888 -> Apr: -1.6688 id = 76888 1 - ratio: -0.0202 diff: -0.0221

... [INFO] Ex: -1.5805 id = 47669 -> Apr: -1.5947 id = 47669 1 - ratio: -0.0202 diff: -0.0221

... [INFO] Ex: -1.5201 id = 65783 -> Apr: -1.4998 id = 14954 1 - ratio: -0.0202 diff: -0.0221

... [INFO] Ex: -1.4688 id = 14954 -> Apr: -1.3946 id = 25564 1 - ratio: -0.0202 diff: -0.0221

... [INFO] Ex: -1.454 id = 90204 -> Apr: -1.3785 id = 120613 1 - ratio: -0.0202 diff: -0.0221

... [INFO] Ex: -1.3804 id = 25564 -> Apr: -1.3190 id = 22051 1 - ratio: -0.0202 diff: -0.0221

... [INFO] Ex: -1.367 id = 120613 -> Apr: -1.205 id = 101722 1 - ratio: -0.0202 diff: -0.0221

... [INFO] Ex: -1.318 id = 71704 -> Apr: -1.1661 id = 136738 1 - ratio: -0.0202 diff: -0.0221

... [INFO] Ex: -1.3103 id = 22051 -> Apr: -1.1039 id = 52950 1 - ratio: -0.0202 diff: -0.0221

... [INFO] Ex: -1.191 id = 101722 -> Apr: -1.0926 id = 16190 1 - ratio: -0.0202 diff: -0.0221

... [INFO] Ex: -1.157 id = 136738 -> Apr: -1.0348 id = 13878 1 - ratio: -0.0202 diff: -0.0221

... [FATAL] bug: the approximate query should not return objects that are closer to the query
than object returned by (exact) sequential searching!
Approx: -1.09269 id = 16190 Exact: -1.09247 id = 52950

Table 1: A diagnostic message indicating that there is some mismatch in the
current experimental setup and the setup used to create the gold standard cache
file.

To compute recall, it is enough to memorize only query answers. For example,
in the case of a 10-NN search, it is enough to memorize only 10 data points
closest to the query as well as respective distances (to the query). However, this
is not sufficient for computation of a rank approximation metric (see § 3.5.2). To
control the accuracy of computation, we permit the user to change the number
of entries memorized. This number is defined by the parameter:

--maxCacheGSRelativeQty arg (=10) a maximum number of gold

standard entries

Note that this parameter is a coefficient: the actual number of entries is defined
relative to the result set size. For example, if a range search returns 30 entries
and the value of --maxCacheGSRelativeQty is 10, then 30 × 10 = 300 entries
are saved in the gold standard cache file.

3.5 Measuring Performance and Interpreting Results

3.5.1 Efficiency. We measure several efficiency metrics: query runtime, the
number of distance computations, the amount of memory used by the index and
the data, and the time to create the index. We also measure the improvement
in runtime (improvement in efficiency) with respect to a sequential search (i.e.,

NMSLIB Manual 25

brute-force) approach as well as an improvement in the number of distance com-
putations. If the user runs benchmarks in a multi-threaded mode (by specifying
the option --threadTestQty), we compare against the multi-threaded version
of the brute-force search as well.

A good method should carry out fewer distance computations and be faster
than the brute-force search, which compares all the objects directly with the
query. However, great reduction in the number of distance computations does
not always entail good improvement in efficiency: while we do not spend CPU
time on computing directly, we may be spending CPU time on, e.g., computing
the value of the distance in the projected space (as in the case of projection-based
methods, see § 5.3).

Note that the improvement in efficiency is adjusted for the number of threads.
Therefore, it does not increase as more threads are added: in contrast, it typically
decreases as there is more competition for computing resources (e.g., memory)
in a multi-threaded mode.

The amount of memory consumed by a search method is measured indirectly:
We record the overall memory usage of a benchmarking process before and after
creation of the index. Then, we add the amount of memory used by the data.
On Linux, we query a special file /dev/<process id>/status, which might not
work for all Linux distributives. Under Windows, we retrieve the working set size
using the function GetProcessMemoryInfo. Note that we do not have a truly
portable code to measure memory consumption of a process.

3.5.2 Effectiveness In the following description, we assume that a method
returns a set of points/objects {oi}. The value of pos(oi) represents a positional
distance from oi to the query, i.e., the number of database objects closer to the
query than oi plus one. Among objects with identical distances to the query,
the object with the smallest index is considered to be the closest. Note that
pos(oi) ≥ i.

Several effectiveness metrics are computed by the benchmarking utility:

– A number of points closer to the query than the nearest returned point. This
metric is equal pos(o1) minus one. If o1 is always the true nearest object, its
positional distance is one and, thus, the number of points closer is always
equal to zero.

– A relative position error for point oi is equal to pos(oi)/i, an aggregate value
is obtained by computing the geometric mean over all returned oi;

– Recall, which is is equal to the fraction of all correct answers retrieved.

– Classification accuracy, which is equal to the fraction of labels correctly
predicted by a k-NN based classification procedure.

The first two metrics represent a so-called rank (approximation) error. The
closer the returned objects are to the query object, the better is the quality of
the search response and the lower is the rank approximation error.

26 Bilegsaikhan Naidan and Leonid Boytsov

Table 2: An example of a human-readable
report

===================================

vptree: triangle inequality

alphaLeft=2.0,alphaRight=2.0

===================================

of points: 9900

of queries: 100

Recall: 0.954 -> [0.95 0.96]

ClassAccuracy: 0 -> [0 0]

RelPosError: 1.05 -> [1.05 1.06]

NumCloser: 0.11 -> [0.09 0.12]

QueryTime: 0.2 -> [0.19 0.21]

DistComp: 2991 -> [2827 3155]

ImprEfficiency: 2.37 -> [2.32 2.42]

ImprDistComp: 3.32 -> [3.32 3.39]

Memory Usage: 5.8 MB

Note: confidence intervals are in brackets

Recall is a classic metric. It was
argued, however, that recall does not
account for positional information
of returned objects and is, there-
fore, inferior to rank approximation
error metrics [1,11]. Consider the
case of 10-NN search and imagine
that there are two methods that, on
average, find only half of true 10-
NN objects. Also, assume that the
first method always finds neighbors
from one to five, but misses neigh-
bors from six to ten. The second
method always finds neighbors from
six to ten, but misses the first five
ones. Clearly, the second method
produces substantially inferior re-
sults, but it has the same recall as
the first one.

If we specify ground-truth object
classes (see § 9 for the description
of data set formats), it is possible
to compute an accuracy of a k-NN
based classification procedure. The
label of an element is selected as
the most frequent class label among
k closest objects returned by the
method (in the case of ties the class
label with the smallest id is chosen).

If we had ground-truth queries and relevance judgements from human asses-
sors, we could in principle compute other realistic effectiveness metrics such as
the mean average precision, or the normalized discounted cumulative gain. This
remains for the future work.

Note that it is pointless to compute the mean average precision when human
judgments are not available, as the mean average precision is identical to the
recall in this case.

3.6 Interpreting and Processing Benchmark Results

If the user specifies the option --outFilePrefix, the benchmarking results are
stored to the file system. A prefix of result files is defined by the parameter
--outFilePrefix while the suffix is defined by a type of the search procedure
(the k-NN or the range search) as well as by search parameters (e.g., the range
search radius). For each type of search, two files are generated: a report in a
human-readable format, and a tab-separated data file intended for automatic

http://searchivarius.org/blog/when-average-precision-equal-recall
http://searchivarius.org/blog/when-average-precision-equal-recall

NMSLIB Manual 27

processing. The data file contains only the average values, which can be used to,
e.g., produce efficiency-effectiveness plots as described in § 3.7.

An example of human readable report (confidence intervals are in square
brackets) is given in Table 2. In addition to averages, the human-readable report
provides 95% confidence intervals. In the case of bootstrapping, statistics col-
lected for several splits of the data set are aggregated. For the retrieval time and
the number of distance computations, this is done via a classic fixed-effect model
adopted in meta analysis [27]. When dealing with other performance metrics, we
employ a simplistic approach of averaging split-specific values and computing the
sample variance over spit-specific averages.12 Note for all metrics, except rela-
tive position error, an average is computed using an arithmetic mean. For the
relative error, however, we use the geometric mean [29].

3.7 Plotting results (Linux-Only)

We provide the Python script to generate nice performance graphs from tab-
separated data file produced by the benchmarking utility experiment. The plot-
ting script is genplot configurable.py. In addition to Python, it requires Latex
and PGF. This script is supposed to run only on Linux. For a working example
of using script, please, see the another script: test run.sh. This script runs several
experiments, saves data, and generates a plot (if this is asked by the user).

Consider the following example of using genplot configurable.py:

../scripts/genplot_configurable.py \

-n MethodName \

-i result_K\=1.dat -o plot_1nn \

-x 1~norm~Recall \

-y 1~log~ImprEfficiency \

-a axis_desc.txt \

-m meth_desc.txt \

-l "2~(0.96,-.2)" \

-t "ImprEfficiency vs Recall" \

--xmin 0.01 --xmax 1.2 --ymin -2 --ymax 10

Here the goal is to process the tab-separated data file result K=1.dat, which
was generated by 1-NN search, and save the plot to an output file plot 1nn.pdf.
Note that one should not explicitly specify the extension of the output file (as
.pdf is always implied). Also note that, in addition to the PDF-file, the script
generates the source Latex file. The source Latex file can be post-edited and/or
embedded directly into a Latex source (see PGF documentation for details).
This can be useful for scientific publishing.

The parameter -n specifies the name of the field that stores method/indices
mnemonic names. In the case of the benchmarking utility experiment this field

12 The distribution of many metric values is not normal. There are approaches to resolve
this issue (e.g., apply a transformation), but an additional investigation is needed to
understand which approaches work best.

https://github.com/searchivarius/nmslib/blob/v1.5/scripts/genplot_configurable.py
https://github.com/searchivarius/nmslib/blob/v1.5/scripts/test_run.sh
http://ftp.fau.de/ctan/graphics/pgf/base/doc/pgfmanual.pdf

28 Bilegsaikhan Naidan and Leonid Boytsov

is named MethodName. Parameters -x and -y define X and Y axis, i.e., which
metrics are associated with each axis and what is the display format. Arguments
-x and -y have the same format. Specifically, these option arguments include
three tilda-separated values each. The first value should be zero or one. Specify
zero not to print the axis label. The second value is either norm or log, which
stands for a normal or logarithmic scale, respectively.

The last value defines a metric that we want to visualize: The metric should
be a field name, i.e., it is one of the names that appear in the header row of
the output data file. However, a display value of the metric can be different. To
specify metric display values, one has to provide an axis description file (option
-a).

The axis description file has two tab-separated columns. The first column is
a name of the metric used in the data file (in our example it is result K=1.dat).
The second column is a display name. Here is an example of the axis description
file (tabs are not shown):

Recall recall

QueryTime time (ms)

Similarly, the user has to specify a method description file (option -m). It is a
three-column tab-separated file. The first column is the name of the method used
in the data file result K=1.data (exactly as it is specified there). The second
column is the method display name (it can have Latex-parsable expressions).
The third column, defines the style of the plot (e.g., line thickness and a line
mark). This should be a comma-separated lists of PGF-specifiers (see PGF doc-
umentation for details). Here is an example of the method description file (tabs
again are not shown):

"bbtree" bbtree mark=triangle*

"vptree" vptree mark=star,blue,/tikz/densely dashed,mark size=1.5pt

The parameter -l defines a plot legend. To hide the legend, use the string
none. Otheriwse, two tilda-separated values should be specified. The first value
gives the number of columns in the legend, while the second value defines a po-
sition of the legend. The position can be either absolute or relative. An absolute
position is defined by a pair of coordinates (in round brackets). A relative posi-
tion is defined by one of the following descriptors (quotes are for clarity only):
“north west”, “north east”, “south west”, “south east”. If the relative position
is specified, the legend is printed inside the main plotting area, e.g.:

../scripts/genplot_configurable.py \

-n MethodName \

-i result_K\=1.dat -o plot_1nn \

-x 1~norm~Recall \

-y 1~log~ImprEfficiency \

-a axis_desc.txt \

-m meth_desc.txt \

-l "2~north west" \

http://ftp.fau.de/ctan/graphics/pgf/base/doc/pgfmanual.pdf
http://ftp.fau.de/ctan/graphics/pgf/base/doc/pgfmanual.pdf

NMSLIB Manual 29

-t "ImprEfficiency vs Recall"

The title of the plot is defind by -t (specify -t "" if you do not want to
print the title). Finally, note that the user can specify the bounding rectangle
for the plot via the options --xmin, --xmax, --ymin, and --ymax.

4 Spaces

Currently we provide implementations mostly for vector spaces. Vector-space
input files can come in either regular, i.e., dense, or sparse variant (see § 9). A
detailed list of spaces, their parameters, and performance characteristics is given
in Table 3.

The mnemonic name of the space is passed to the benchmarking utility (see
§ 3.4). There can be more than one version of a distance function, which have
different space-performance trade-off. In particular, for distances that require
computation of logarithms we can achieve an order of magnitude improvement
(e.g., for the GNU C++ and Clang) by pre-computing logarithms at index time.
This comes at a price of extra storage. In the case of Jensen-Shannon distance
functions, we can pre-compute some of the logarithms and accurately approxi-
mate those we cannot pre-compute. The details are explained in § 4.2-4.5.

Straightforward slow implementations of the distance functions may have
the substring slow in their names, while faster versions contain the substring
fast. Fast functions that involve approximate computations contain additionally
the substring approx. For non-symmetric distance function, a space may have
two variants: one variant is for left queries (the data object is the first, i.e., left,
argument of the distance function while the query object is the second argument)
and another is for right queries (the data object is the second argument and the
query object is the first argument). In the latter case the name of the space ends
on rq. Separating spaces by query types, might not be the best approach. Yet,
it seems to be unavoidable, because, in many cases, we need separate indices to
support left and right queries [11]. If you know a better approach, feel free, to
tell us.

4.1 Details of Distance Efficiency Evaluation

Distance computation efficiency was evaluated on a Core i7 laptop (3.4 Ghz
peak frequency) in a single-threaded mode (by the utility bench distfunc). It
is measured in millions of computations per second for single-precision floating
pointer numbers (double precision computations are, of course, more costly). The
code was compiled using the GNU compiler. All data sets were small enough to fit
in a CPU cache, which may have resulted in slightly more optimistic performance
numbers for cheap distances such as L2.

Somewhat higher efficiency numbers can be obtained by using the Intel com-
piler or the Visual Studio (Clang seems to be equally efficient to the GNU com-
piler). In fact, performance is much better for distances relying on “heavy” math

https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/test/bench_distfunc.cc

30 Bilegsaikhan Naidan and Leonid Boytsov

functions: slow versions of KL- and Jensen-Shannon divergences and Jensen-
Shannon metrics, as well as for Lp spaces, where p 6∈ {1, 2,∞}.

In the efficiency test, all dense vectors have 128 elements. For all dense-vector
distances except the Jensen-Shannon divergence, their elements were generated
randomly and uniformly. For the Jensen-Shannon divergence, we first generate
elements randomly, and next we randomly select elements that are set to zero
(approximately half of all elements). Additionally, for KL-divergences and the
JS-divergence, we normalize vector elements so that they correspond a true
discrete probability distribution.

Sparse space distances were tested using sparse vectors from two sample files
in the sample data directory. Sparse vectors in the first and the second file on
average contain about 100 and 600 non-zero elements, respectively.

String distances were tested using DNA sequences sampled from a human
genome.13 The length of each string was sampled from a normal distribution
N (32, 4).

The Signature Quadratic Form Distance (SQFD) [5,4] was tested using signa-
tures extracted from LSVRC-2014 data set [44], which contains 1.2 million high
resolution images. We implemented our own code to extract signatures following
the method of Beecks [4]. For each image, we selected 104 pixels randomly and
mapped them into 7-dimensional feature space: three color, two position, and
two texture dimensions. The features were clustered by the standard k-means al-
gorithm with 20 clusters. Then, each cluster was represented by an 8-dimensional
vector, which included a 7-dimensional centroid and a cluster weight (the number
of cluster points divided by 104).

4.2 Lp-norms

The Lp distance between vectors x and y are given by the formula:

Lp(x, y) =

(
n∑
i=1

|xi − yi|p
)1/p

(1)

In the limit (p→∞), the Lp distance becomes the Maximum metric, also known
as the Chebyshev distance:

L∞(x, y) =
n

max
i=1
|xi − yi| (2)

L∞ and all spaces Lp for p ≥ 1 are true metrics. They are symmetric, equal
to zero only for identical elements, and, most importantly, satisfy the triangle
inequality. However, the Lp norm is not a metric if p < 1.

In the case of dense vectors, we have reasonably efficient implementations
for Lp distances where p is either integer or infinity. The most efficient imple-
mentations are for L1 (Manhattan), L2 (Euclidean), and L∞ (Chebyshev). As
explained in the author’s blog, we compute exponents through square rooting.

13 http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/

https://github.com/searchivarius/nmslib/blob/v1.5/sample_data
https://github.com/searchivarius/nmslib/blob/v1.5/sample_data/sparse_5K.txt
https://github.com/searchivarius/nmslib/blob/v1.5/sample_data/sparse_wiki_5K.txt
https://github.com/searchivarius/nmslib/blob/v1.5/sample_data/dna32_4_5K.txt
https://github.com/searchivarius/nmslib/blob/v1.5/data/data_conv/sqfd
http://searchivarius.org/blog/efficient-exponentiation-square-rooting
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/

NMSLIB Manual 31

Table 3: Description of implemented spaces

Space Mnemonic Name & Formula Efficiency

(million op/sec)

Metric Spaces

Hamming bit hamming 240∑n
i=1 |xi − yi|

L1 l1, l1 sparse 35, 1.6∑n
i=1 |xi − yi|

L2 l2, l2 sparse 30, 1.6√∑n
i=1 |xi − yi|2

L∞ linf, linf sparse 34 , 1.6

maxn
i=1 |xi − yi|

Lp (generic p ≥ 1) lp:p=..., lp sparse:p=... 0.1-3, 0.1-1.2(∑n
i=1 |xi − yi|

p
)1/p

Angular distance angulardist, angulardist sparse, angulardist sparse fast 13, 1.4, 3.5

arccos

(∑n
i=1 xiyi√∑n

i=1 x2
i

√∑n
i=1 y2

i

)
Jensen-Shan. metr. jsmetrslow, jsmetrfast, jsmetrfastapprox 0.3, 1.9, 4.8√

1
2

∑n
i=1

[
xi log xi + yi log yi − (xi + yi) log xi+yi

2

]
Levenshtein leven (see § 4.6 for details) 0.2

SQFD sqfd minus func, sqfd heuristic func:alpha=..., 0.05, 0.05, 0.03

sqfd gaussian func:alpha=... (see § 4.7 for details)

Non-metric spaces (symmetric distance)

Lp (generic p < 1) lp:p=..., lp sparse:p=... 0.1-3, 0.1-1(∑n
i=1 |xi − yi|

p
)1/p

Jensen-Shan. div. jsdivslow, jsdivfast, jsdivfastapprox 0.3, 1.9, 4.8
1
2

∑n
i=1

[
xi log xi + yi log yi − (xi + yi) log xi+yi

2

]
Cosine distance cosinesimil, cosinesimil sparse, cosinesimil sparse fast 13, 1.4, 3.5

1−
∑n

i=1 xiyi√∑n
i=1 x2

i

√∑n
i=1 y2

i

Norm. Levenshtein normleven, see § 4.6 for details 0.2

Non-metric spaces (non-symmetric distance)

Regular KL-div. left queries: kldivfast 0.5, 27

right queries: kldivfastrq∑n
i=1 xi log xi

yi

Generalized KL-div. left queries: kldivgenslow, kldivgenfast 0.5, 27

right queries: kldivgenfastrq 27∑n
i=1

[
xi log xi

yi
− xi + yi

]
Itakura-Saito left queries: itakurasaitoslow, itakurasaitofast 0.2, 3, 14

right queries: itakurasaitofastrq 14∑n
i=1

[
xi
yi
− log xi

yi
− 1
]

32 Bilegsaikhan Naidan and Leonid Boytsov

This works best when the number of digits (after the binary digit) is small, e.g.,
if p = 0.125.

Any Lp space can have a dense and a sparse variant. Sparse vector spaces
have their own mnemonic names, which are different from dense-space mnemonic
names in that they contain a suffix sparse (see also Table 3). For instance l1

and l1 sparse are both L1 spaces, but the former is dense and the latter is
sparse. The mnemonic names of L1, L2, and L∞ spaces (passed to the bench-
marking utility) are l1, l2, and linf, respectively. Other generic Lp have the
name lp, which is used in combination with a parameter. For instance, L3 is
denoted as lp:p=3.

Distance functions for sparse-vector spaces are far less efficient, due to a
costly, branch-heavy, operation of matching sparse vector indices (between two
sparse vectors).

4.3 Scalar-product Related Distances

We have two distance function whose formulas include normalized scalar prod-
uct. One is the cosine distance, which is equal to:

d(x, y) = 1−
∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

The cosine distance is not a true metric, but it can be converted into one by
applying a monotonic transformation (i.e.., subtracting the cosine distance from
one and taking an inverse cosine). The resulting distance function is a true
metric, which is called the angular distance. The angular distance is computed
using the following formula:

d(x, y) = arccos

(∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

)
In the case of sparse spaces, to compute the scalar product, we need to ob-

tain an intersection of vector element ids corresponding to non-zero elements.
A classic text-book intersection algorithm (akin to a merge-sort) is not particu-
larly efficient, apparently, due to frequent branching. For single-precision floating
point vector elements, we provide a more efficient implementation that relies on
the all-against-all comparison SIMD instruction mm cmpistrm. This implemen-
tation (inspired by the set intersection algorithm of Schlegel et al. [47]) is about
2.5-3 times faster than a pure C++ implementation based on the merge-sort
approach.

4.4 Jensen-Shannon divergence

Jensen-Shannon divergence is a symmetrized and smoothed KL-divergence:

1

2

n∑
i=1

[
xi log xi + yi log yi − (xi + yi) log

xi + yi
2

]
(3)

NMSLIB Manual 33

This divergence is symmetric, but it is not a metric function. However, the square
root of the Jensen-Shannon divergence is a proper a metric [20], which we call
the Jensen-Shannon metric.

A straightforward implementation of Eq. 3 is inefficient for two reasons (at
least when one uses the GNU C++ compiler) (1) computation of logarithms is a
slow operation (2) the case of zero xi and/or yi requires conditional processing,
i.e., costly branches.

A better method is to pre-compute logarithms of data at index time. It is also
necessary to compute logarithms of a query vector. However, this operation has
a little cost since it is carried out once for each nearest neighbor or range query.
Pre-computation leads to a 3-10 fold improvement depending on the sparsity of
vectors, albeit at the expense of requiring twice as much space. Unfortunately,
it is not possible to avoid computation of the third logarithm: it needs to be
computed in points that are not known until we see the query vector.

However, it is possible to approximate it with a very good precision, which
should be sufficient for the purpose of approximate searching. Let us rewrite
Equation 3 as follows:

1

2

n∑
i=1

[
xi log xi + yi log yi − (xi + yi) log

xi + yi
2

]
=

=
1

2

n∑
i=1

[xi log xi + yi log yi]−
n∑
i=1

[
(xi + yi)

2
log

xi + yi
2

]
=

=
1

2

n∑
i=1

xi log xi + yi log yi−

n∑
i=1

(xi + yi)

2

[
log

1

2
+ log max(xi, yi) + log

(
1 +

min(xi, yi)

max(xi, yi)

)]
(4)

We can pre-compute all the logarithms in Eq. 4 except for log
(

1 + min(xi,yi)
max(xi,yi)

)
.

However, its argument value is in a small range: from one to two. We can dis-
cretize the range, compute logarithms in many intermediate points and save the
computed values in a table. Finally, we employ the SIMD instructions to im-
plement this approach. This is a very efficient approach, which results in a very
little (around 10−6 on average) relative error for the value of the Jensen-Shannon
divergence.

Another possible approach is to use an efficient approximation for logarithm
computation. As our tests show, this method is about 1.5x times faster (1.5 vs
1.0 billions of logarithms per second), but for the logarithms in the range [1, 2],
the relative error is one order magnitude higher (for a single logarithm) than for
the table-based discretization approach.

http://fastapprox.googlecode.com/svn/trunk/fastapprox/src/fastonebigheader.h
http://fastapprox.googlecode.com/svn/trunk/fastapprox/src/fastonebigheader.h
https://github.com/searchivarius/BlogCode/tree/master/2013/12/26

34 Bilegsaikhan Naidan and Leonid Boytsov

4.5 Bregman Divergences

Bregman divergences are typically non-metric distance functions, which are equal
to a difference between some convex differentiable function f and its first-order
Taylor expansion [10,11]. More formally, given the convex and differentiable func-
tion f (of many variables), its corresponding Bregman divergence df (x, y) is
equal to:

df (x, y) = f(x)− f(y)− (f(y) · (x− y))

where x · y denotes the scalar product of vectors x and y. In this library, we im-
plement the generalized KL-divergence and the Itakura-Saito divergence, which
correspond to functions f =

∑
xi log xi −

∑
xi and f = −

∑
log xi. The gener-

alized KL-divergence is equal to:

n∑
i=1

[
xi log

xi
yi
− xi + yi

]
,

while the Itakura-Saito divergence is equal to:

n∑
i=1

[
xi
yi
− log

xi
yi
− 1

]
.

If vectors x and y are proper probability distributions,
∑
xi =

∑
yi = 1. In this

case, the generalized KL-divergence becomes a regular KL-divergence:

n∑
i=1

[
xi log

xi
yi

]
.

Computing logarithms is costly: We can considerably improve efficiency of
Itakura-Saito divergence and KL-divergence by pre-computing logarithms at in-
dex time. The spaces that implement this functionality contain the substring
fast in their mnemonic names (see also Table 3).

4.6 String Distances

We currently provide implementations for the Levenshtein distance and its length-
normalized variant. The original Levenshtein distance is equal to the minimum
number of insertions, deletions, and substitutions (but not transpositions) re-
quired to obtain one string from another [31]. The distance between strings p
and s is computed using the classic O(m × n) dynamic programming solution,
where m and n are lengths of strings p and s, respectively. The normalized Lev-
enshtein distance is obtained by dividing the original Levenshtein distance by
the maximum of string lengths. If both strings are empty, the distance is equal
to zero.

While the original Levenshtein distance is a metric distance, the normalized
Levenshtein function is not, because the triangle inequality may not hold. In

NMSLIB Manual 35

practice, when there is little variance in string length, the violation of the tri-
angle inequality is infrequent and, thus, the normalized Levenshtein distance is
approximately metric for many real data sets.

Technically, the classic Levenshtein distance is equal to Cn,m, where Ci,j is
computed via the classic recursion:

Ci,j = min

0, if i = j = 0

Ci−1,j + 1, if i > 0

Ci,j−1 + 1, if j > 0

Ci−1,j−1 + [pi 6= sj], if i, j > 0

(5)

Because computation time is proportional to both strings’ length, this can be
a costly operation: for the sample data set described in § 4.1, it is possible to
compute only about 200K distances per second.

The classic algorithm to compute the Levenshtein distance was independently
discovered by several researchers in various contexts, including speech recogni-
tion [54,53,45] and computational biology [40] (see Sankoff [46] for a historical
perspective). Despite the early discovery, the algorithm was generally unknown
before a publication by Wagner and Fischer [55] in a computer science journal.

4.7 Signature Quadratic Form Distance (SQFD)

Images can be compared using a family of metric functions called the Signature
Quadratic Form Distance (SQFD). During the preprocessing stage, each image
is converted to a set of n signatures (the number of signatures n is a parameter).
To this end, a fixed number of pixels is randomly selected. Then, each pixel
is represented by a 7-dimensional vector with the following components: three
color, two position, and two texture elements. These 7-dimensional vectors are
clustered by the standard k-means algorithm with n centers. Finally, each cluster
is represented by an 8-dimensional vector, called signature. A signature includes
a 7-dimensional centroid and a cluster weight (the number of cluster points
divided by the total number of randomly selected pixels). Cluster weights form
a signature histogram.

The SQFD is computed as a quadratic form applied to a 2n-dimensional vec-
tor constructed by combining images’ signature histograms. The combination
vector includes n unmodified signature histogram values of the first image fol-
lowed by n negated signature histogram values of the second image. Unlike the
classic quadratic form distance, where the quadratic form matrix is fixed, in the
case of the SQFD, the matrix is re-computed for each pair of images. This can
be seen as computing the distance between infinite-dimensional vectors each of
which has only a finite number of non-zero elements.

To compute the quadratic form matrix, we introduce the new global enu-
meration of signatures, in which a signature k from the first image has number
k, while the signature k from the second image has number n + k. To obtain

36 Bilegsaikhan Naidan and Leonid Boytsov

a quadratic form matrix element in row i column j we first compute the Eu-
clidean distance d between the i-th and the j-th signature. Then, the value d is
transformed using one of the three functions: negation (the minus function −d),
a heuristic function 1

α+d , and the Gaussian function exp(−αd2). The larger is
the distance, the smaller is the coefficient in the matrix of the quadratic form.

Note that the SQFD is a family of distances parameterized by the choice of
the transformation function and α. For further details, please, see the thesis of
Beecks [4].

5 Search Methods

Implemented search methods can be broadly divided into the following cate-
gories:

– Space partitioning methods (including a specialized method bbtree for Breg-
man divergences) § 5.1;

– Locality Sensitive Hashing (LSH) methods § 5.2;
– Filter-and-refine methods based on projection to a lower-dimensional space

§ 5.3;
– Filtering methods based on permutations § 5.4;
– Methods that construct a proximity graph § 5.5;
– Miscellaneous methods § 5.6.

In the following subsections (§ 5.1-5.6), we describe implemented methods,
explain their parameters, and provide examples of their use via the benchmarking
utility experiment (experiment.exe on Windows). Note that a few parameters
are query-time parameters, which means that they can be changed without re-
building the index see § 3.4.6. For the description of the utility experiment see
§ 3.4. For several methods we provide basic tuning guidelines, see § 6.

5.1 Space Partitioning Methods

Parameters of space partitioning methods are summarized in Table 4. Most of
these methods are hierarchical partitioning methods.

Hierarchical space partitioning methods create a hierarchical decomposition
of the space (often in a recursive fashion), which is best represented by a tree
(or a forest). There are two main partitioning approaches: pivoting and compact
partitioning schemes [15].

Pivoting methods rely on embedding into a vector space where vector ele-
ments are distances from the object to pivots. Partitioning is based on how far
(or close) the data points are located with respect to pivots. 14

Hierarchical partitions produced by pivoting methods lack locality: a single
partition can contain not-so-close data points. In contrast, compact partitioning

14 If the original space is metric, mapping an object to a vector of distances to pivots
defines the contractive embedding in the metric spaces with L∞ distance. That is,
the L∞ distance in the target vector space is a lower bound for the original distance.

NMSLIB Manual 37

schemes exploit locality. They either divide the data into clusters or create,
possibly approximate, Voronoi partitions. In the latter case, for example, we can
select several centers/pivots πi and associate data points with the closest center.

If the current partition contains fewer than bucketSize (a method parame-
ter) elements, we stop partitioning of the space and place all elements belonging
to the current partition into a single bucket. If, in addition, the value of the
parameter chunkBucket is set to one, we allocate a new chunk of memory that
contains a copy of all bucket vectors. This method often halves retrieval time at
the expense of extra memory consumed by a testing utility (e.g., experiment)
as it does not deallocate memory occupied by the original vectors. 15

Classic hierarchical space partitioning methods for metric spaces are exact. It
is possible to make them approximate via an early termination technique, where
we terminate the search after exploring a pre-specified number of partitions. To
implement this strategy, we define an order of visiting partitions. In the case
of clustering methods, we first visit partitions that are closer to a query point.
In the case of hierarchical space partitioning methods such as the VP-tree, we
greedily explore partitions containing the query.

In NMSLIB, the early termination condition is defined in terms of the max-
imum number of buckets (parameter maxLeavesToVisit) to visit before termi-
nating the search procedure. By default, the parameter maxLeavesToVisit is
set to a large number (2147483647), which means that no early termination is
employed. The parameter maxLeavesToVisit is supported by many, but not all
space partitioning methods.

5.1.1 VP-tree A VP-tree [52,57] (also known as a ball-tree) is a pivoting
method. During indexing, a (random) pivot is selected and a set of data objects
is divided into two parts based on the distance to the pivot. If the distance
is smaller than the median distance, the objects are placed into one (inner)
partition. If the distance is larger than the median, the objects are placed into
the other (outer) partition. If the distance is exactly equal to the median, the
placement can be arbitrary.

We attempt to select the pivot multiple times. Each time, we measure the
variance of distances to the pivot. Eventually, we use the pivot that corresponds
to the maximum variance. The number of attempts to select the pivot is con-
trolled by the index-time parameter selectPivotAttempts.

The VP-tree in metric spaces is an exact search method, which relies on the
triangle inequality. It can be made approximate by applying the early termina-
tion strategy (as described in the previous subsection). Another approximate-
search approach, which is currently implemented only for the VP-tree, is based
on the relaxed version of the triangle inequality.

Assume that π is the pivot in the VP-tree, q is the query with the radius
r, and R is the median distance from π to every other data point. Due to the

15 Keeping original vectors simplifies the testing workflow. However, this is not nec-
essary for a real production system. Hence, storing bucket vectors at contiguous
memory locations does not have to result in a larger memory footprint.

38 Bilegsaikhan Naidan and Leonid Boytsov

triangle inequality, pruning is possible only if r ≤ |R − d(π, q)|. If this latter
condition is true, we visit only one partition that contains the query point. If
r > |R−d(π, q)|, there is no guarantee that all answers are in the same partition
as q. Thus, to guarantee retrieval of all answers, we need to visit both partitions.

The pruning condition based on the triangle inequality can be overly pes-
simistic. By selecting some α > 1 and opting to prune when r ≤ α|R− d(π, q)|,
we can improve search performance at the expense of missing some valid an-
swers. The efficiency-effectiveness trade-off is affected by the choice of α: Note
that for some (especially low-dimensional) data sets, a modest loss in recall (e.g.,
by 1-5%) can lead to an order of magnitude faster retrieval. Not only the triangle
inequality can be overly pessimistic in metric spaces, but it often fails to capture
the geometry of non-metric spaces. As a result, if the metric space method is
applied to a non-metric space, the recall can be too low or retrieval time can be
too long.

Yet, in non-metric spaces, it is often possible to answer queries, when using α
possibly smaller than one [8,38]. More generally, we assume that there exists an
unknown decision/pruning function D(R, d(π, q)) and that pruning is done when
r ≤ D(R, d(π, q)). The decision function D(), which can be learned from data,
is called a search oracle. A pruning algorithm based on the triangle inequality is
a special case of the search oracle described by the formula:

Dπ,R(x) =

{
αleft|x−R|expleft , if x ≤ R
αright|x−R|expright , if x ≥ R

(6)

There are several ways to obtain/specify optimal parameters for the VP-tree:

– using the auto-tuning procedure fired before creation of the index;
– using the standalone tuning utility tune vptree (tune vptree.exe for Win-

dows);
– fully manually.

It is, perhaps, easiest to initiate the tunning procedure during creation of
the index. To this end, one needs to specify parameters desiredRecall (the
minimum desired recall), bucketSize (the size of the bucket), tuneK or tuneR,
and (optionally) parameters tuneQty, minExp and maxExp. Parameters tuneK

and tuneR are used to specify the value of k for k-NN search, or the search
radius r for the range search.

The parameter tuneQty defines the maximum number of records in a subset
that is used for tuning. The tunning procedure will sample tuneQty records from
the main set to make a (potentially) smaller data test. Additional query sets will
be created by further random sampling of points from this smaller data set.

The tuning procedure considers all possible values for exponents between
minExp and maxExp with a restriction that expleft = expright. By default, minExp
= maxExp = 1, which is usually a good setting. For each value of the exponents,
the tunning procedure carries out a grid-like search procedure for parameters
αleft and αright with several random restarts. It creates several indices for the

NMSLIB Manual 39

tuning subset and runs a batch of mini-experiments to find parameters yield-
ing the desired recall value at the minimum cost. If it is necessary to produce
more accurate estimates, the tunning method may use automatically adjusted
values for parameters tuneQty, bucketSize, and desiredRecall. The tunning
algorithm cannot adjust the parameter maxLeavesToVisit: please, do not use
it with the auto-tunning procedure.

The disadvantage of automatic tuning is that it might fail to obtain param-
eters for a desired recall level. Another limitations is that a tunning procedure
cannot run on very small data sets (less than two thousand entries).

The standalone tuning utility tune vptree exploits an almost identical tun-
ing procedure. It differs from index-time auto-tuning in several ways:

– It can be used with other VP-tree based methods, in particular, with the
projection VP-tree (see § 5.3.2).

– It allows the user to specify a separate query set, which can be useful when
queries cannot be accurately modelled by a bootstrapping approach (sam-
pling queries from the main data set).

– Once the optimal values are computed, they can be further re-used without
the need to start the tunning procedure each time the index is created.

– However, the user is fully responsible for specifying the size of the test data
set and the value of the parameter desiredRecall: the system will not try
to change them for optimization purposes.

If automatic tunning fails, the user can restart the procedure with the smaller
value of desiredRecall. Alternatively, the user can manually specify values of
parameters: alphaLeft, alphaRight, expLeft, and expRight (by default expo-
nents are one).

The following is an example of testing the VP-tree with the benchmarking
utility experiment without the auto-tunning (note the separation into index-
and query-time parameters):

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method vptree \

--createIndex bucketSize=10,chunkBucket=1 \

--queryTimeParams alphaLeft=2.0,alphaRight=2.0,\

expLeft=1,expRight=1,\

maxLeavesToVisit=500

To initiate auto-tuning, one may use the following command line (note that
we do not use the parameter maxLeavesToVisit here):

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

40 Bilegsaikhan Naidan and Leonid Boytsov

--method vptree \

--createIndex tuneK=1,desiredRecall=0.9,\

bucketSize=10,chunkBucket=1

5.1.2 Multi-Vantage Point Tree It is possible to have more than one pivot
per tree level. In the binary version of the multi-vantage point tree (MVP-tree),
which is implemented in NMSLIB, there are two pivots. Thus, each partition
divides the space into four parts, which are similar to partitions created by two
levels of the VP-tree. The difference is that the VP-tree employs three pivots to
divide the space into four parts, while in the MVP-tree two pivots are used.

In addition, in the MVP-tree we memorize distances between a data object
and the first maxPathLen (method parameter) pivots on the path connecting the
root and the leaf that stores this data object. Because mapping an object to a
vector of distances (to maxPathLen pivots) defines the contractive embedding in
the metric spaces with L∞ distance, these values can be used to improve the
filtering capacity of the MVP-tree and, consequently to reduce the number of
distance computations.

The following is an example of testing the MVP-tree with the benchmarking
utility experiment:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method mvptree \

--createIndex maxPathLen=4,bucketSize=10,chunkBucket=1 \

--queryTimeParams maxLeavesToVisit=500

Our implementation of the MVP-tree permits to answer queries both exactly
and approximately (by specifying the parameter maxLeavesToVisit). Yet, this
implementation should be used only with metric spaces.

5.1.3 GH-Tree A GH-tree [52] is a binary tree. In each node the data set
is divided using two randomly selected pivots. Elements closer to one pivot are
placed into a left subtree, while elements closer to the second pivot are placed
into a right subtree.

The following is an example of testing the GH-tree with the benchmarking
utility experiment:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method ghtree \

--createIndex bucketSize=10,chunkBucket=1 \

--queryTimeParams maxLeavesToVisit=10

NMSLIB Manual 41

Table 4: Parameters of space partitioning methods

Common parameters

bucketSize A maximum number of elements in a bucket/leaf.

chunkBucket Indicates if bucket elements should be stored contiguously in
memory (1 by default).

maxLeavesToVisit An early termination parameter equal to the maximum num-
ber of buckets (tree leaves) visited by a search algorithm
(2147483647 by default).

VP-tree (vptree) [52,57]

Common parameters: bucketSize, chunkBucket, and
maxLeavesToVisit

selectPivotAttempts A number of pivot selection attempts (5 by default)

alphaLeft/alphaRight A stretching coefficient αleft/αright in Eq. (6)

expLeft/expRight The left/right exponent in Eq. (6)

tuneK The value of k used in the auto-tunning procedure (in the case
of k-NN search)

tuneR The value of the radius r used in the auto-tunning procedure
(in the case of the range search)

minExp/maxExp The minimum/maximum value of exponent used in the auto-
tunning procedure

Multi-Vantage Point Tree (mvptree) [9]

Common parameters: bucketSize, chunkBucket, and
maxLeavesToVisit

maxPathLen the maximum number of top-level pivots for which we memorize
distances to data objects in the leaves

GH-tree (ghtree) [52]

Common parameters: bucketSize, chunkBucket, and
maxLeavesToVisit

List of clusters (list clusters) [14]

Common parameters: bucketSize, chunkBucket, and
maxLeavesToVisit. Note maxLeavesToVisit is a query-
time parameter.

useBucketSize If equal to one, we use the parameter bucketSize to determine
the number of points in the cluster. Otherwise, the size of the
cluster is defined by the parameter radius.

radius The maximum radius of a cluster (used when useBucketSize

is set to zero).

strategy A cluster selection strategy. It is one of the follow-
ing: random, closestPrevCenter, farthestPrevCenter,
minSumDistPrevCenters, maxSumDistPrevCenters.

SA-tree (satree) [39]

No parameters

bbtree (bbtree) [11]

Common parameters: bucketSize, chunkBucket, and
maxLeavesToVisit

Note: mnemonic method names are given in round brackets.

42 Bilegsaikhan Naidan and Leonid Boytsov

Our implementation of the GH-tree permits to answer queries both exactly
and approximately (by specifying the parameter maxLeavesToVisit). Yet, this
implementation should be used only with metric spaces.

5.1.4 List of Clusters The list of clusters [14] is an exact search method for
metric spaces, which relies on flat (i.e., non-hierarchical) clustering. Clusters are
created sequentially starting by randomly selecting the first cluster center. Then,
close points are assigned to the cluster and the clustering procedure is applied
to the remaining points. Closeness is defined either in terms of the maximum
radius, or in terms of the maximum number (bucketSize) of points closest to
the center.

Next we select cluster centers according to one of the policies: random selec-
tion, a point closest to the previous center, a point farthest from the previous
center, a point that minimizes the sum of distances to the previous center, and
a point that maximizes the sum of distances to the previous center. In our ex-
perience, a random selection strategy (a default one) works well in most cases.

The search algorithm iterates over the constructed list of clusters and checks
if answers can potentially belong to the currently selected cluster (using the
triangle inequality). If the cluster can contain an answer, each cluster element
is compared directly against the query. Next, we use the triangle inequality to
verify if answers can be outside the current cluster. If this is not possible, the
search is terminated.

We modified this exact algorithm by introducing an early termination condi-
tion. The clusters are visited in the order of increasing distance from the query to
a cluster center. The search process stops after vising a maxLeavesToVisit clus-
ters. Our version is supposed to work for metric spaces (and symmetric distance
functions), but it can also be used with mildly-nonmetric symmetric distances
such as the cosine distance.

An example of testing the list of clusters using the bucketSize as a parameter
to define the size of the cluster:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method list_clusters \

--createIndex useBucketSize=1,bucketSize=100,strategy=random \

--queryTimeParams maxLeavesToVisit=5

An example of testing the list of clusters using the radius as a parameter to
define the size of the cluster:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method list_clusters \

--createIndex useBucketSize=0,radius=0.2,strategy=random \

--queryTimeParams maxLeavesToVisit=5

NMSLIB Manual 43

5.1.5 SA-tree The Spatial Approximation tree (SA-tree) [39] aims to approx-
imate the Voronoi partitioning. A data set is recursively divided by selecting
several cluster centers in a greedy fashion. Then, all remaining data points are
assigned to the closest cluster center.

A cluster-selection procedure first randomly chooses the main center point
and arranges the remaining objects in the order of increasing distances to this
center. It then iteratively fills the set of clusters as follows: We start from the
empty cluster list. Then, we iterate over the set of data points and check if there
is a cluster center that is closer to this point than the main center point. If no
such cluster exists (i.e., the point is closer to the main center point than to any
of the already selected cluster centers), the point becomes a new cluster center
(and is added to the list of clusters). Otherwise, the point is added to the nearest
cluster from the list.

After the cluster centers are selected, each of them is indexed recursively
using the already described algorithm. Before this, however, we check if there
are points that need to be reassigned to a different cluster. Indeed, because the
list of clusters keeps growing, we may miss the nearest cluster not yet added to
the list. To fix this, we need to compute distances among every cluster point and
cluster centers that were not selected at the moment of the point’s assignment
to the cluster.

Currently, the SA-tree is an exact search method for metric spaces without
any parameters. The following is an example of testing the SA-tree with the
benchmarking utility experiment:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method satree

5.1.6 bbtree A Bregman ball tree (bbtree) is an exact search method for
Bregman divergences [11]. The bbtree divides data into two clusters (each cov-
ered by a Bregman ball) and recursively repeats this procedure for each cluster
until the number of data points in a cluster falls below bucketSize. Then, such
clusters are stored as a single bucket.

At search time, the method relies on properties of Bregman divergences to
compute the shortest distance to a covering ball. This is a rather expensive
iterative procedure that may require several computations of direct and inverse
gradients, as well as of several distances.

Additionally, Cayton [11] employed an early termination method: The algo-
rithm can be told to stop after processing a maxLeavesToVisit buckets. The
resulting method is an approximate search procedure.

Our implementation of the bbtree uses the same code to carry out the nearest-
neighbor and the range searching. Such an implementation of the range searching
is somewhat suboptimal and a better approach exists [12].

44 Bilegsaikhan Naidan and Leonid Boytsov

The following is an example of testing the bbtree with the benchmarking
utility experiment:

release/experiment \

--distType float --spaceType kldivgenfast \

--testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method bbtree \

--createIndex bucketSize=10 \

--queryTimeParams maxLeavesToVisit=20

5.2 Locality-sensitive Hashing Methods

Locality Sensitive Hashing (LSH) [28,30] is a class of methods employing hash
functions that tend to have the same hash values for close points and different
hash values for distant points. It is a probabilistic method in which the probabil-
ity of having the same hash value is a monotonically decreasing function of the
distance between two points (that we compare). A hash function that possesses
this property is called locality sensitive.

Our library embeds the LSHKIT which provides locality sensitive hash func-
tions in L1 and L2. It supports only the nearest-neighbor (but not the range)
search. Parameters of LSH methods are summarized in Table 5. The LSH meth-
ods are not available under Windows.

Random projections is a common approach to design locality sensitive hash
functions. These functions are composed from M binary hash functions hi(x). A
concatenation of the binary hash function values, i.e., h1(x)h2(x) . . . hM (x), is
interpreted as a binary representation of the hash function value h(x). Pointers
to objects with equal hash values (modulo H) are stored in same cells of the
hash table (of the size H). If we used only one hash table, the probability of
collision for two similar objects would be too low. To increase the probability of
finding a similar object multiple hash tables are used. In that, we use a separate
(randomly selected) hash function for each hash table.

To generate binary hash functions we first select a parameter W (called a
width). Next, for every binary hash function, we draw a value ai from a p-stable
distribution [16], and a value bi from the uniform distribution with the support
[0,W]. Finally, we define hi(x) as:

hi(x) =

⌊
ai · x+ bi

W

⌋
,

where bxc is the floor function and x · y denotes the scalar product of x and y.
For the L2 a standard Guassian distribution is p-stable, while for L1 distance

one can generate hash functions using a Cauchy distribution [16]. For L1, the
LSHKIT defines another (“thresholding”) approach based on sampling. It is
supposed to work best for data points enclosed in a cube [a, b]d. We omit the
description here and refer the reader to the papers that introduced this method
[56,33].

NMSLIB Manual 45

Table 5: Parameters of LSH methods

Common parameters

W A width of the window [17].

M A number of atomic (binary hash functions), which are con-
catenated to produce an integer hash value.

H A size of the hash table.

L The number hash tables.

Multiprobe LSH: only for L2 (lsh multiprobe) [34,19,17]

Common parameters: W, M, H, and L

T a number of probes

desiredRecall a desired recall

numSamplePairs a number of samples (P in lshkit)

numSampleQueries a number of sample queries (Q in lshkit)

tuneK find optimal parameter for k-NN , search where k is defined by
this parameter

LSH Gaussian: only for L2 (lsh gaussian) [13]

Common parameters: W, M, H, and L

LSH Cauchy: only for L1 (lsh cauchy) [13]

Common parameters: W, M, H, and L

LSH thresholding: only for L1 (lsh threshold) [56,33]

Common parameters: M, H, and L (W is not used)

Note: mnemonic method names are given in round brackets.

One serious drawback of the LSH is that it is memory-greedy. To reduce
the number of hash tables while keeping the collision probability for similar
objects sufficiently high, it was proposed to “multi-probe” the same hash table
more than once. When we obtain the hash value h(x), we check (i.e., probe) not
only the contents of the hash table cell h(x) mod H, but also contents of cells
whose binary codes are “close” to h(x) (i.e, they may differ by a small number of
bits). The LSHKIT, which is embedded in our library, contains a state-of-the-art
implementation of the multi-probe LSH that can automatically select optimal
values for parameters M and W to achieve a desired recall (remaining parameters
still need to be chosen manually).

46 Bilegsaikhan Naidan and Leonid Boytsov

The following is an example of testing the multi-probe LSH with the bench-
marking utility experiment. We aim to achieve the recall value 0.25 (parameter
desiredRecall) for the 1-NN search (parameter tuneK):

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method lsh_multiprobe \

--createIndex desiredRecall=0.25,tuneK=1,\

T=5,L=25,H=16535

The classic version of the LSH for L2 can be tested as follows:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method lsh_gaussian \

--createIndex W=2,L=5,M=40,H=16535

There are two ways to use LSH for L1. First, we can invoke the implemen-
tation based on the Cauchy distribution:

release/experiment \

--distType float --spaceType l1 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method lsh_cauchy \

--createIndex W=2,L=5,M=10,H=16535

Second, we can use L1 implementation based on thresholding. Note that it
does not use the width parameter W:

release/experiment \

--distType float --spaceType l1 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method lsh_threshold \

--createIndex L=5,M=60,H=16535

5.3 Projection-based Filter-and-Refine Methods

Projection-based filter-and-refine methods operate by mapping data and query
points to a low(er) dimensional space (a projection space) with a simple, easy
to compute, distance function. The search procedure consists in generation of
candidate entries by searching in a low-dimensional projection space with sub-
sequent refinement, where candidate entries are directly compared against the
query using the original distance function.

The number of candidate records is an important method parameter, which
can be specified as a fraction of the total number of data base entries (parameter
dbScanFrac).

NMSLIB Manual 47

Different projection-based methods arise depending on: the type of a projec-
tion, the type of the projection space, and on the type of the search algorithm
for the projection space. A type of the projection can be specified via a method’s
parameter projType. A dimensionality of the projection space is specified via a
method’s parameter projDim.

We support four well-known types of projections:

– Classic random projections using random orthonormal vectors (mnemonic
name rand);

– Fastmap (mnemonic name fastmap);
– Distances to random reference points/pivots (mnemonic name randrefpt);
– Based on permutations perm;

All but the classic random projections are distance-based and can be applied to
an arbitrary space with the distance function. Random projections can be applied
only to vector spaces. A more detailed description of projection approaches is
given in § A

We provide two basic implementations to generate candidates. One is based
on brute-force searching in the projected space and another builds a VP-tree
over objects’ projections. In what follows, these methods are described in detail.

5.3.1 Brute-force projection search. In the brute-force approach, we scan
the list of projections and compute the distance between the projected query and
a projection of every data point. Then, we sort all data points in the order of
increasing distance to the projected query. A fraction (defined by dbScanFrac)
of data points is compared directly against the query. Top candidates (most clos-
est entries) are identified using either the priority queue or incremental sorting
([26]). Incremental sorting is a more efficient approach enabled by default. The
mnemonic code of this method is proj incsort.

A choice of the distance in the projected space is governed by the parameter
useCosine. If it set to 1, the cosine distance is used (this makes most sense if we
use the cosine distance in the original space). By default useCosine = 0, which
forces the use of L2 in the projected space.

The following is an example of testing the brute-force search of projections
with the benchmarking utility experiment:

release/experiment \

--distType float --spaceType cosinesimil --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method proj_incsort \

--createIndex projType=rand,projDim=4 \

--queryTimeParams useCosine=1,dbScanFrac=0.01

5.3.2 Projection VP-tree. To avoid exhaustive search in the space of pro-
jections, it is possible to index projected vectors using a VP-tree. The method’s

48 Bilegsaikhan Naidan and Leonid Boytsov

mnemonic name is proj vptree. In that, one needs to specify both the param-
eters of the VP-tree (see § 5.1.1) and the projection parameters as in the case
of brute-force searching of projections (see § 5.3.1).

The major difference from the brute-force search over projections is that,
instead of choosing between L2 and cosine distance as the distance in the pro-
jected space, one uses a methods’ parameter projSpaceType to specify an ar-
bitrary one. Similar to the regular VP-tree implementation, optimal αleft and
αright are determined by the utility tune vptree via a grid search like procedure
(tune vptree.exe on Windows).

This method, unfortunately, tends to perform worse than the VP-tree ap-
plied to the original space. The only exception are spaces with high intrinsic
(and, perhaps, representational) dimensionality where VP-trees (even with an
approximate search algorithm) are useless unless dimensionality is reduced sub-
stantially. One example is Wikipedia tf-idf vectors, see § 9.

The following is an example of testing the VP-tree over projections with the
benchmarking utility experiment:

release/experiment \

--distType float --spaceType cosinesimil --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method proj_vptree \

--createIndex projType=rand,projDim=4,projSpaceType=cosinesimil \

--queryTimeParams alphaLeft=2,alphaRight=2,dbScanFrac=0.01

5.3.3 OMEDRANK. In OMEDRANK [22] there is a small set of voting
pivots, each of which ranks data points based on a somewhat imperfect notion
of the distance from points to the query (computed by a classic random pro-
jection or a projection of some different kind). While each individual ranking is
imperfect, a more accurate ranking can be achieved by rank aggregation. When
such a consolidating ranking is found, the most highly ranked objects from this
aggregate ranking can be used as answers to a nearest-neighbor query. Finding
the aggregate ranking is an NP-complete problem that Fagin et al. [22] solve
only heuristically.

Technically, during the index time, each point in the original space is pro-
jected into a (low)er dimensional vector space. The dimensionality of the projec-
tion is defined using a method’s parameter numPivot (note that this is different
from other projection methods). Then, for each dimension i in the projected
space, we sort data points in the order of increasing value of the i-th element of
its projection.

We also divide the index in chunks each accounting for at most chunkIndexSize
data points. The search algorithm processes one chunk at a time. The idea is to
make a chunk sufficiently small so that auxiliary data structures fit into L1 or
L2 cache.

The retrieval algorithm uses numPivot pointers lowi and numPivot pointers
highi (lowi ≤ highi), The i-th pair of pointers (lowi, highi) indicate a start

NMSLIB Manual 49

and an end position in the i-th list. For each data point, we allocate a zero-
initialized counter. We further create a projection of the query and use numPivot
binary searches to find numPivot data points that have the closest i-th projection
coordinates. In each of the i list, we make both highi and lowi point to the found
data entries. In addition, for each data point found, we increase its counter. Note
that a single data point may appear the closest with respect to more than one
projection coordinate!

After that, we run a series of iterations. In each iteration, we increase numPivot
pointers highi and decrease numPivot pointers lowi (unless we reached the be-
ginning or the end of a list). For each data entry at which the pointer points,
we increase the value of the counter. Obviously, when we complete traversal of
all numPivot lists, each counter will have the value numPivot (recall that each
data point appears exactly once in each of the lists). Thus, sooner or later the
value of a counter becomes equal to or larger than numPivot× minFreq, where
minFreq is a method’s parameter, e.g., 0.5.

The first point whose counter becomes equal to or larger than numPivot ×
minFreq, becomes the first candidate entry to be compared directly against the
query. The next point whose counter matches the threshold value numPivot ×
minFreq, becomes the second candidate and so on so forth. The total num-
ber of candidate entries is defined by the parameter dbScanFrac. Instead of
all numPivot lists, it its possible to use only numPivotSearch lists that cor-
respond to the smallest absolute value of query’s projection coordinates. In
this case, the counter threshold is numPivotSearch × minFreq. By default,
numPivot = numPivotSearch.

Note that parameters numPivotSearch and dbScanFrac were introduced by
us, they were not employed in the original version of OMEDRANK.

The following is an example of testing OMEDRANK with the benchmarking
utility experiment:

release/experiment \

--distType float --spaceType cosinesimil --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method omedrank \

--createIndex projType=rand,numPivot=8 \

--queryTimeParams minFreq=0.5,dbScanFrac=0.02

5.4 Permutation-based Filtering Methods

Rather than relying on distance values directly, we can assess similarity of objects
based on their relative distances to reference points (i.e., pivots). For each data
point x, we can arrange pivots π in the order of increasing distances from x
(for simplicity we assume that there are no ties). This arrangement is called a
permutation. The permutation is essentially a pivot ranking. Technically, it is a
vector whose i-th element keeps an (ordinal) position of the i-th pivot (in the
set of pivots sorted by a distance from x).

50 Bilegsaikhan Naidan and Leonid Boytsov

Table 6: Parameters of projection-based filter-and-refine methods

Common parameters

projType A type of projection.

projDim Dimensionality of projection vectors.

intermDim An intermediate dimensionality used to reduce dimensionality
via the hashing trick (used only for sparse vector spaces).

dbScanFrac A number of candidate records obtained during the filtering
step.

Brute-force Projection Search (proj incsort)

Common parameters: projType, projDim, intermDim,
dbScanFrac

useCosine If set to one, we use the cosine distance in the projected space.
By default (value zero), L2 is used.

useQueue If set to one, we use the priority queue instead of incremental
sorting. By default is zero.

Projection VP-tree (proj vptree)

Common parameters: projType, projDim, intermDim,
dbScanFrac

projSpaceType Type of the space of projections

bucketSize A maximum number of elements in a bucket/leaf.

chunkBucket Indicates if bucket elements should be stored contiguously in
memory (1 by default).

maxLeavesToVisit An early termination parameter equal to the maximum num-
ber of buckets (tree leaves) visited by a search algorithm
(2147483647 by default).

alphaLeft/alphaRight A stretching coefficient αleft/αright in Eq. (6)

expLeft/expRight The left/right exponent in Eq. (6)

OMEDRANK [22] (omedrank)

Common parameters: projType, intermDim, dbScanFrac

numPivot Projection dimensionality

numPivotSearch Number of data point lists to be used in search

minFreq The threshold for being considered a candidate entry: whenever
a point’s counter becomes ≥ numPivotSearch × minFreq, this
point is compared directly to the query.

chunkIndexSize A number of documents in one index chunk.

Note: mnemonic method names are given in round brackets.

NMSLIB Manual 51

Computation of the permutation is a mapping from a source space, which
may not have coordinates, to a target vector space with integer coordinates. In
our library, the distance between permutations is defined as either L1 or L2.
Values of the distance in the source space often correlates well with the distance
in the target space of permutations. This property is exploited in permutation
methods. An advantage of permutation methods is that they are not relying
on metric properties of the original distance and can be successfully applied to
non-metric spaces [8,38].

Note that there is no simple relationship between the distance in the target
space and the distance in the source space. In particular, the distance in the
target space is neither a lower nor an upper bound for the distance in the source
space. Thus, methods based on indexing permutations are filtering methods that
allow us to obtain only approximate solutions. In the first step, we retrieve a
certain number of candidate points whose permutations are sufficiently close to
the permutation of the query vector. For these candidate data points, we compute
an actual distance to the query, using the original distance function. For almost
all implemented permutation methods, the number of candidate objects can be
controlled by a parameter dbScanFrac or minCandidate.

Permutation methods differ in how they index and process permutations. In
the following subsections, we briefly review implemented variants. Parameters
of these methods are summarized in Tables 7-8.

5.4.1 Brute-force permutation search. In the brute-force approach, we
scan the list of permutation methods and compute the distance between the
permutation of the query and a permutation of every data point. Then, we sort
all data points in the order of increasing distance to the query permutation and
a fraction (dbScanFrac) of data points is compared directly against the query.

In the current version of the library, the brute-force search over regular per-
mutations is a special case of the brute-force search over projections (see 5.3.1),
where the projection type is perm. There is also an additional brute-force filter-
ing method, which relies on the so-called binarized permutations. It is described
in 5.4.6.

5.4.2 Permutation Prefix Index (PP-Index). In a permutation prefix
index (PP-index), permutation are stored in a prefix tree of limited depth [21].
A parameter prefixLength defines the depth. The filtering phase aims to find
minCandidate candidate data points. To this end, it first retrieves the data
points whose prefix of the inverse pivot ranking is exactly the same as that of
the query. If we do not get enough candidate objects, we shorten the prefix and
repeat the procedure until we get a sufficient number of candidate entries. Note
that we do not the use the parameter dbScanFrac here.

52 Bilegsaikhan Naidan and Leonid Boytsov

The following is an example of testing the PP-index with the benchmarking
utility experiment.

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method pp-index \

--createIndex numPivot=4 \

--queryTimeParams prefixLength=4,minCandidate=100

5.4.3 VP-tree index over permutations. We can use a VP-tree to index
permutations. This approach is similar to that of Figueroa and Fredriksson [24].
We, however, rely on the approximate version of the VP-tree described in § 5.1.1,
while Figueroa and Fredriksson use an exact one. The “sloppiness” of the VP-
tree search is governed by the stretching coefficients alphaLeft and alphaRight

as well as by the exponents in Eq. (6). In NMSLIB, the VP-tree index over
permutations is a special case of the projection VP-tree (see § 5.3.2). There is
also an additional VP-tree based method that indexes binarized permutations.
It is described in § 5.4.6.

5.4.4 Metric Inverted File (MI-File) relies on the inverted index over
permutations [2]. We select (a potentially large) subset of pivots (parameter
numPivot). Using these pivots, we compute a permutation for every data point.
Then, numPivotIndex most closest pivots are memorized in a data file. If a
pivot number i is the pos-th most distant pivot for the object x, we add the
pair (pos, x) to the posting list number i. All posting lists are kept sorted in the
order of the increasing first element (equal to the ordinal position of the pivot
in a permutation).

During searching, we compute the permutation of the query and select post-
ing lists corresponding to numPivotSearch most closest pivots. These posting
lists are processed as follows: Imagine that we selected posting list i and the po-
sition of pivot i in the permutation of the query is pos. Then, using the posting
list i, we retrieve all candidate records for which the position of the pivot i in
their respective permutations is from pos − maxPosDiff to pos + maxPosDiff.
This allows us to update the estimate for the L1 distance between retrieved can-
didate records’ permutations and the permutation of the query (see [2] for more
details).

Finally, we select at most dbScanFrac ·N objects (N is the total number of
indexed objects) with the smallest estimates for the L1 between their permu-
tations and the permutation of the query. These objects are compared directly
against the query. The filtering step of the MI-file is expensive. Therefore, this
method is efficient only for computationally-intensive distances.

NMSLIB Manual 53

An example of testing this method using the utility experiment is as follows:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method mi-file \

--createIndex numPivot=128,numPivotIndex=16 \

--queryTimeParams numPivotSearch=4,dbScanFrac=0.01

5.4.5 Neighborhood APProximation Index (NAPP). Recently it was
proposed to index pivot neighborhoods: For each data point, we compute dis-
tances to numPivot points and select numPivotIndex (typically, much smaller
than numPivot) pivots that are closest to the data point. Then, we associate
these numPivotIndex closest pivots with the data point via an inverted file [51].
One can hope that for similar points two pivot neighborhoods will have a non-
zero intersection.

To exploit this observation, our implementation of the pivot neighborhood
indexing method retrieves all points that share at least numPivotSearch nearest
neighbor pivots (using an inverted file). Then, these candidates points can be
compared directly against the query, which works well for cheap distances like
L2.

For computationally expensive distances, one can add an additional filtering
step by setting the parameter useSort to one. If useSort is one, all candidate
entries are additionally sorted by the number of shared pivots (in the decreasing
order). Afterwards, a subset of candidates are compared directly against the
query. The size of the subset is defined by the parameter dbScanFrac. When
selecting the subset, we give priority to candidates sharing more common pivots
with the query. This secondary filtering may eliminate less promising entries,
but it incurs additional computational costs, which may outweigh the benefits
of additional filtering “power”, if the distance is cheap.

In many cases, good performance can be achieved by selecting pivots ran-
domly. However, we find that pivots can also be engineered (more information
on this topic will be published soon). To load external pivots, the user should
specify an index-time parameter pivotFile. The pivots should be in the same
format as the data points.

Note that our implementation is different from that of Tellez [51] in several
ways. First, we do not use a succinct inverted index. Second, we use a simple
posting merging algorithm based on counting (a ScanCount algorithm). Before
a query is processed, we zero-initialize an array that keeps one counter for every
data point. As we traverse a posting list and encounter an entry corresponding
to object i, we increment a counter number i. The ScanCount is known to be
quite efficient [32].

We also divide the index in chunks each accounting for at most chunkIndexSize
data points. The search algorithm processes one chunk at a time. The idea is to
make a chunk sufficiently small so that counters fit into L1 or L2 cache.

54 Bilegsaikhan Naidan and Leonid Boytsov

An example of running NAPP without the additional filtering stage:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--cachePrefixGS napp_gold_standard \

--method napp \

--createIndex numPivot=32,numPivotIndex=8,chunkIndexSize=1024 \

--queryTimeParams numPivotSearch=8 \

--saveIndex napp_index

Note that NAPP is capable of saving/loading the meta index. However, in
the bootstrapping mode this is only possible if gold standard data is cached
(hence, the option --cachePrefixGS).

An example of running NAPP with the additional filtering stage:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method napp \

--createIndex numPivot=32,numPivotIndex=8,chunkIndexSize=1024 \

--queryTimeParams useSort=1,dbScanFrac=0.01,numPivotSearch=8

5.4.6 Binarized permutation methods. Instead of computing the L2 dis-
tance between two permutations, we can binarize permutations and compute
the Hamming distance between binarized permutations. To this end, we select
an adhoc binarization threshold binThreshold (the number of pivots divided
by two is usually a good setting). All integer values smaller than binThreshold

become zeros, and values larger than or equal to binThreshold become ones.

The Hamming distance between binarized permutations can be computed
much faster than L2 or L1 (see Table 3). This comes at a cost though, as the
Hamming distance appears to be a worse proxy for the original distance than L2

or L1 (for the same number of pivots). One can compensate in quality by using
more pivots. In our experiments, it was usually sufficient to double the number
of pivots.

The binarized permutation can be searched sequentially. An example of test-
ing such a method using the utility experiment is as follows:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method perm_incsort_bin \

--createIndex numPivot=32,binThreshold=16 \

--queryTimeParams dbScanFrac=0.05

NMSLIB Manual 55

Alternatively, binarized permutations can be indexed using the VP-tree. This
approach is usually more efficient than searching binarized permutations sequen-
tially, but one needs to tune additional parameters. An example of testing such
a method using the utility experiment is as follows:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method perm_bin_vptree \

--createIndex numPivot=32 \

--queryTimeParams alphaLeft=2,alphaRight=2,dbScanFrac=0.05

5.5 Proximity/Neighborhood Graphs

One efficient and effective search approach relies on building a graph, where data
points are graph nodes and edges connect sufficiently close points. When edges
connect nearest neighbor points, such graph is called a k-NN graph (or a nearest
neighbor graph).

In a proximity-graph a search process is a series of greedy sub-searches. A
sub-search starts at some, e.g., random node and proceeds to expanding the
set of traversed nodes in a best-first fashion by following neighboring links. The
algorithm resembles a Dijkstra’s shortest-path algorithm in that, in each step,
it selects an unvisited point closest to the query.

There have been multiple stopping heuristics proposed. For example, we can
stop after visiting a certain number of nodes. In NMSLIB, the sub-search termi-
nates essentially when the candidate queue is exhausted. Specifically, the can-
didate queue is expanded only with points that are closer to the query than
the k′-th closest point already discovered by the sub-search (k′ is a search pa-
rameter). When we stop finding such points, the queue dwindles and eventually
becomes empty. We also terminate the sub-search when the queue contains only
points farther than the k′-th closest point already discovered by the sub-search.
Note that the greedy search is only approximate and does not necessarily return
all true nearest neighbors.

In our library we use several approaches to create proximity graphs, which
are described below. Parameters of these methods are summarized in Table 9.
Note that SW-graph and NN-descent have the parameter with the same name,
namely, NN. However, this parameter has a somewhat different interpretation
depending on the method. Also note that our proximity-graph methods support
only the nearest-neighbor, but not the range search.

5.5.1 Small World Graph (SW-graph). In the (Navigable) Small World
graph (SW-graph),16 indexing is a bottom-up procedure that relies on the pre-
viously described greedy search algorithm. The number of restarts, though, is

16 SW-graph is also known as a Metrized Small-World (MSW) graph and a Navigable
Small World (NSW) graph.

https://en.wikipedia.org/wiki/Nearest_neighbor_graph
https://en.wikipedia.org/wiki/Nearest_neighbor_graph

56 Bilegsaikhan Naidan and Leonid Boytsov

Table 7: Parameters of permutation-based filtering methods

Common parameters

numPivot A number of pivots.

dbScanFrac A number of candidate records obtained during the filtering
step. It is specified as a fraction (not a percentage!) of the total
number of data points in the data set.

binThreshold Binarization threshold. If a value of an original permutation
vector is below this threshold, it becomes 0 in the binarized
permutation. If the value is above, the value is converted to 1.

Permutation Prefix Index (pp-index) [21]

numPivot A number of pivots.

minCandidate a minimum number of candidates to retrieve (note that we do
not use dbScanFrac here.

prefixLength a maximum length of the tree prefix that is used to retrieve
candidate records.

chunkBucket 1 if we want to store vectors having the same permutation prefix
in the same memory chunk (i.e., contiguously in memory)

Metric Inverted File (mi-file) [2]

Common parameters: numPivot and dbScanFrac.

numPivotIndex a number of (closest) pivots to index

numPivotSearch a number of (closest) pivots to use during searching

maxPosDiff the maximum position difference permitted for searching in the
inverted file

Neighborhood Approximation Index (napp) [51]

Common parameter numPivot.

invProcAlg An algorithm to merge posting lists. In practice, only scan

worked well.

chunkIndexSize A number of documents in one index chunk.

indexThreadQty A number of indexhing threads.

numPivotIndex A number of closest pivots to be indexed.

numPivotSearch A candidate entry should share this number of pivots with the
query. This is a query-time parameter.

Note: mnemonic method names are given in round brackets.

NMSLIB Manual 57

Table 8: Parameters of permutation-based filtering methods (continued)

Brute-force search with incremental sorting for binarized permutations

(perm incsort bin) [50]

Common parameters: numPivot, dbScanFrac, binThreshold.

VP-tree index over binarized permutations (perm bin vptree)

Similar to [50], but uses an approximate search in the VP-tree.

Common parameters: numPivot, dbScanFrac, binThreshold.
Note that dbScanFrac is a query-time parameter.

alphaLeft A stretching coefficient αleft in Eq. (6)

alphaRight A stretching coefficient αright in Eq. (6)

Note: mnemonic method names are given in round brackets.

defined by a different parameter, i.e., initIndexAttempts. We insert points one
by one. For each data point, we find NN closest points using an already con-
structed index. Then, we create an undirected edge between a new graph node
(representing a new point) and nodes that represent NN closest points found by
the greedy search. Each sub-search starts from some, e.g., random node and
proceeds expanding the candidate queue with points that are closer than the
efConstruction-th closest point (efConstruction is an index-time parame-
ter). Similarly, the search procedure executes one or more sub-searches that
start from some node. The queue is expanded only with points that are closer
than the efSearch-th closest point. The number of sub-searches is defined by
the parameter initSearchAttempts.

Empirically, it was shown that this method often creates a navigable small
world graph, where most nodes are separated by only a few edges (roughly
logarithmic in terms of the overall number of objects) [35]. A simpler and less
efficient variant of this algorithm was presented at ICTA 2011 and SISAP 2012
[42,35]. An improved variant appeared as an Information Systems publication
[36]. In the latter paper, however, the values of efSearch and efConstruction

are set equal to NN. The idea of using values of efSearch and efConstruction

potentially (much) larger than NN was proposed by Malkov and Yashunin [37].

The indexing algorithm is rather expensive and we accelerate it by running
parallel searches in multiple threads. The number of threads is defined by the
parameter indexThreadQty. By default, this parameter is equal to the number
of virtual cores. The graph updates are synchronized: If a thread needs to add
edges to a node or obtain the list of node edges, it first locks a node-specific
mutex. Because different threads rarely update and/or access the same node
simultaneously, such synchronization creates little contention and, consequently,
our parallelization approach is efficient. It is also necessary to synchronize up-

58 Bilegsaikhan Naidan and Leonid Boytsov

dates for the list of graph nodes, but this operation takes little time compared
to searching for NN neighboring points.

An example of testing this method using the utility experiment is as follows:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--cachePrefixGS sw-graph \

--method sw-graph \

--createIndex NN=3,initIndexAttempts=5,indexThreadQty=4 \

--queryTimeParams initSearchAttempts=1,efSearch=10 \

--saveIndex sw-graph_index

Note that SW-graph is capable of saving/loading the meta index. However,
in the bootstrapping mode this is only possible if gold standard data is cached
(hence, the option --cachePrefixGS).

5.5.2 Hierarchical Navigable Small World Graph (HNSW). The Hi-
erarchical Navigable Small World Graph (HNSW) [37] is a new search method,
a successor of the SW-graph. HNSW can be much faster (especially during in-
dexing) and is more robust. However, the current implementation is still exper-
imental and we will update it in the near future.

HNSW can be seen as a multi-layer and a multi-resolution variant of a prox-
imity graph. A ground (zero-level) layer includes all data points. The higher is
the layer, the fewer points it has. When a data point is added to HNSW, we
select the maximum level m randomly. In that, the probability of selecting level
m decreases exponentially with m.

Similarly to the SW-graph, the HNSW is constructed by inserting data
points, one by one. A new point is added to all layers starting from layer m down
to layer zero. This is done using a search-based algorithm similar to that of the
basic SW-graph. The quality is controlled by the parameter efConstruction.

Specifically, a search starts from the maximum-level layer and proceeds to
lower layers by searching one layer at a time. For all layers higher than the
ground layer, the search algorithm is a 1-NN search that greedily follows the
closest neighbor (this is equivalent to having efConstruction=1). The closest
point found at the layer h+1 is used as a starting point for the search carried out
at the layer h. For the ground layer, we carry an M-NN search whose quality is
controlled by the parameter efConstruction. Note that the ground-layer search
relies one the same algorithm as we use for the SW-graph (yet, we use only a
single sub-search, which is equivalent to setting initIndexAttempts to one).

An outcome of a search in a layer is a set of data points that are close to the
new point. Using one of the heuristics described by Malkov and Yashunin [37],
we select points from this set to become neighbors of the new point (in the layer’s
graph). Note that unlike the older SW-graph, the new algorithm has a limit on
the maximum number of neighbors. If the limit is exceeded, the heuristics are

NMSLIB Manual 59

used to keep only the best neighbors. Specifically, the maximum number of neigh-
bors in all layers but the ground layer is maxM (an index-time parameter, which
is equal to M by default). The maximum number of neighbors for the ground
layer is maxM0 (an index-time parameter, which is equal to 2×M by default). The
choice of the heuristic is controlled by the parameter delaunay type.

A search algorithm is similar to the indexing algorithm. It starts from the
maximum-level layer and proceeds to lower-level layers by searching one layer
at a time. For all layers higher than the ground layer, the search algorithm is
a 1-NN search that greedily follows the closest neighbor (this is equivalent to
having efSearch=1). The closest point found at the layer h + 1 is used as a
starting point for the search carried out at the layer h. For the ground layer, we
carry an k-NN search whose quality is controlled by the parameter efSearch (in
the paper by Malkov and Yashunin [37] this parameter is denoted as ep). The
ground-layer search relies one the same algorithm as we use for the SW-graph,
but it does not carry out multiple sub-searches starting from different random
data points.

For L2 and the cosine similarity, HNSW has optimized implementations,
which are enabled by default. To enforce the use of the generic algorithm, set
the parameter skip optimized index to one.

Similar to SW-graph, the indexing algorithm can be expensive. It is, there-
fore, accelerated by running parallel searches in multiple threads. The number of
threads is defined by the parameter indexThreadQty. By default, this parameter
is equal to the number of virtual cores.

A sample command line to test HNSW using the utility experiment:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method hnsw \

--createIndex M=10,efConstruction=20,indexThreadQty=4,searchMethod=0 \

--queryTimeParams efSearch=10

HNSW is capable of saving an index for optimized L2 and the cosine-similarity
implementations. Here is an example for L2:

release/experiment \

--distType float --spaceType cosinesimil --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--cachePrefixGS hnsw \

--method hnsw \

--createIndex M=10,efConstruction=20,indexThreadQty=4,searchMethod=4 \

--queryTimeParams efSearch=10

--saveIndex hnsw_index

5.5.3 NN-Descent. The NN-descent is an iterative procedure initialized with
randomly selected nearest neighbors. In each iteration, a random sample of
queries is selected to participate in neighborhood propagation.

60 Bilegsaikhan Naidan and Leonid Boytsov

This process is governed by parameters rho and delta. Parameter rho defines
a fraction of the data set that is randomly sampled for neighborhood propaga-
tion. A good value that works in many cases is rho = 0.5. As the indexing
algorithm iterates, fewer and fewer neighborhoods change (when we attempt to
improve the local neighborhood structure via neighborhood propagation). The
parameter delta defines a stopping condition in terms of a fraction of modi-
fied edges in the k-NNgraph (the exact definition can be inferred from code). A
good default value is delta=0.001. The indexing algorithm is multi-threaded:
the method uses all available cores.

When NN-descent was incorporated into NMSLIB, there was no open-source
search algorithm released, only the code to construct a k-NNgraph. Therefore,
we use the same algorithm as for the SW-graph [35,36]. The new, open-source,
version of NN-descent (code-named kgraph), which does include the search al-
gorithm, can be found on GitHub.

Here is an example of testing this method using the utility experiment:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method nndes \

--createIndex NN=10,rho=0.5,delta=0.001 \

--queryTimeParams initSearchAttempts=3

5.6 Miscellaneous Methods

Parameters of miscellaneous methods are summarized in Table 10.

5.6.1 Brute-force (sequential) searching. To verify how the speed of
brute-force searching scales with the number of threads, we provide a refer-
ence implementation of the sequential searching. For example, to benchmark
sequential searching using two threads, one can type the following command:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method seq_search --threadTestQty 2

https://github.com/aaalgo/kgraph

NMSLIB Manual 61

Table 9: Parameters of proximity-graph based methods

Common parameters

efSearch The search depth: specifically, a sub-search is stopped, when it
cannot find a point closer than efSearch points (seen so far)
closest to the query.

SW-graph (sw-graph) [42,35,36]

NN For a newly added point find this number of most closest points
that make the initial neighborhood of the point. When more
points are added, this neighborhood may be expanded.

efConstruction The depth of the search that is used to find neighbors during
indexing. This parameter is analogous to efSearch.

initIndexAttempts The number of random search restarts carried out to add one
point.

indexThreadQty The number of indexing threads. The default value is equal to
the number of (logical) CPU cores.

initSearchAttempts A number of random search restarts.

Hierarchical Navigable SW-graph (hnsw) [36]

mult A scaling coefficient to determine the depth of a layered struc-
ture (see the paper by Malkov and Yashunin [36] for details).
A default value seems to be good enough.

skip optimized index Setting this parameter to one disables the use of the optimized
implementations (for L2 and the cosine similarity).

maxM The maximum number of neighbors in all layers but the ground
layer (the default value seems to be good enough).

maxM0 The maximum number of neighbors in the ground layer (the
default value seems to be good enough).

M The size of the initial set of potential neighbors for the indexing
phase. The set may be further pruned so that the overall num-
ber of neighbors does not exceed maxM0 (for the ground layer)
or maxM (for all layers but the ground one).

efConstruction The depth of the search that is used to find neighbors during in-
dexing (this parameter is used only for the search in the ground
layer).

delaunay type A type of the pruning heuristic: 0 indicates that we keep only
maxM (or maxM0 for the ground layer) neighbors, 1 activates a
heuristic described by Algorithm 4 [36]

NN-descent (nndes) [18,35,36]

NN For each point find this number of most closest points (neigh-
bors).

rho A fraction of the data set that is randomly sampled for neigh-
borhood propagation.

delta A stopping condition in terms of the fraction of updated edges
in the k-NNgraph.

initSearchAttempts A number of random search restarts.

Note: mnemonic method names are given in round brackets.

62 Bilegsaikhan Naidan and Leonid Boytsov

Table 10: Parameters of miscellaneous methods

Several copies of the same index type (mult index)

indexQty A number of copies

methodName A mnemonic method name

Any other parameter that the method accepts. For instance,
if we create several copies of the VP-tree, we can specify the
parameters alphaLeft, alphaRight, maxLeavesToVisit, and so
on.

Brute-force/sequential search (seq search)

No parameters.

Note: mnemonic method names are given in round brackets.

5.6.2 Several copies of the same index type. It is possible to generate
several copies of the same index using a meta method mult indx. This makes
sense for randomized indexing methods, e.g., for the VP-tree or the PP-index.17

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method mult_index \

--createIndex methodName=vptree,indexQty=5 \

--queryTimeParams maxLeavesToVisit=2

6 Tuning Guidelines

In the following subsections, we provide brief tuning guidelines. These guide-
lines are broad-brush: The user is expected to find optimal parameters through
experimentation on some development data set.

6.1 NAPP

Generally, increasing the overall number of pivots numPivot helps to improve
performance. However, using a large number of pivots leads to increased indexing
times.

A good compromise is to use numPivot somewhat larger than
√
N , where

N is the overall number of data points. Similarly, the number of pivots to be
indexed (numPivotIndex) should be somewhat larger than

√
numPivot. Finally,

17 In fact, all of the methods except for the sequential, i.e., brute-force, search are
randomized.

NMSLIB Manual 63

the number of pivots to be searched (numPivotSearch) should be in the order
of
√
numPivotIndex.

After selecting the values of numPivot and numPivotIndex, finding an opti-
mal value of numPivotSearch—which provides a necessary recall—requires just
a single run of the utility experiment (you need to specify all potentially good
values of numPivotSearch multiple times using the option --QueryTimeParams).

6.2 SW-graph and HNSW

The basic guidelines are similar for both methods. Specifically, increasing the
value of efConstruction improves the quality of a constructed graph and leads
to higher accuracy of search. However this also leads to longer indexing times.
Similarly, increasing the value of efSearch improves recall at the expense of
longer retrieval time. The reasonable range of values for these parameters is
100-2000.

In the case of SW-graph, the user can also specify the number of sub-
searches: initIndexAttempts and initSearchAttempts used during indexing
and retrieval, respectively. However, we find that in most cases the number of
sub-searches needs to be set to one. Yet, for large values of efConstruction

and efSearch (e.g., larger than 2000) it sometimes makes sense to increase the
number of sub-searches rather than further increasing efConstruction and/or
efSearch.

The recall values are also affected by parameters NN (for SW-graph) and M

(HNSW). Increasing the values of these parameters (to a certain degree) leads to
better recall and shorter retrieval times (at the expense of longer indexing time).
For low and moderate recall values (e.g., 60-80%) increasing these parameters
may lead to longer retrieval times. The reasonable range of values for these
parameters is 5-100.

Finally, in the case of HNSW, there is a trade-off between retrieval perfor-
mance and indexing time related to the choice of the pruning heuristic (controlled
by the parameter delaunay type). Specifically, by default delaunay type is
equal to 1. Using delaunay type=1 improves performance—especially at high
recall values (> 80%) at the expense of longer indexing times. Therefore, for
lower recall values, we recommend using delaunay type=0.

7 Extending the code

It is possible to add new spaces and search methods. This is done in three steps,
which we only outline here. A more detailed description can be found in § 7.2
and § 7.3.

In the first step, the user writes the code that implements a functionality
of a method or a space. In the second step, the user writes a special helper file
containing a method that creates a class or a method. In this helper file, it is
necessary to include the method/space header.

64 Bilegsaikhan Naidan and Leonid Boytsov

Because we tend to give the helper file the same name as the name of header
for a specific method/space, we should not include method/space headers using
quotes (in other words, use only angle brackets). Such code fails to compile under
the Visual Studio. Here is an example of a proper include-directive:

#include <method/vptree.h>

In the third step, the user adds the registration code to either the file
init spaces.h (for spaces) or to the file init methods.h (for methods). This step
has two sub-steps. First, the user includes the previously created helper file into
either init spaces.h or init methods.h. Second, the function initMethods or
initSpaces is extended by adding a macro call that actually registers the space
or method in a factory class.

Note that no explicit/manual modification of makefiles (or other configura-
tion files) is required. However, you have to re-run cmake each time a new source
file is created (addition of header files does not require a cmake run). This is
necessary to automatically update makefiles so that they include new source
files.

Is is noteworthy that all implementations of methods and spaces are mostly
template classes parameterized by the distance value type. Recall that the dis-
tance function can return an integer (int), a single-precision (float), or a
double-precision (double) real value. The user may choose to provide specializa-
tions for all possible distance values or decide to focus, e.g., only on integer-valued
distances.

The user can also add new applications, which are meant to be a part of the
testing framework/library. However, adding new applications does require minor
editing of the meta-makefile CMakeLists.txt (and re-running cmake § 3.1) on
Linux, or creation of new Visual Studio sub-projects on Windows (see § 3.2). It
is also possible to create standalone applications that use the library. Please, see
§ 3.1 and § 3.2 for details.

In the following subsections, we consider extension tasks in more detail. For il-
lustrative purposes, we created a zero-functionality space (DummySpace), method
(DummyMethod), and application (dummy app). These zero-functionality examples
can also be used as starting points to develop fully functional code.

7.1 Test Workflow

The main benchmarking utility experiment parses command line parameters.
Then, it creates a space and a search method using the space and the method
factories. Both search method and spaces can have parameters, which are passed
to the method/space in an instance of the class AnyParams. We consider this in
detail in § 7.2 and § 7.3.

When we create a class representing a search method, the constructor of
the class does not create an index in the memory. The index is created using
either the function CreateIndex (from scratch) or the function LoadIndex (from
a previously created index image). The index can be saved to disk using the

https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/include/factory/init_spaces.h
https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/include/factory/init_methods.h

NMSLIB Manual 65

function SaveIndex. Note, however, that most methods do not support index
(de)-serialization.

Depending on parameters passed to the benchmarking utility, two test sce-
narios are possible. In the first scenario, the user specifies separate data and test
files. In the second scenario, a test file is created by bootstrapping: The data
set is randomly divided into training and a test set. Then, we call the function
RunAll and subsequently Execute for all possible test sets.

The function Execute is a main workhorse, which creates queries, runs searches,
produces gold standard data, and collects execution statistics. There are two
types of queries: nearest-neighbor and range queries, which are represented by
(template) classes RangeQuery and KNNQuery. Both classes inherit from the class
Query. Similar to spaces, these template classes are parameterized by the type
of the distance value.

Both types of queries are similar in that they implement the Radius function
and the functions CheckAndAddToResult. In the case of the range query, the
radius of a query is constant. However, in the case of the nearest-neighbor query,
the radius typically decreases as we compare the query with previously unseen
data objects (by calling the function CheckAndAddToResult). In both cases, the
value of the function Radius can be used to prune unpromising partitions and
data points.

This commonality between the RangeQuery and KNNQuery allows us in many
cases to carry out a nearest-neighbor query using an algorithm designed to an-
swer range queries. Thus, only a single implementation of a search method—that
answers queries of both types—can be used in many cases.

A query object proxies distance computations during the testing phase. Namely,
the distance function is accessible through the function IndexTimeDistance,
which is defined in the class Space. During the testing phase, a search method
can compute a distance only by accessing functions Distance, DistanceObjLeft
(for left queries) and DistanceObjRight for right queries, which are member
functions of the class Query. The function Distance accepts two parameters
(i.e., object pointers) and can be used to compare two arbitrary objects. The
functions DistanceObjLeft and DistanceObjRight are used to compare data
objects with the query. Note that it is a query object memorizes the number of
distance computations. This allows us to compute the variance in the number
of distance evaluations and, consequently, a respective confidence interval.

7.2 Creating a space

A space is a collection of data objects. In our library, objects are represented by
instances of the class Object. The functionality of this class is limited to creating
new objects and/or their copies as well providing access to the raw (i.e., unstruc-
tured) representation of the data (through functions data and datalength). We
would re-iterate that currently (though this may change in the future releases),
Object is a very basic class that only keeps a blob of data and blob’s size. For ex-
ample, the Object can store an array of single-precision floating point numbers,
but it has no function to obtain the number of elements. These are the spaces

https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/include/experiments.h#L70
https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/include/experiments.h#L213

66 Bilegsaikhan Naidan and Leonid Boytsov

that are responsible for reading objects from files, interpreting the structure of
the data blobs (stored in the Object), and computing a distance between two
objects.

For dense vector spaces the easiest way to create a new space, is to create
a functor (function object class) that computes a distance. Then, this function
should be used to instantiate a template VectorSpaceGen. A sample implemen-
tation of this approach can be found in sample standalone app1.cc. However,
as we explain below, additional work is needed if the space should work cor-
rectly with all projection methods (see § 5.3) or any other methods that rely on
projections (e.g., OMEDRANK § 5.3.3).

To further illustrate the process of developing a new space, we created a
sample zero-functionality space DummySpace. It is represented by the header file
space dummy.h and the source file space dummy.cc. The user is encouraged to
study these files and read the comments. Here we focus only on the main aspects
of creating a new space.

The sample files include a template class DummySpace (see Table 11), which
is declared and defined in the namespace similarity. It is a direct ancestor of
the class Space.

It is possible to provide the complete implementation of the DummySpace

in the header file. However, this would make compilation slower. Instead, we
recommend to use the mechanism of explicit template instantiation. To this
end, the user should instantiate the template in the source file for all possible
combination of parameters. In our case, the source file space dummy.cc contains
the following lines:

template class SpaceDummy<int>;

template class SpaceDummy<float>;

template class SpaceDummy<double>;

Most importantly, the user needs to implement the function HiddenDistance,
which computes the distance between objects, and the function CreateObjFromStr

that creates a data point object from an instance of a C++ class string. For
simplicity—even though this is not the most efficient approach—all our spaces
create objects from textual representations. However, this is not a principal lim-
itation, because a C++ string can hold binary data as well. Perhaps, the next
most important function is ReadNextObjStr, which reads a string representation
of the next object from a file. A file is represented by a reference to a subclass
of the class DataFileInputState.

Compared to previous releases, the new Space API is substantially more
complex. This is necessary to standardize reading/writing of generic objects. In
turn, this has been essential to implementing a generic query server. The query
server accepts data points in the same format as they are stored in a data file.
The above mentioned function CreateObjFromStr is used for de-serialization of
both the data points stored in a file and query data points passed to the query
server.

Additional complexity arises from the need to update space parameters after
a space object is created. This permits a more complex storage model where,

https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/include/space/space_vector_gen.h
https://github.com/searchivarius/nmslib/blob/v1.5/sample_standalone_app/sample_standalone_app1.cc#L114
https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/include/space/space_dummy.h
https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/src/space/space_dummy.cc
https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/src/space/space_dummy.cc

NMSLIB Manual 67

Table 11: A sample space class

template <typename dist_t>

class SpaceDummy : public Space<dist_t> {

public:

...

/** Standard functions to read/write/create objects */

// Create an object from a (possibly binary) string.

virtual unique_ptr<Object>

CreateObjFromStr(IdType id, LabelType label, const string& s,

DataFileInputState* pInpState) const;

// Create a string representation of an object.

// The string representation may include external ID.

virtual string

CreateStrFromObj(const Object* pObj, const string& externId) const;

// Open a file for reading, fetch a header

// (if there is any) and memorize an input state

virtual unique_ptr<DataFileInputState>

OpenReadFileHeader(const string& inputFile) const;

// Open a file for writing, write a header (if there is any)

// and memorize an output state

virtual unique_ptr<DataFileOutputState>

OpenWriteFileHeader(const ObjectVector& dataset,

const string& outputFile) const;

/*

* Read a string representation of the next object in a file as well

* as its label. Return false, on EOF.

*/

virtual bool

ReadNextObjStr(DataFileInputState &, string& strObj, LabelType& label,

string& externId) const;

/*

* Write a string representation of the next object to a file. We totally delegate

* this to a Space object, because it may package the string representation, by

* e.g., in the form of an XML fragment.

*/

virtual void WriteNextObj(const Object& obj, const string& externId,

DataFileOutputState &) const;

/** End of standard functions to read/write/create objects */

...

/*

* CreateDenseVectFromObj and GetElemQty() are only needed, if

* one wants to use methods with random projections.

*/

virtual void CreateDenseVectFromObj(const Object* obj, dist_t* pVect,

size_t nElem) const {

throw runtime_error("Cannot create vector for the space: " + StrDesc());

}

virtual size_t GetElemQty(const Object* object) const {return 0;}

protected:

virtual dist_t HiddenDistance(const Object* obj1,

const Object* obj2) const;

// Don't permit copying and/or assigning

DISABLE_COPY_AND_ASSIGN(SpaceDummy);

};

68 Bilegsaikhan Naidan and Leonid Boytsov

e.g., parameters are stored in a special dedicated header file, while data points
are stored elsewhere, e.g., split among several data files. To support such func-
tionality, we have a function that opens a data file (OpenReadFileHeader) and
creates a state object (sub-classed from DataFileInputState), which keeps the
current file(s) state as well as all space-related parameters. When we read data
points using the function ReadNextObjStr, the state object is updated. The
function ReadNextObjStr may also read an optional external identifier for an
object. When it produces a non-empty identifier it is memorized by the query
server and is further used for query processing (see § 2.5). After all data points
are read, this state object is supposed to be passed to the Space object in the
following fashion:

unique_ptr<DataFileInputState>

inpState(space->ReadDataset(dataSet, externIds, fileName, maxNumRec));

space->UpdateParamsFromFile(*inpState);

For a more advanced implementation of the space-related functions, please, see
the file space vector.cc.

Remember that the function HiddenDistance should not be directly ac-
cessible by classes that are not friends of the Space. As explained in § 7.1,
during the indexing phase, HiddenDistance is accessible through the function
Space::IndexTimeDistance. During the testing phase, a search method can
compute a distance only by accessing functions Distance, DistanceObjLeft, or
DistanceObjRight, which are member functions of the Query. This is by far not
a perfect solution and we are contemplating about better ways to proxy distance
computations.

Should we implement a vector space that works properly with projection
methods and classic random projections, we need to define functions GetElemQty
and CreateDenseVectFromObj. In the case of a dense vector space, GetElemQty
should return the number of vector elements stored in the object. For sparse
vector spaces, it should return zero. The function CreateDenseVectFromObj

extracts elements stored in a vector. For dense vector spaces, it merely copies
vector elements to a buffer. For sparse space vector spaces, it should do some
kind of basic dimensionality reduction. Currently, we do it via the hashing trick
(see § A).

Importantly, we need to “tell” the library about the space, by registering the
space in the space factory. At runtime, the space is created through a helper
function. In our case, it is called CreateDummy. The function, accepts only one
parameter, which is a reference to an object of the type AllParams:

template <typename dist_t>

Space<dist_t>* CreateDummy(const AnyParams& AllParams) {

AnyParamManager pmgr(AllParams);

int param1, param2;

pmgr.GetParamRequired("param1", param1);

https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/src/space/space_vector.cc

NMSLIB Manual 69

pmgr.GetParamRequired("param2", param2);

pmgr.CheckUnused();

return new SpaceDummy<dist_t>(param1, param2);

}

To extract parameters, the user needs an instance of the class AnyParamManager
(see the above example). In most cases, it is sufficient to call two functions:
GetParamOptional and GetParamRequired. To verify that no extra parameters
are added, it is recommended to call the function CheckUnused (it fires an excep-
tion if some parameters are unclaimed). This may also help to identify situations
where the user misspells a parameter’s name.

Parameter values specified in the commands line are interpreted as strings.
The GetParam* functions can convert these string values to integer or floating-
point numbers if necessary. A conversion occurs, if the type of a receiving variable
(passed as a second parameter to the functions GetParam*) is different from a
string. It is possible to use boolean variables as parameters. In that, in the
command line, one has to specify 1 (for true) or 0 (for false). Note that the
function GetParamRequired raises an exception, if the request parameter was
not supplied in the command line.

The function CreateDummy is registered in the space factory using a special
macro. This macro should be used for all possible values of the distance function,
for which our space is defined. For example, if the space is defined only for integer-
valued distance function, this macro should be used only once. However, in our
case the space CreateDummy is defined for integers, single- and double-precision
floating pointer numbers. Thus, we use this macro three times as follows:

REGISTER_SPACE_CREATOR(int, SPACE_DUMMY, CreateDummy)

REGISTER_SPACE_CREATOR(float, SPACE_DUMMY, CreateDummy)

REGISTER_SPACE_CREATOR(double, SPACE_DUMMY, CreateDummy)

This macro should be placed into the function initSpaces in the file init spaces.h.
Last, but not least we need to add the include-directive for the helper function,
which creates the class, to the file init spaces.h as follows:

#include "factory/space/space_dummy.h"

To conlcude, we recommend to make a Space object is non-copyable. This
can be done by using our macro DISABLE COPY AND ASSIGN.

7.3 Creating a search method

To illustrate the basics of developing a new search method, we created a sam-
ple zero-functionality method DummyMethod. It is represented by the header file
dummy.h and the source file dummy.cc. The user is encouraged to study these
files and read the comments. Here we would omit certain details.

https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/include/factory/init_spaces.h
https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/include/method/dummy.h
https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/src/method/dummy.cc

70 Bilegsaikhan Naidan and Leonid Boytsov

Table 12: A sample search method class

template <typename dist_t>

class DummyMethod : public Index<dist_t> {

public:

DummyMethod(Space<dist_t>& space,

const ObjectVector& data) : data_(data), space_(space) {}

void CreateIndex(const AnyParams& IndexParams) override {

AnyParamManager pmgr(IndexParams);

pmgr.GetParamOptional("doSeqSearch",

bDoSeqSearch_,

// One should always specify the default value of an optional parameter!

false

);

// Check if a user specified extra parameters,

// which can be also misspelled variants of existing ones

pmgr.CheckUnused();

// It is recommended to call ResetQueryTimeParams()

// to set query-time parameters to their default values

this->ResetQueryTimeParams();

}

// SaveIndex is not necessarily implemented

virtual void SaveIndex(const string& location) override {

throw runtime_error(

"SaveIndex is not implemented for method: " + StrDesc());

}

// LoadIndex is not necessarily implemented

virtual void LoadIndex(const string& location) override {

throw runtime_error(

"LoadIndex is not implemented for method: " + StrDesc());

}

void SetQueryTimeParams(const AnyParams& QueryTimeParams) override;

// Description of the method, consider printing crucial parameter values

const std::string StrDesc() const override {

stringstream str;

str << "Dummy method: "

<< (bDoSeqSearch_ ? " does seq. search " :

" does nothing (really dummy)");

return str.str();

}

// One needs to implement two search functions.

void Search(RangeQuery<dist_t>* query, IdType) const override;

void Search(KNNQuery<dist_t>* query, IdType) const override;

// If we duplicate data, let the framework know it

virtual bool DuplicateData() const override { return false; }

private:

...

// Don't permit copying and/or assigning

DISABLE_COPY_AND_ASSIGN(DummyMethod);

};

NMSLIB Manual 71

Similar to the space and query classes, a search method is implemented using
a template class, which is parameterized by the distance function value (see
Table 12). Note again that the constructor of the class does not create an index
in the memory. The index is created using either the function CreateIndex (from
scratch) or the function LoadIndex (from a previously created index image). The
index can be saved to disk using the function SaveIndex. It does not have to
be a comprehensive index that contains a copy of the data set. Instead, it is
sufficient to memorize only the index structure itself (because the data set is
always loaded separately). Also note that most methods do not support index
(de)-serialization.

The constructor receives a reference to a space object as well as a reference
to an array of data objects. In some cases, e.g., when we wrap existing methods
such as the multiprobe LSH (see § 5.2), we create a copy of the data set (simply
because is was easier to write the wrapper this way). The framework can be
informed about such a situation via the virtual function DuplicateData. If this
function returns true, the framework “knows” that the data was duplicated.
Thus, it can correct an estimate for the memory required by the method.

The function CreateIndex receives a parameter object. In our example, the
parameter object is used to retrieve the single index-time parameter: doSeqSearch.
When this parameter value is true, our dummy method carries out a sequential
search. Otherwise, it does nothing useful. Again, it is recommended to call the
function CheckUnused to ensure that the user did not enter parameters with in-
correct names. It is also recommended to call the function ResetQueryTimeParams

(this pointer needs to be specified explicitly here) to reset query-time parame-
ters after the index is created (or loaded from disk).

Unlike index-time parameters, query-time parameters can be changed with-
out rebuilding the index by invoking the function SetQueryTimeParams. The
function SetQueryTimeParams accepts a constant reference to a parameter ob-
ject. The programmer, in turn, creates a parameter manager object to extract
actual parameter values. To this end, two functions are used: GetParamRequired
and GetParamOptional. Note that the latter function must be supplied with a
mandatory default value for the parameter. Thus, the parameter value is prop-
erly reset to its default value when the user does not specify the parameter value
explicitly (e.g., the parameter specification is omitted when the user invokes the
benchmarking utility experiment)!

There are two search functions each of which receives two parameters. The
first parameter is a pointer to a query (either a range or a k-NN query). The
second parameter is currently unused. Note again that during the search phase,
a search method can compute a distance only by accessing functions Distance,
DistanceObjLeft, or DistanceObjRight, which are member functions of a
query object. The function IndexTimeDistance should not be used in a func-
tion Search, but it can be used in the function CreateIndex. If the user attempts

72 Bilegsaikhan Naidan and Leonid Boytsov

to invoke IndexTimeDistance during the test phase, the program will ter-
minate. 18

Finally, we need to “tell” the library about the method, by registering the
method in the method factory, similarly to registering a space. At runtime, the
method is created through a helper function, which accepts several parameters.
One parameter is a reference to an object of the type AllParams. In our case,
the function name is CreateDummy:

#include <method/dummy.h>

namespace similarity {

template <typename dist_t>

Index<dist_t>* CreateDummy(bool PrintProgress,

const string& SpaceType,

Space<dist_t>& space,

const ObjectVector& DataObjects) {

return new DummyMethod<dist_t>(space, DataObjects);

}

There is an include-directive preceding the creation function, which uses angle
brackets. As explained previously, if you opt to using quotes (in the include-
directive), the code may not compile under the Visual Studio.

Again, similarly to the case of the space, the method-creating function CreateDummy

needs to be registered in the method factory in two steps. First, we need to in-
clude dummy.h into the file init methods.h as follows:

#include "factory/method/dummy.h"

Then, this file is further modified by adding the following lines to the function
initMethods:

REGISTER_METHOD_CREATOR(float, METH_DUMMY, CreateDummy)

REGISTER_METHOD_CREATOR(double, METH_DUMMY, CreateDummy)

REGISTER_METHOD_CREATOR(int, METH_DUMMY, CreateDummy)

If we want our method to work only with integer-valued distances, we only
need the following line:

REGISTER_METHOD_CREATOR(int, METH_DUMMY, CreateDummy)

When adding the method, please, consider expanding the test utility test integr.
This is especially important if for some combination of parameters the method
is expected to return all answers (and will have a perfect recall). Then, if we
break the code in the future, this will be detected by test integr.

18 As noted previously, we want to compute the number of times the distance was
computed for each query. This allows us to estimate the variance. Hence, during the
testing phase, the distance function should be invoked only through a query object.

https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/include/factory/init_methods.h

NMSLIB Manual 73

To create a test case, the user needs to add one or more test cases to the
file test integr.cc. A test case is an instance of the class MethodTestCase. It
encodes the range of plausible values for the following performance parameters:
the recall, the number of points closer to the query than the nearest returned
point, and the improvement in the number of distance computations.

7.4 Creating an application on Linux (inside the framework)

First, we create a hello-world source file dummy app.cc:

#include <iostream>

using namespace std;

int main(void) {

cout << "Hello world!" << endl;

}

Now we need to modify the meta-makefile similarity search/src/CMakeLists.txt
and re-run cmake as described in § 3.1.

More specifically, we do the following:

– by default, all source files in the similarity search/src/ directory are included
into the library. To prevent dummy app.cc from being included into the li-
brary, we use the following command:

list(REMOVE_ITEM SRC_FILES ${PROJECT_SOURCE_DIR}/src/dummy_app.cc)

– tell cmake to build an additional executable:

add_executable (dummy_app dummy_app.cc ${SRC_FACTORY_FILES})

– specify the necessary libraries:

target_link_libraries (dummy_app NonMetricSpaceLib lshkit

${Boost_LIBRARIES} ${GSL_LIBRARIES}

${CMAKE_THREAD_LIBS_INIT})

7.5 Creating an application on Windows (inside the framework)

The following description was created for Visual Studio Express 2015. It may be
a bit different for newer releases of the Visual Studio. Creating a new sub-project
in the Visual Studio is rather straightforward.

In addition, one can use a provided sample project file dummy app.vcxproj
as a template. To this end, one needs to to create a copy of this sample project
file and subsequently edit it. One needs to do the following:

– Obtain a new value of the project GUI and put it between the tags
<ProjectGUID>...</ProjectGUID>;

– Add/delete new files;

https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/test/test_integr.cc#L65
https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/src/dummy_app.cc
https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/src/CMakeLists.txt
https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/src/
https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/src/dummy_app.vcxproj

74 Bilegsaikhan Naidan and Leonid Boytsov

– Add/delete/change references to the boost directories (both header files and
libraries);

– If the CPU has AVX extension, it may be necessary to enable them as
explained in § 3.2.

– Finally, one may manually add an entry to the main project file NonMetric-
SpaceLib.sln.

8 Notes on Efficiency

8.1 Efficiency of Distance Functions

Note that improvement in efficiency and in the number of distance computations
obtained with slow distance functions can be overly optimistic. That is, when
a slow distance function is replaced with a more efficient version, the improve-
ments over sequential search may become far less impressive. In some cases, the
search method can become even slower than the brute-force comparison against
every data point. This is why we believe that optimizing computation of a dis-
tance function is equally important (and sometimes even more important) than
designing better search methods.

In this library, we optimized several distance functions, especially non-metric
functions that involve computations of logarithms. An order of magnitude im-
provement can be achieved by pre-computing logarithms at index time and by
approximating those logarithms that are not possible to pre-compute (see § 4.4
and § 4.5 for more details). Yet, this doubles the size of an index.

The Intel compiler has a powerful math library, which allows one to efficiently
compute several hard distance functions such as the KL-divergence, the Jensen-
Shanon divergence/metric, and the Lp spaces for non-integer values of p more
efficiently than in the case of GNU C++ and Clang. In the Visual Studio’s fast
math mode (which is enabled in the provided project files) it is also possible to
compute some hard distances several times faster compared to GNU C++ and
Clang. Yet, our custom implementations are often much faster. For example, in
the case of the Intel compiler, the custom implementation of the KL-divergence
is 10 times faster than the standard one while the custom implementation of the
JS-divergence is two times faster. In the case of the Visual studio, the custom
KL-divergence is 7 times as fast as the standard one, while the custom JS-
divergence is 10 times faster. Therefore, doubling the size of the data set by
storing pre-computed logarithms seems to be worthwhile.

Efficient implementations of some other distance functions rely on SIMD
instructions. These instructions, available on most modern Intel and AMD pro-
cessors, operate on small vectors. Some C++ implementations can be efficiently
vectorized by both the GNU and Intel compilers. That is, instead of the scalar
operations the compiler would generate more efficient SIMD instructions. Yet,
the code is not always vectorized, e.g., by the Clang. And even the Intel com-
piler, fails to efficiently vectorize computation of the KL-divergence (with pre-
computed logarithms).

https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/NonMetricSpaceLib.sln
https://github.com/searchivarius/nmslib/blob/v1.5/similarity_search/NonMetricSpaceLib.sln

NMSLIB Manual 75

There are also situations when efficient automatic vectorization is hardly pos-
sible. For instance, we provide an efficient implementation of the scalar product
for sparse single-precision floating point vectors. It relies on the all-against-all
comparison SIMD instruction mm cmpistrm. However, it requires keeping the
data in a special format, which makes automatic vectorization impossible.

Intel SSE extensions that provide SIMD instructions are automatically de-
tected by all compilers but the Visual Studio. If some SSE extensions are not
available, the compilation process will produce warnings like the following one:

LInfNormSIMD: SSE2 is not available, defaulting to pure C++ implementation!

Because we do not know a good way to create/modify Visual Studio project
files that enable advanced SSE extensions automatically (depending on whether
hardware supports them), the user has to enable these extensions manually. For
the instructions, the user is referred to § 3.2.

8.2 Cache-friendly Data Layout

In our previous report [7], we underestimated a cost of a random memory access.
A more careful analysis showed that, on a recent laptop (Core i7, DDR3), a truly
random access “costs” about 200 CPU cycles, which may be 2-3 times longer
than a computation of a cheap distance such as L2.

Many implemented methods use some form of bucketing. For example, in
the VP-tree or bbtree we recursively decompose the space until a partition con-
tains at most bucketSize elements. The buckets are searched sequentially, which
could be done much faster, if bucket objects were stored in contiguous memory
regions. Thus, to check elements in a bucket we would need only one random
memory access.

A number of methods support this optimized storage model. It is activated
by setting a parameter chunkBucket to 1. If chunkBucket is set to 1, indexing
is carried out in two stages. At the first stage, a method creates unoptimized
buckets, each of which is an array of pointers to data objects. Thus, objects are
not necessarily contiguous in memory. In the second stage, the method iterates
over buckets, allocates a contiguous chunk of memory, which is sufficiently large
to keep all bucket objects, and copies bucket objects to this new chunk.

Important note: Note that currently we do not delete old objects and do
not deallocate the memory they occupy. Thus, if chunkBucket is set to 1, the
memory usage is overestimated. In the future, we plan to address this issue.

9 Data Sets

Currently we provide mostly vector space data sets, which come in either dense
or sparse format. For simplicity, these are textual formats where each row of
the file contains a single vector. If a row starts with a prefix in the form:
label:<non-negative integer value> <white-space>, the integer value is

http://searchivarius.org/blog/main-memory-similar-hard-drive

76 Bilegsaikhan Naidan and Leonid Boytsov

interpreted as the identifier of a class. These identifiers can be used to compute
the accuracy of k-NN based classification procedure.

Aside from the prefix, the sparse and dense vectors are stored in a different
format. In the dense-vector format, each row contains the same number of vector
elements, one per each dimension. The values can be separated by spaces or
commas/columns. In the sparse format, each vector element is preceded by a
zero-based vector element id. The ids can be unsorted, but they should not
repeat. For example, the following line describes a vector with three explicitly
specified values, which represent vector elements 0, 25, and 257:

0 1.234 25 0.03 257 -3.4

The vectors are sparse and most values are not specified. It is up to a designer
of the space to decide on the default value for an unspecified vector element. All
existing implementations use zero as the default value. Again, elements can be
separated by spaces or commas/columns instead of spaces.

In addition, the directory previous releases scripts contains the full set
of scripts that can be used to re-produce our NIPS’13, SISAP’13, DA’14, and
VLDB’15 results [7,8,41,38]. However, one would need to use older software ver-
sion (1.0 for NIPS’13 and 1.1 for VLDB’15). Additionally, to reproduce our previ-
ous results, one needs to obtain data sets using scripts data/get data nips2013.sh
and data/get data vldb2015.sh. Note that for all evaluations except VLDB’15,
you need the previous version of software (1.0), which can be download from
here.

If we use any of the provided data sets, please consider citing the sources
(see Section 10) for details. Also note that, the data will be downloaded in
the compressed form. You would need the standard gunzip or bunzip2 to
uncompress all the data except the Wikipedia (sparse and dense) vectors. The
Wikipedia data is compressed using 7z, which provides superior compression
ratios.

10 Licensing and Acknowledging the Use of Library
Resources

The code that was written entirely by the authors is distributed under the
business-friendly Apache License. The best way to acknowledge the use of this
code in a scientific publication is to provide the URL of the GitHub repository19

and to cite our engineering paper [7]:

@incollection{Boytsov_and_Bilegsaikhan:sisap2013,

year={2013},

isbn={978-3-642-41061-1},

booktitle={Similarity Search and Applications},

volume={8199},

19 https://github.com/searchivarius/NonMetricSpaceLib

https://github.com/searchivarius/nmslib/blob/v1.5/data/get_data_nips2013.sh
https://github.com/searchivarius/nmslib/blob/v1.5/data/get_data_vldb2015.sh
https://github.com/searchivarius/NonMetricSpaceLib/releases
https://github.com/searchivarius/NonMetricSpaceLib/releases
http://apache.org/licenses/LICENSE-2.0
https://github.com/searchivarius/NonMetricSpaceLib

NMSLIB Manual 77

series={Lecture Notes in Computer Science},

editor={Brisaboa, Nieves and Pedreira, Oscar and Zezula, Pavel},

doi={10.1007/978-3-642-41062-8_28},

title={Engineering Efficient and Effective

\mbox{Non-Metric Space Library}},

url={http://dx.doi.org/10.1007/978-3-642-41062-8_28},

publisher={Springer Berlin Heidelberg},

keywords={benchmarks; (non)-metric spaces; Bregman divergences},

author={Boytsov, Leonid and Naidan, Bilegsaikhan},

pages={280-293}

}

If you re-use a specific implementation, please, consider citing the original
authors (if they are known). If you re-use one of the downloaded data sets, please,
consider citing one (or more) of the following people:

– authors of software that was used to generate the data;
– authors of the source data set;
– authors who generated data set (if it was not done by us).

In particular, note the following:

– Most of the data sets used in our SISAP’13 and NIPS’13 evaluation were
created by by Lawrence Cayton [11]. Our implementation of the bbtree, an
exact search method for Bregman divergences, is also based on the code of
Cayton.

– The Colors data set originally belongs to the Metric Spaces Library [25].
– All Wikipedia-based data sets were created with a help of the gensim library

[43].
– The VLDB’15 data set for the Signature Quadratic Form Distance (SQFD)

[5,4] was tested using signatures extracted from LSVRC-2014 data set [44].
– Our library incorporates the efficient LSHKIT library as well as the imple-

mentation of NN-Descent: an iterative algorithm to construct an approxi-
mate k-NN-graph [18].

– Note that LSHKIT is distributed under a different license: GNU General
Public License version 3 or later. The NN-Descent is distributed under a
free license similar to that of the Apache license (see the text of the license
here). There is also a newer open-source implementation of the NN-Descent
that includes both the graph construction and the search algorithm, but we
have not incorporated it yet.

11 Acknowledgements

Bileg and Leo gratefully acknowledge support by the iAd Center 20 and the
Open Advancement of Question Answering Systems (OAQA) group 21. We also

20 https://web.archive.org/web/20160306011711/http://www.iad-center.com/
21 http://oaqa.github.io/

https://github.com/piskvorky/gensim/
https://code.google.com/p/nndes/source/browse/trunk/LICENSE
https://code.google.com/p/nndes/source/browse/trunk/LICENSE
http://kgraph.org
https://web.archive.org/web/20160306011711/http://www.iad-center.com/
http://oaqa.github.io/

78 Bilegsaikhan Naidan and Leonid Boytsov

thank Lawrence Cayton for providing data sets (and allowing us to make them
public); Nikita Avrelin for implementing the first version of the SW-graph;
Yury Malkov and Dmitry Yashunin for contributing a hierarchical modifica-
tion of the SW-graph, as well as for guideliness for tuning the original SW-
graph; David Novak for the suggestion to use external pivots in permutation
algorithms; Daniel Lemire for contributing the implementation of the original
Schlegel et al. [47] intersection algorithm. We also thank Andrey Savchenko,
Alexander Ponomarenko, and Yury Malkov for suggestions to improve the li-
brary and the documentation.

References

1. G. Amato, F. Rabitti, P. Savino, and P. Zezula. Region proximity in metric spaces
and its use for approximate similarity search. ACM Trans. Inf. Syst., 21(2):192–
227, Apr. 2003.

2. G. Amato and P. Savino. Approximate similarity search in metric spaces using in-
verted files. In Proceedings of the 3rd international conference on Scalable informa-
tion systems, page 28. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2008.

3. A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt. Practical and
optimal lsh for angular distance. In Advances in Neural Information Processing
Systems, pages 1225–1233, 2015.

4. C. Beecks. Distance based similarity models for content based multimedia retrieval.
PhD thesis, 2013.

5. C. Beecks, M. S. Uysal, and T. Seidl. Signature quadratic form distance. In
Proceedings of the ACM International Conference on Image and Video Retrieval,
CIVR ’10, pages 438–445, New York, NY, USA, 2010. ACM.

6. E. Bingham and H. Mannila. Random projection in dimensionality reduction:
applications to image and text data. In Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 245–250.
ACM, 2001.

7. L. Boytsov and B. Naidan. Engineering efficient and effective
Non-Metric Space Library. In N. Brisaboa, O. Pedreira, and P. Zezula, ed-
itors, Similarity Search and Applications, volume 8199 of Lecture Notes in
Computer Science, pages 280–293. Springer Berlin Heidelberg, 2013.

8. L. Boytsov and B. Naidan. Learning to prune in metric and non-metric spaces. In
Advances in Neural Information Processing Systems, 2013.

9. T. Bozkaya and M. Ozsoyoglu. Indexing large metric spaces for similarity search
queries. ACM Transactions on Database Systems (TODS), 24(3):361–404, 1999.

10. L. Bregman. The relaxation method of finding the common point of convex sets
and its application to the solution of problems in convex programming. {USSR}
Computational Mathematics and Mathematical Physics, 7(3):200 – 217, 1967.

11. L. Cayton. Fast nearest neighbor retrieval for bregman divergences. In Proceedings
of the 25th international conference on Machine learning, ICML ’08, pages 112–
119, New York, NY, USA, 2008. ACM.

12. L. Cayton. Efficient bregman range search. In Advances in Neural Information
Processing Systems, pages 243–251, 2009.

NMSLIB Manual 79

13. M. S. Charikar. Similarity estimation techniques from rounding algorithms. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
pages 380–388. ACM, 2002.

14. E. Chávez and G. Navarro. A compact space decomposition for effective metric
indexing. Pattern Recognition Letters, 26(9):1363–1376, 2005.

15. E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroquin. Searching in metric
spaces. ACM Computing Surveys, 33(3):273–321, 2001.

16. M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual
symposium on Computational geometry, pages 253–262. ACM, 2004.

17. W. Dong. High-Dimensional Similarity Search for Large Datasets. PhD thesis,
Princeton University, 2011.

18. W. Dong, C. Moses, and K. Li. Efficient k-nearest neighbor graph construction for
generic similarity measures. In Proceedings of the 20th international conference on
World wide web, pages 577–586. ACM, 2011.

19. W. Dong, Z. Wang, W. Josephson, M. Charikar, and K. Li. Modeling lsh for
performance tuning. In Proceedings of the 17th ACM conference on Information
and knowledge management, CIKM ’08, pages 669–678, New York, NY, USA, 2008.
ACM.

20. D. M. Endres and J. E. Schindelin. A new metric for probability distributions.
Information Theory, IEEE Transactions on, 49(7):1858–1860, 2003.

21. A. Esuli. Use of permutation prefixes for efficient and scalable approximate simi-
larity search. Inf. Process. Manage., 48(5):889–902, Sept. 2012.

22. R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity search and classification
via rank aggregation. In Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’03, pages 301–312, New York,
NY, USA, 2003. ACM.

23. C. Faloutsos and K.-I. Lin. FastMap: A fast algorithm for indexing, data-mining
and visualization of traditional and multimedia datasets, volume 24. ACM, 1995.

24. K. Figueroa and K. Frediksson. Speeding up permutation based indexing with
indexing. In Proceedings of the 2009 Second International Workshop on Similarity
Search and Applications, pages 107–114. IEEE Computer Society, 2009.

25. K. Figueroa, G. Navarro, and E. Chávez. Metric Spaces Library, 2007. Available
at http://www.sisap.org/Metric_Space_Library.html.

26. E. Gonzalez, K. Figueroa, and G. Navarro. Effective proximity retrieval by ordering
permutations. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
30(9):1647–1658, 2008.

27. L. V. Hedges and J. L. Vevea. Fixed-and random-effects models in meta-analysis.
Psychological methods, 3(4):486–504, 1998.

28. P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pages 604–613. ACM, 1998.

29. G. King. How not to lie with statistics: Avoiding common mistakes in quantitative
political science. American Journal of Political Science, pages 666–687, 1986.

30. E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate
nearest neighbor in high dimensional spaces. In Proceedings of the 30th annual
ACM symposium on Theory of computing, STOC ’98, pages 614–623, New York,
NY, USA, 1998. ACM.

31. V. Levenshtein. Binary codes capable of correcting deletions, insertions, and re-
versals. Doklady Akademii Nauk SSSR,, 163(4):845–848, 1966.

http://www.sisap.org/Metric_Space_Library.html

80 Bilegsaikhan Naidan and Leonid Boytsov

32. C. Li, J. Lu, and Y. Lu. Efficient merging and filtering algorithms for approximate
string searches. In Data Engineering, 2008. ICDE 2008. IEEE 24th International
Conference on, pages 257–266. IEEE, 2008.

33. Q. Lv, M. Charikar, and K. Li. Image similarity search with compact data struc-
tures. In Proceedings of the thirteenth ACM international conference on Informa-
tion and knowledge management, pages 208–217. ACM, 2004.

34. Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe lsh: efficient
indexing for high-dimensional similarity search. In Proceedings of the 33rd inter-
national conference on Very large data bases, pages 950–961. VLDB Endowment,
2007.

35. Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov. Scalable distributed al-
gorithm for approximate nearest neighbor search problem in high dimensional gen-
eral metric spaces. In Similarity Search and Applications, pages 132–147. Springer,
2012.

36. Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov. Approximate nearest
neighbor algorithm based on navigable small world graphs. Inf. Syst., 45:61–68,
2014.

37. Y. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest
neighbor search using Hierarchical Navigable Small World graphs. ArXiv e-prints,
Mar. 2016.

38. B. Naidan, L. Boytsov, and E. Nyberg. Permutation search methods are efficient,
yet faster search is possible. PVLDB, 8(12):1618–1629, 2015.

39. G. Navarro. Searching in metric spaces by spatial approximation. The VLDB
Journal, 11(1):28–46, 2002.

40. S. B. Needleman and C. D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J Mol Biol, 48(3):443–453,
March 1970.

41. A. Ponomarenko, N. Avrelin, B. Naidan, and L. Boytsov. Comparative analysis of
data structures for approximate nearest neighbor search. In DATA ANALYTICS
2014, The Third International Conference on Data Analytics, pages 125–130, 2014.

42. A. Ponomarenko, Y. Malkov, A. Logvinov, , and V. Krylov. Approximate nearest
neighbor search small world approach, 2011. Available at http://www.iiis.org/

CDs2011/CD2011IDI/ICTA_2011/Abstract.asp?myurl=CT175ON.pdf.
43. R. Řeh̊uřek and P. Sojka. Software Framework for Topic Modelling with Large

Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA. http://is.muni.

cz/publication/884893/en.
44. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-

thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge, 2014.

45. H. Sakoe and S. Chiba. A dynamic programming approach to continuous speech
recognition. In Proceedings of the Seventh International Congress on Acoustics,
pages 65–68, August 1971. paper 20C13.

46. D. Sankoff. The early introduction of dynamic programming into computational
biology. Bioinformatics, 16(1):41–47, 2000.

47. B. Schlegel, T. Willhalm, and W. Lehner. Fast sorted-set intersection using simd
instructions. In ADMS@ VLDB, pages 1–8, 2011.

48. C. Silpa-Anan and R. I. Hartley. Optimised kd-trees for fast image descriptor
matching. In CVPR, 2008.

49. T. Skopal. Unified framework for fast exact and approximate search in dissimilarity
spaces. ACM Trans. Database Syst., 32(4), Nov. 2007.

http://www.iiis.org/CDs2011/CD2011IDI/ICTA_2011/Abstract.asp?myurl=CT175ON.pdf
http://www.iiis.org/CDs2011/CD2011IDI/ICTA_2011/Abstract.asp?myurl=CT175ON.pdf
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

NMSLIB Manual 81

50. E. S. Téllez, E. Chávez, and A. Camarena-Ibarrola. A brief index for proximity
searching. In Progress in Pattern Recognition, Image Analysis, Computer Vision,
and Applications, pages 529–536. Springer, 2009.

51. E. S. Tellez, E. Chávez, and G. Navarro. Succinct nearest neighbor search. Infor-
mation Systems, 38(7):1019–1030, 2013.

52. J. Uhlmann. Satisfying general proximity similarity queries with metric trees.
Information Processing Letters, 40:175–179, 1991.

53. V. Velichko and N. Zagoruyko. Automatic recognition of 200 words. International
Journal of Man-Machine Studies, 2(3):223 – 234, 1970.

54. T. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics,
4(1):52–57, 1968.

55. R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal
of the ACM, 21(1):168–173, 1974.

56. Z. Wang, W. Dong, W. Josephson, Q. Lv, M. Charikar, and K. Li. Sizing sketches:
a rank-based analysis for similarity search. ACM SIGMETRICS Performance
Evaluation Review, 35(1):157–168, 2007.

57. P. N. Yianilos. Data structures and algorithms for nearest neighbor search in
general metric spaces. In Proceedings of the Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’93, pages 311–321, Philadelphia, PA, USA, 1993.
Society for Industrial and Applied Mathematics.

A Description of Projection Types

A.1 The classic random projections

The classic random projections work only for vector spaces (both sparse and
dense). At index time, we generate projDim vectors by sampling their elements
from the standard normal distribution N (0, 1) and orthonormalizing them. 22

Coordinates in the projection spaces are obtained by computing scalar products
between a given vector and each of the projDim randomly generated vectors.

In the case of sparse vector spaces, the dimensionality is first reduced via
the hashing trick: the value of the element i is equal to the sum of values for all
elements whose indices are hashed into number i. After hashing, classic random
projections are applied. The dimensionality of the intermediate space is defined
by a method’s parameter intermDim.

The hashing trick is used purely for efficiency reasons. However, for large
enough values of the intermediate dimensionality, it has virtually no adverse
affect on performance. For example, in the case of Wikipedia tf-idf vectors (see
§ 9), it is safe to use the value intermDim=4096.

Random projections work best if both the source and the target space are
Euclidean, whereas the distance is either L2 or the cosine distance. In this case,
there are theoretical guarantees that the projection preserves well distances in
the original space (see e.g. [6]).

22 If the dimensionality of the projection space is larger than the dimensionality of the
original space, only the first projDim vectors are orthonormalized. The remaining
are simply divided by their norms.

82 Bilegsaikhan Naidan and Leonid Boytsov

A.2 FastMap

FastMap introduced by Faloutsos and Lin [23] is also a type of the random-
projection method. At indexing time, we randomly select projDim pairs Ai and
Bi. The i-th coordinate of vector x is computed using the formula:

FastMapi(x) =
d(Ai, x)2 − d(Bi, xi)

2 + d(Ai, Bi)

2d(Ai, Bi)2
(7)

Given points A and B in the Euclidean space, Eq. 7 gives the length of the
orthogonal projection of x to the line connecting A and B. However, FastMap
can be used in non-Euclidean spaces as well.

A.3 Distances to the Random Reference Points

This method is a folklore projection approach, where the i-th coordinate of point
x in the projected space is computed as simply d(x, πi), where πi is a pivot in
the original space, i.e., a randomly selected reference point. Pivots are selected
once during indexing time.

A.4 Permutation-based Projections.

In this approach, we also select projDim pivots at index time. However, instead
of using raw distances to the pivots, we rely on ordinal positions of pivots sorted
by their distance to a point. A more detailed description is given in § 5.4.

	Non-Metric Space Library (NMSLIB) Manual
	Introduction
	History, Objectives, and Principles
	Problem Formulation

	Getting Started
	What's new in version 1.5 (major changes)
	Prerequisites
	Installing C++11 Compilers
	Quick Start on Linux
	Query Server (Linux-only)
	Python bindings (Linux-only)
	Quick Start on Windows

	Building and running the code (in detail)
	Building under Linux
	Developing and Debugging on Linux

	Building under Windows
	Testing the Correctness of Implementations
	Running Benchmarks
	Space and distance value type
	Input Data/Test Set
	Query Type
	Method Specification
	Saving and Processing Benchmark Results
	Efficiency of Testing

	Measuring Performance and Interpreting Results
	Efficiency.
	Effectiveness

	Interpreting and Processing Benchmark Results
	Plotting results (Linux-Only)

	Spaces
	Details of Distance Efficiency Evaluation
	Lp-norms
	Scalar-product Related Distances
	Jensen-Shannon divergence
	Bregman Divergences
	String Distances
	Signature Quadratic Form Distance (SQFD)

	Search Methods
	Space Partitioning Methods
	VP-tree
	Multi-Vantage Point Tree
	GH-Tree
	List of Clusters
	SA-tree
	bbtree

	Locality-sensitive Hashing Methods
	Projection-based Filter-and-Refine Methods
	Brute-force projection search.
	Projection VP-tree.
	OMEDRANK.

	Permutation-based Filtering Methods
	Brute-force permutation search.
	Permutation Prefix Index (PP-Index).
	VP-tree index over permutations.
	Metric Inverted File
	Neighborhood APProximation Index (NAPP).
	Binarized permutation methods.

	Proximity/Neighborhood Graphs
	Small World Graph (SW-graph).
	Hierarchical Navigable Small World Graph (HNSW).
	NN-Descent.

	Miscellaneous Methods
	Brute-force (sequential) searching.
	Several copies of the same index type.

	Tuning Guidelines
	NAPP
	SW-graph and HNSW

	Extending the code
	Test Workflow
	Creating a space
	Creating a search method
	Creating an application on Linux (inside the framework)
	Creating an application on Windows (inside the framework)

	Notes on Efficiency
	Efficiency of Distance Functions
	Cache-friendly Data Layout

	Data Sets
	Licensing and Acknowledging the Use of Library Resources
	Acknowledgements
	Description of Projection Types
	The classic random projections
	FastMap
	Distances to the Random Reference Points
	Permutation-based Projections.

