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1 Introduction

1.1 What is the MixSIAR GUI?

The MixSIAR GUI is a graphical user interface (GUI) that helps you create and run Bayesian
mixing models to analyze biotracer data, following the MixSIAR model framework [23].
Both the GUI and script versions are written in the open source languages R [22] and

JAGS [21], are freely available online, and can be installed on machines running Mac OS

X, Microsoft Windows, and Linux.
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Figure 1: MixSIAR GUI screenshot

1.2 What is the MixSIAR model framework? How does it relate to SIAR
and MixSIR?

Analysis of biotracers (i.e. stable isotopes, fatty acids)' has become an important tool
to ecologists, since it can be used to determine diet composition, population structure,
and animal movement. Mixing models use biotracer data to estimate the proportions
of source (prey) contributions to a mixture (consumer)?. Bayesian mixing models im-
prove upon simpler linear mixing models by explicitly taking into account uncertainty

IMixing models were originally developed using stable isotopes, but they are general statistical mod-
els that apply to any mixing process. We make a conscious effort to keep terminology general by using
biotracers throughout—can be stable isotopes, fatty acids, compound-specific stable isotopes, element con-
centrations, or color coefficients from diffuse reflectance spectrometry (used in sediment mixing models).

2Likewise maintaining general terminology, we use mixture and source throughout. In diet studies the
mixture data are consumers/predators and source data are prey. In sediment studies the mixture data is a
downstream soil sample and the source data are upstream sediments (e.g. pasture, forest, cropland).
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in source values [15, 27], categorical and continuous covariates [24, 5, 18], and prior in-
formation [15]. While diet analysis using stable isotope data is the most common appli-
cation of mixing models, MixSIAR can also be applied to solve many other environmen-
tal questions. To name a few: pollutant sourcing, determining carbon sources for soils,
determining carbon sources for ecosystem respiration, and calculating plant water use
from soil horizons.

MixSIAR incorporates several years of advances in Bayesian mixing model theory since
MixSIR and SIAR:

* MixSIR (original Bayesian mixing model, MATLAB GUI) [15]

SIAR (residual error, R package, support group) [19]

Population structure (categorical covariate) [24]

¢ Uncertainty in discrimination® values, concentration dependence* [19]

Continuous covariate [5]

Source tracer covariance [9]
* Sources and consumers changing through time (via P-splines) [18]

¢ Multiplicative error structure [25]

MixSIAR is not a single mixing model—it is a general framework that can create many
different models based on user data and choices (see Model options). MixSIAR repre-
sents a collaborative coding project between the investigators behind MixSIR and SIAR:
Brice Semmens, Brian Stock, Eric Ward, Andrew Parnell, Donald Phillips, Andrew Jack-
son, Stuart Bearhop, and Richard Inger. [23]

1.3 Model options
The current implementation of MixSIAR includes the following model options:

* Any number of biotracers (examples with 1 and 2 isotopes, 8 and 22 fatty acids)

Source data fit hierarchically within the model

Source data by categorical covariate (e.g. sources by Region)

Categorical covariates (up to 2, choice of modeling as random or fixed effects, ei-
ther nested or independent)

3We use discrimination to refer to the differences between biotracer values found in the mixture and
sources. In diet analysis, these differences are also refered to as ‘fractionation’, ‘trophic enrichment factors’
('TEF’), and “trophic discrimination factors’ (‘'TDF’).

“Concentration dependence occurs when sources contain variable amounts of the biotracer element.
See Phillips and Koch [20]


http://conserver.iugo-cafe.org/user/brice.semmens/MixSIR
https://cran.r-project.org/web/packages/siar/index.html
https://www.facebook.com/SIAR-Stable-Isotope-Analysis-in-R-148501811896914/

Continuous covariate (up to 1)

Error structure options with covariance (Residual * Process, Residual only)

Concentration dependence

Ability to plot and include “uninformative”/generalist or informative priors

Any combination of these options creates a different model, which is then fit to the data.
Each of the above options are demonstrated with various examples (see Working Exam-

ples).

1.4 Great! How do I get started using MixSIAR?

**Warning** Not so fast!

We have created the MixSIAR GUI because we feel it can be a useful tool for ecologists
wishing to conduct stable isotope analysis on their data. However, it can also be easily
abused, since there are a number of ways to receive completely fallacious results:

* MCMC chains not converged
* Mixing model assumptions not met (i.e. missing a source, incorrect TDF)

¢ Incorrect model options selected (fitting a nonsensical model)

Before using MixSIAR ouput, you should be able to comfortably explain to someone
how you’ve considered and ruled out these concerns. Take some time to understand the
assumptions and limitations of mixing models and Bayesian methods (e.g. how MCMC
works, what is a prior vs. a posterior) before beginning. See the last page for several
links we think are helpful to someone new to these topics. Once you know the basics of
what the model does, you're ready to run the working examples. After you are confident
MixSIAR is installed and working correctly, you can then begin using it to analyze your
own data.

2 Installation

The MixSIAR package can be run as a GUI with mixsiar_gui(), or as a sequence of R
commands (.R script). The GUI depends on the gWidgetsRGtk2 package in R. MixSIAR
GUI has been tested and runs on Windows, Mac OS X, and Linux. Previously Mac users
commonly reported install problems, but those seem to be resolved now. If all else fails,
the script version should always work! If you have install issues, feel free to contact the
authors at https://github.com/brianstock/MixSIAR/issues.

While the GUI may be convenient for users less familiar with R, we advise using the
script version of MixSIAR for several reasons:
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1. Repeatability: You can run different models and have a record of the commands that
created each one. There are many reasons you’d want to do this. For example, you
may want to compare model results with an uninformative prior vs. an informa-
tive prior, one error term option vs. another, grouping sources a priori vs. a posteri-
ori, etc.

2. Speed: Clicking through the GUI buttons can get onerous after a while. You can
modify the included example .R files and run your entire analysis with source ("your_file.R").

3. Installation ease: Some users aren’t able to install the GTK+ software that the GUI
depends on (more issues on Mac). It may be worth figuring out the script version
(R skills!) instead of figuring out how to get GTK+ installed.

2.1 Windows

1. Download and install/update R. You can check which version of R (and any packages)
you are running using the command sessionInfo(). If you have an older version
of R installed, the easiest thing to do is use the installr package.

2. Download and install JAGS.

3. (Optional) If you want to build the vignettes, install pandoc or R Studio.
4. Open R (or R Studio).

5. Install GTK+ dependent packages.

install.packages(c("gWidgets", "RGtk2", "gWidgetsRGtk2", "devtools"))

6. Load RGtk2. You will be prompted to install GTK+. **Follow the automatic prompts
and do not interrupt the GTK+ installation!**:

library(RGtk2)

7. Restart R.

8. Install MixSIAR package:
library(devtools)
devtools::install_github("brianstock/MixSIAR",

dependencies = TRUE,
build_vignettes = TRUE)

8. Load MixSIAR and run GUI:


https://cran.r-project.org/bin/
http://www.r-statistics.com/2013/03/updating-r-from-r-on-windows-using-the-installr-package/
http://mcmc-jags.sourceforge.net/
https://github.com/jgm/pandoc/releases/
https://www.rstudio.com/products/rstudio/download/

library(MixSIAR)
mixsiar_gui()

The MixSIAR GUI should then appear as a separate window! If you have problems in-
stalling GTK+, search your computer for all listings of “GTK” and delete/uninstall them
(including the RGtk2 and gWidgetsRGtk2 package libraries in your R folder), then try
again. You can also download GTK+ directly from http://www.gtk.org/download/
index. php, but it’s very tricky to manually get GTK+ and R to interface properly (you
may have to adjust your PATH variable).

2.2 MacOSX

We have had reports in the past of installation issues on Mac, but the following consis-
tently works now:

1. Download and install/update R. You can check which version of R (and any packages)
you are running using the command sessionInfo().

Download and install JAGS.
(Optional) If you want to build the vignettes, install pandoc or R Studio.
Open R (or R Studio).

SIS SRS

Install GTK+ dependent packages.

install.packages(c("gWidgets", "RGtk2", "gWidgetsRGtk2", "devtools"))

6. Close R.
7. Download and install the newest GTK+ framework.
8. Install the latest X11 application, xQuartz.

9. Open R and run:

library(devtools)

devtools::install_github("brianstock/MixSIAR",
dependencies = TRUE,
build_vignettes = TRUE)

10. Load MixSIAR and run GUI:


http://www.gtk.org/download/index.php
http://www.gtk.org/download/index.php
https://cran.r-project.org/bin/
http://mcmc-jags.sourceforge.net/
https://github.com/jgm/pandoc/releases/
https://www.rstudio.com/products/rstudio/download/
http://r.research.att.com/#other
http://xquartz.macosforge.org/landing/

library(MixSIAR)
mixsiar_gui()

2.3 Linux

1. Download and install/update R. You can check which version of R (and any packages)
you are running using the command sessionInfo().

2. Download and install JAGS. Or, from the terminal: sudo apt-get install jags
r-cran-rjags.

Download and install GTK+. Or, from the terminal: sudo apt-get install libgtk2.0-dev.
(Optional) If you want to build the vignettes, install pandoc or R Studio.
Open R (or R Studio).

AN L

Check if GTK+ is installed correctly. Open R, install and load the RGtk2 package with:

install.packages ("RGtk2")
library (RGtk2)

7. Install and load devtools, then install MixSIAR:

install.packages("devtools")

library(devtools)

devtools::install_github("brianstock/MixSIAR",
dependencies = TRUE,
build_vignettes = TRUE)

8. Load MixSIAR and run GUI:

library(MixSIAR)
mixsiar_gui()

3 Running the working examples

The working examples will familiarize yourself with MixSIAR, and it’s a good idea to
walk through them before playing around with your own data. This manual steps through
the examples with the GUI (below), as well as the script version. The script examples are
also written as vignettes, which you can access via:


https://cran.r-project.org/bin/
http://mcmc-jags.sourceforge.net/
http://www.gtk.org/download/index.php
https://github.com/jgm/pandoc/releases/
https://www.rstudio.com/products/rstudio/download/

library(MixSIAR)
browseVignettes ("MixSIAR")

The basic MixSIAR workflow is:
1. Load data

(a) Mixture

(b) Sources

(c) Discrimination (TDF)
Plot data and prior
Choose model structure options
Choose output options

Run model

Use diagnostics to decide if the model has converged

N o gk » D

Analyze output

A summary of the working examples and MixSIAR options they demonstrate is below:



01

Random Fixed Continuous Informative Additional
Tracers Source data Error structure .
effects effects effect prior features
Region, Pack M SD
Wolves 2 isotopes eglon, rac — — eans/ . /n Resid * Process — —
(nested) (by Region)
: Concentration
Geese 2 isotopes — Group — Means/SD/n Resid — '
dependence
Lake 2 isotopes — — Secchi:Mixed Raw Resid — —
Palmyra 2 isotopes — Taxa — Raw Resid * Process — —
Killer whale 2 isotopes — — — Means/SD/n  Resid * Process Fecal contents —
Storm-petrel 2 isotopes — Region — Raw Resid — —
Snail 1 isotope — — — Raw Resid * Process — —
Isopod 8 fatty acids — Site — Means/SD/n  Resid * Process — —
Cladocera 22 fatty acids — — — Means/SD/n Process — —
E topinion, = Combi
Mantis 2 isotopes — Habitat — Means/SD/n  Resid * Process xper OpTuon ombine S(')urces
Prey abundance a posteriori

Alligat 2 isotopes Sex, Length  Means/SD/n Resid * P Compare models

igator — en eans n Resi rocess —

8 P Size class 8 with LOO/WAIC

Table 1: Working examples included with MixSIAR.



3.1

Wolves Example

The “Wolves Example” uses data reconstructed from (not identical to) Semmens et al
[12]. Here, we investigate the diet of 66 wolves in British Columbia with:

3.1.2

2 biotracers (513C, §1°N)
2 random effects (Region and Pack), where Pack is nested within Region
Source data as means and SDs (by Region)

Resid * Process error

Loading mixture data

. Click “Load mixture data”, then “Load mixture data file” in the new window.

Choose “wolves_consumer.csv”. This file has the §'>C and §'°N isotope values,
and two categorical covariates (Region and Pack). The covariates don’t have to be
numerical, these just happen to be.

You should see the column headings of the mixture data file in the window. Select
which columns are isotopes (d13C and d15N) and which are random effects (Re-
gion, Pack). Click “I'm finished”.

Another box will appear asking if the data is nested /hierarchical. Choose “Pack
within Region” and then click “I'm finished”.

Loading source data

. Click “Load source data”.

If you look at the source data file (“wolves_sources.csv”), you will see that each
Region has different isotope values—Click “Yes”, source data vary by Region, and
“No”, source data do not vary by Pack.

There is no concentration dependence data in “wolves_sources.csv”, so “Do you
have Concentration Dependence data?” should be “No”.

In this example we only have source summary statistics (Mean, SD, and sample
size), not the original “raw” data—Click “Load source means and SDs”.

Choose “wolves_sources.csv” when prompted for the data file. Note that the source
data file has a column titled “n” with the sample size of each source estimate. This must be
in your source data file when you run your data!

Click “I'm finished”.
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3.1.3 Loading discrimination data

1. Click “Load discrimination data”

2. Choose “wolves_discrimination.csv” when prompted for the discrimination data
file. We use "discrimination’ to refer to the differences between isotope values found
in the mixture and sources. In diet analysis, these differences are also refered to as
"fractionation’, ‘trophic enrichment factors’ ("TEF’), and "trophic discrimination fac-
tors’” ('TDF’).

3.1.4 Making an isospace plot

Once the mixture, source, and discrimination data are loaded, you can click “Make isospace
plot”. Your plot should match that of Figure 2. If you want to save the isospace plot as a
.pdf or .png, make sure either/both of the appropriate boxes are checked. You can also
change the name of the file here (default is to save the plot as “isospace_plot.pdf”).

Region 1
20- .
© Region 2 Marine Mammals
Region 3 +
—e -
® Pack 1 1
A Pack2 !
m Pack3 Salmon
15- + Pack 4
® Pack 5
* Pack 6 !ér‘
= O Pack 7 m ©°
2 -
lnZ v Pack 8 &
o Byt
X
10- :
;
= v
g4 %
Lkt
ok
Deerl
v
=l

T T T T
25 20 -15 -10

Figure 2: Stable isotope input for the Wolves Example. Mixture data (wolves) are
by Region (color) and Pack (shape). Source data are by Region and have been ad-
justed by discrimination means and SDs. Error bars indicate +1 SD, the combined

source+discrimination SD calculated as 4/02,,,c, + 07, under the assumption of inde-
pendence.

You should ALWAYS look at the isospace plot—this is a good check that the data is loaded
correctly, and that the isospace geometry makes sense. If the mixture data are well out-
side the source polygon, you have a serious violation of mixing model assumptions, and
it must be true that either 1) You're missing a source, or 2) You're using an incorrect dis-
crimination factor. MixSIAR, like SIAR, fits a residual error term, and thus will always
tind a solution even if it is nonsensical.
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Also note that the MixSIAR isospace plot adds the discrimination means AND SDs to
the raw source values, since the model uses the source+discrimination values to fit the
mixture data. Error bars indicate & 1 SD°. The “Wolves Example” uses 2 isotope values
(613C and 6°N), as is most often the case. If you have only 1 biotracer, MixSIAR will cre-
ate a 1-D plot (see Snail Example). If you have more than 2 biotracers, MixSIAR will cre-
ate all possible pairwise 2-D plots (see Isopod Example for a case with 8 biotracers).

3.1.5 Plot your prior

Click the “Plot prior” button, and you should get a plot that matches Figure 3.
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r T T T T 1
0.0 02 0.4 0.6 0.8 1.0

®| Your prior: (1,1,1)

@ "Uninformative" prior(1,1,1)

Figure 3: Uninformative prior used in Wolves Example. A few things to note: 1) the
proportion distributions are the same for all sources, 2) the mean is m = %, and 3)
lower proportions are more likely.

Bayesian analyses require priors, and MixSIAR includes a plot_prior function to plot
the prior on the mixture (diet) proportions (at the highest hierarchical level, p.global).
The prior represents our knowledge about the proportions before we consider the biotracer
data. A natural tendency is to want a flat/”uninformative” prior, where all values be-
tween 0 and 1 are equally likely. However, because proportions are not independent,
there is no truly uninformative prior (e.g. the histograms in Figure 3 are not flat). The
best we can do with the Dirichlet distribution is set « = c(1,1,1), which is uninformative
on the simplex. In other words, all combinations of the proportions are equally likely. See
the section titled “Constructing informative Bayesian priors” in Semmens et al. [23].

5The combined source+discrimination SD is calculated as /02,0, + Ugl. 5o Under the assumption of
independence.
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Because the mean of the “uninformative” prior, & = c(1,1,1), is m/ we also call it

the generalist prior. This reflects two facts: 1) it is not really uninformative, and 2) for
weakly informative data it shifts the posterior towards a generalist diet, p; = p, =
p3 = % The amount of shift depends on the informativeness (quality and quantity) of
the data. Brett [2] showed significant shifts occur when the source biotracer values are
very uncertain and you only have 1 mixture datapoint.

3.1.6 Specify MCMC parameters

It is beyond the scope of this manual to explain Markov Chain Monte Carlo (MCMC)
methods—see 5 for more information. What you need to know to effectively use the
MixSIAR GUI can be summarized in a paragraph or two though:

Running MCMC in JAGS can take a long time for a model with many parameters. It's a
good idea to always run the “test” length first. This lets you confirm the model is spec-
ified correctly, and will give you an idea how long a longer MCMC run will take. For
now, leave “test” selected. If you want, skip ahead to 3.1.7.

Briefly, MCMC is a method of estimating the probability density functions of variables
of interest (e.g. proportion of Region 1 Wolves diet that is Deer). Instead of only a mean
and variance, MCMC estimates the entire distribution for each variable. From this esti-
mated “posterior” distribution we can then calculate familiar statistics like mean/median,
standard deviation, and Bayesian credible intervals (NOT 95% confidence intervals,

see 5). As you increase the number and length of the MCMC “chains”, they will con-
verge on the true posterior distribution for each variable. But more and longer chains
take...longer, and we don’t have all day. If your chains are 'long enough,” according to
some diagnostics (see 3.1.9), then you will get accurate estimates of the posterior dis-
tributions and we say the chains have “converged.” Setting the MCMC parameters is a
balancing act between not waiting forever for an answer and achieving convergence.
The MCMC settings available in the GUI are in Table 2. You can specify exact MCMC
parameters using the script version (see lines 127-137 of mixsiar_script.r). If you're
unfamiliar with MCMC, you may want to briefly skim the references in Introductions to
Bayesian Analysis.

Chain Length Burn-in Thin # Chains Est. runtime

test 1,000 500 1 3 5 sec
very short 10,000 5,000 5 3 3 min
short 50,000 25,000 25 3 15 min
normal 100,000 50,000 50 3 30 min
long 300,000 200,000 100 3 90 min
very long 1,000,000 500,000 500 3 5 hours
extreme 3,000,000 1,500,000 500 3 15 hours

Table 2: MCMC settings in MixSIAR GUI. You can specify exact MCMC parameters us-
ing the script version (see lines 127-137 of mixsiar_script.r). Estimated runtime listed
is for the Wolves Example on my laptop (Ubuntu 14.04, Intel Core i5 1.7GHz, 8GB RAM).
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3.1.7 Error structure options

In the Wolves Example we want the “Residual * Process” error option, and it is already
selected. The differences between “Residual * Process”, “Residual only”, and “Process
only” are explained in Stock and Semmens [25].

3.1.8 Run MixSIAR (test)

In the future you may want to change the output saving options, but not now. Click the
“RUN MODEL” button at the bottom!
You should see something like this in the R console:
> Compiling model graph
Resolving undeclared variables
Allocating nodes

Graph Size: 3043

Initializing model

R R e o I GG S
khkdkkdkkhkhkkdkdhkdddhkddddrddrdddddrd o dddd T72%

This is good! It means MixSIAR has created a JAGS model file, passed your data to JAGS,
and JAGS is fitting your model. The “test” MCMC run should only take a few seconds.

If you're familiar with JAGS and want to check out the model file, “MixSIAR model.txt”
will be in your working directory folder.

Before we look at the output, it is useful to have at least a hand-wavy understanding

of how the MixSIAR model is set up. In the introduction, we stated that MixSIAR is a
Bayesian mixing model. This is true, but we can also add another descriptive term and
say that MixSIAR is a hierarchical Bayesian mixing model. The hierarchical structure al-
lows MixSIAR to analyze diet by covariates, as illustrated in Figure 4.

3.1.9 Using MCMC diagnostics

When the model is finished, a green check will appear next to the “RUN MODEL” but-
ton.

RUN MODEL +

The R console will have two progress bars at 100% as well:

Initializing model

| +++++++++++t+tttt bttt bbbt bbb bbb bbb | 100%
| khkhkhkhkdkdkhkddddbdrddrddrddbdrddrddddbrddrddddbrddrddddbrddhd s | 100%
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p.global.Deer

p-Region 1.Deer p.Region 2.Deer p.Region 3.Deer

R

/  p-Pack4-7.Deer N

Figure 4: Model structure and variables in the Wolf Example. For the diet proportion,
p, of each source (Deer shown here), we fit a distribution for all wolves (p.global.Deer).
Means for each Region (p.Region 1-3.Deer) are drawn from this p.global.Deer distribu-
tion, with deviation Region.SD. The process repeats for the Pack level: means for each
Pack are drawn from their Region distributions (p.Pack 4-7.Deer from p.Region 2.Deer),
with deviation Pack.SD. From Semmens et al. [24].

Now click the “Process output” button. A bunch of plots will be spit out, but first recall
that the aim of MCMC is to converge on the posterior distributions for all variables in
the model. Before accepting any of the MixSIAR results, it is imperative that you determine the
model has converged. You should use the diagnostic tests and plots in this effort. MixSIAR
prints the diagnostic tests in the R console (above Summary Statistics) and saves them as
“diagnostics.txt”. Check them out!

MixSIAR displays 2 diagnostic tests by default: Gelman-Rubin and Geweke. Briefly, the
Gelman-Rubin test needs > 1 chain to be calculated, and will be near 1 at convergence.
Gelman states that “values below 1.1 are acceptable for most examples” [8]. The Geweke
test is a two-sided z-test comparing the mean of the first part of the chain with the mean
of the second part. At convergence these means should be the same, and large absolute
z-scores indicate rejection. The SAS website has a good brief explanation of how to visu-
ally analyze trace plots, and Patrick Lam’s notes may also be useful in understanding the
diagnostic tests.

Looking at the “diagnostics.txt” file, our model is not even close to convergence with the
“test” settings:
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H R T R A R A
# Gelman-Rubin Diagnostic
H R T R A R A

Generally the Gelman diagnostic should be < 1.85

Dut of 41 variables: 41 = 1.01
39 > 1.05
33 = 1.1

The worst variables are:

Point est. Upper C.I.
p.global[2] 8.495770 20.363330
p.fac2[5,2] 7.645885 16.154276
p.fac2[5,3] 7.811953 15.151394
p.fac2[4,3] 6.957779 16.236915

MixSIAR also produces diagnostic plots useful for determining convergence, using the
ggmeme package [12]. Open “diagnostics.pdf” and you will find:

¢ Gelman-Rubin plot (same as in diagnostics.txt)
* Geweke plot (same as in diagnostics.txt)

* Posterior density plots by chain

¢ Traceplots

* Running mean plots

* Autocorrelation plots

¢ Crosscorrelation plot

3.1.10 Run MixSIAR (for real)
Let’s choose a longer MCMC run and try again:

1. Select “Normal” under “MCMC run length”.

2. Click the “RUN MODEL” button again. This will take much longer, about 30 min-
utes instead of 5 seconds.

3.1.11 Check diagnostics (again)

When the model is finished, again click the “Process output” button. This time it looks
like our model is pretty well converged according to the Gelman-Rubin:
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A R T R R A A
# Gelman-Rubin Diagnostic
A R T R R A A

Generally the Gelman diagnostic should be < 1.85

Out of 41 variables: 8 = 1.01
1= 1.05
0 =1.1

The worst variables are:

Point est. Upper C.I.
p.global[3] 1.063742 1.171759

p.faci[1,3] 1.033035 1.089155
p.faci[1,1] 1.024669 1.078329
fac2.sig 1.019601  1.034644
p.global[2] 1.019084 1.064416
p.faci[3,3] 1.013102 1.040326

Looking at the Geweke, we can see that chains 1 and 2 are good, but chain 3 was not
quite converged:

FEH I R T T A T B A R B A T A A A A S R A
# Geweke Diagnostic
FEH I R T T A T B A R B A T A A A A S R A

The Geweke diagnostic is a standard z-score, so we'd expect 5% to be outside +/-1.96
Mumber of variables outside +/-1.96 in each chain (out of 41):

Chain 1 Chain 2|Chain 3
Geweke 2 6 14

I would run this longer (run="long” or “very long”) if it were for a final analysis, but this
is good for now.
3.1.12 Interpreting MixSIAR output

Several plots are created:

* Posterior plot comparing the variation in diet by each factor (Figure 5, “posterior_density_SD.pd:

* Posterior plots of diet by Region (Figure 6, “posterior_density_diet_p_Region 1.pdf”
etc.)

¢ Posterior plots of diet by Pack (Figure 7, “posterior_density_diet_p_Pack 4.pdf”
etc.)

¢ Posterior plot of overall population diet (Figure 8, “posterior_density_diet_p_global.pdf”)

e Pairs plot of overall population diet (Figure 9, “pairs_plot.pdf”)

In addition to the plots, summary statistics are output to the R console and saved if you
check the box. First, let’s look at the medians (50% quantiles) of Region.SD and Pack.SD
terms—these are the variation in diet for Factor 1 (Region) and Factor 2 (Pack):
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#################################################################
# Summary Statistics
A A R A A R A R

DIC = 175.6317

Mean S50 2.5% 5% 25% 50% 75% 95% 97.5%
Region.SD 1.176 1.054 0.053 0.097 0.463 |0.92001.566 3.198 3.947
Pack.sD 1.304 0.583 0.595 0.655 0.918 J1.182]1.556 2.364 2.740

You should have values close to 0gegion = 0.92 and op,er = 1.18. These are about the
same (well within 95% CI), so we can say that Region and Pack contribute about equally
to the variation in wolves’ diets. Check that the mean, SD, and quantiles for Region.SD
and Pack.SD match their posterior density distributions (posterior_density_SD.pdf, Fig-
ure 5).

Pack SD

ZRegion SD

0.75

Posterior Density
o
@
o
1

0.25

0.00

Qoo

Figure 5: Posterior plot comparing the variation in diet by each factor. Including co-
variates as Random Effects in MixSIAR allows you to examine which explains more of
the variation in consumer diet. In the Wolves Example here, 0region and op, are about
the same, so we can say that Region and Pack contribute about equally to the variation
in wolves’ diets. Median and quantile values are printed in Summary Statistics—see
Region.SD and Pack.SD.

You can also look at the mean, SD, and quantiles for p.Region (diet proportion by Re-
gion), p.Pack (diet proportion by Pack), and p.global (diet proportion of the overall wolf
population). As an example, to find the median diet for Region 1 wolves (71.4% Deer,
8.5% Marine Mammals, and 16.5% Salmon), look in Summary Statistics for the 50% quan-
tiles of p.Region 1.Deer, p.Region 1.Marine Mammals, and p.Region 1.Salmon (red):
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Mean 5D 2.5% 5% 25% 50% 75% 95% 97.5%

Region.SD 1.176 1.054 0.053 0.097 0.463 0.920 1.566 3.198 3.947
Pack.SD 1.304 ©.583 0.595 0.655 0.918 1.182 1.556 2.364 2.740
p.global.Deer 0.467 ©.185 0.128 0.157 0.316 0.485 0.620 0.738 0.763
p.global.Marine Mammals ©6.211 0.148 0.024 0.836 0.111 0.175 0.288 ©.499 0.563
p.global.salmon 0.322 ©.182 0.079 0.095 0.179 0.279 0.431 0.682 0.753
p.Region 1.Deer 0.691 0.164 [8.297] 0.371 0.592 0.817 0.914[0.930]
p.Region 2.Deer 0.546 ©.158 0.211 0.265 0.444 0.553 0.658 0.795 0.825
p.Region 3.Deer 0.411 ©.225 0.016 0.042 0.228 0.416 0.586 0.770 0.827
p.Region 1.Marine Mammals 0.111 0.101[6.601] 0.005 0.037 [0.085]0.153 0.306[0.368]
p.Region 2.Marine Mammals 6.164 0.106 0.023 0.833 0.090 0.141 0.216 0.374 0.429
p.Region 3.Marine Mammals 0.244 0.188 0.007 0.023 0.106 0.195 0.339 0.637 0.718
p.Region 1.Salmon 0.198 0.154 [0.009] 0.020 0.082 [0.165]0.271 0.510 [F-620]
p.Region 2.Salmon 0.290 ©.153 0.062 0.083 0.179 ©.266 0.377 0.589 0.666
p.Region 3.Salmon 0.345 0.242 0.030 0.055 0.163 0.284 0.473 0.870 0.945

95% credible intervals® for Deer, Marine Mammals, and Salmon contribution to Region

1 wolves’ diet would be found in Summary Statistics 2.5% and 97.5% of p.Region 1.Deer,
p-Region 1.Marine Mammals, and p.Region 1.Salmon (blue). Check that these values
agree with the posterior plot of Region 1 wolves’ diet (posterior_density_diet_p_Region
1.pdf, Figure 6).

Region 1

1.00 4

Deer
V‘ Marine Mammals

Z Salmon

0.75

0.50

Scaled Posterior Density

0.25

0.00

0.50
Proportion of Diet

Figure 6: Posterior plot of Region 1 wolves’ diet. MixSIAR plots the diet of each level of
each fixed /random effect. The diet proportions of Region 1 are in Summary Statistics as
p-Region 1.Deer, p.Region 1.Marine Mammals, and p.Region 1.Salmon (medians = 71.4%
Deer, 8.5% Marine Mammals, and 16.5% Salmon).

®These are Bayesian credible intervals, NOT frequentist confidence intervals.
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Pack 7
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Deer

7‘ Marine Mammals
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0.75
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Figure 7: Posterior plot of Pack 7 wolves’ diet. MixSIAR plots the diet of each level of
each categorical covariate. The diet proportions of Pack 7 are in Summary Statistics as
p-Pack 7.Deer, p.Pack 7.Marine Mammals, and p.Pack 7.Salmon.

Overall Population

1.004
Deer

V‘ Marine Mammals
Salmon
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T T T T T
0.00 0.25 0.50 0.75 1.00
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Figure 8: Posterior plot of overall wolves’ diet. MixSIAR also plots the diet of the over-
all consumer population, p.global—this is what we’d expect for a new wolf if we didn’t
know which region or pack it belonged to.
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Figure 9: Pairs plot of the posterior diet proportions of the overall wolf population.
The upper-diagonal shows contour plots, the diagonal shows histograms, and the lower-
diagonal shows the correlations between the different sources.

3.1.13 Saving MixSIAR output

By default MixSIAR saves .pdf files of all plots and .txt files of the diagnostics and sum-
mary statistics. Plot files can also be saved as .png files if you prefer. If you don’t want
the diagnostics or summary statistics files, uncheck the relevant boxes. If you don’t want
to be bothered with the plots, you can check “Suppress plot output”.

To save everything in your R workspace, run:

save.image(file="wolves_normal.RData")

Then if you close and reopen R in the future, you can load the completed Wolves Exam-
ple with:

load(file="wolves_normal.RData")

You can also directly access the JAGS model objects if you want to make your own plots,
do a post-hoc aggregation of sources, or run other diagnostics. MixSIAR GUI creates a
mixsiar environment, with jags.1 the rjags object holding the MCMC chains, accessed
using mixsiar$jags.1. Objects holding MCMC chains you may be interested in are:

* p.global: Overall consumer diet proportions

22



* p.facl: Region consumer diet proportions
* p.fac2: Pack consumer diet proportions
¢ facl.sig: Variation in diet among Regions
e fac2.sig: Variation in diet among Packs

Note that while the variables in Summary Statistics are renamed to be more easily in-
terpreted, these objects are necessarily named more generally. For instance, say we are
interested in the diet proportions of Region 1 wolves. In the Summary Statistics, we find
p-Region 1.Deer, p.Region 1.Marine Mammals, and p.Region 1.Salmon. However, in
the JAGS model, p.fac1 is the diet proportion by Region, indexed as [MCMC chain, Re-
gion, Source]:

dim(p.facl)

## [1] 3000 3 3

p.fac1[,1,1] is the chain for the proportion of Region 1 wolves’ diet that was Deer:

median(p.faci[,1,1])

## [1] 0.7142127

p.fac1[,1,2] is the chain for the proportion of Region 1 wolves’ diet that was Marine
Mammals:

median(p.facl[,1,2])

## [1] 0.08482204

Likewise for Pack, coded as p.fac2, indexed as [Pack, Source]). Sources are sorted alpha-
betically. If you are unsure of the indexing, compare the Summary Statistics to the poste-
rior density plots and you should be able to figure out which is which.

Notice that while you have access to these objects, they are not actually in your workspace.

If you save your workspace, then close and re-open R, you will need to enter attach. jags (mixsiar$ja
to access p.facl again. Alternatively, you can add p.fac1 to your workspace by entering
save(p.facl,file="p.saved") followed by load("p.saved").

3.2 Geese Example

For this walk-through I assume you’ve already done the Wolves Example, so if some-
thing is unclear please refer to the relevant section there. The “Geese Example” uses data
from Inger et al. [10] of 251 wintering geese feeding on terrestrial grasses, Zostera spp.,
Enteromorpha spp., and Ulva lactuca. This is the same data included as a demo in SIAR
and in Parnell et al. [18]:
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2 biotracers (513C, §1°N)

1 fixed effect (Group)

Source data as means and SDs

Concentration dependence

Residual only error

3.2.1 Load mix data

1. Click “Load mixture data”, then “Load mixture data file” in the new window.

2. Choose “geese_consumer.csv”. This file has the C and N isotope values, and cate-
gorical covariate (Group).

3. Select which columns are isotopes (d13C and d15N) and which is a fixed effect
(Group). We choose to treat Group as a fixed effect instead of a random effect here because
we are interested in the diet of each group separately and NOT in the overall diet.

4. Click “I'm finished”.

3.2.2 Load source data

1. Click “Load source data”

2. Our geese source data are not by Group, but we DO have concentration depen-
dence data (see “geese_sources.csv” file). Next to “Do you have Concentration De-
pendence data?”, click “Yes”.

3. We only have source means, SD, and sample size—not the original “raw” data—click
“Load source means and SDs”.

4. Choose “geese_sources.csv” when prompted for the file, and click “Ok”.

5. Click “I'm finished”.

3.2.3 Load discrimination data

1. Click “Load discrimination data”.

2. Choose “geese_discrimination.csv” when prompted for the file, and click “Ok”.
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3.24 Make isospace plot

Click “Make isospace plot”. Your plot should match that of Figure 10.
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Figure 10: Stable isotope input for the Geese Example. Consumer data are by Group
(color) and source data are labeled. Error bars indicate combined source and discrimina-
tion uncertainty + 1 SD.

3.2.5 Specify MCMC parameters

First run using the “test” settings to make sure the model is setup correctly. For more
description of these parameters, see Table 2.

3.2.6 Error term options

In the Geese Example we want “Residual error only”.

3.2.7 Run MixSIAR (test)

Click the “RUN MODEL” button at the bottom. The Geese Example is larger than the
others, so it will take significantly longer to run (~50 seconds for “test”).

3.2.8 Using MCMC diagnostics

When the model is finished, click the “Process output” button to generate diagnostics,
summary statistics, and posterior plots. Has our model converged? See Section 3.1.9
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if you need a refresher on how to do this. Based on the Gelman-Rubin diagnostics, our
“test” run is not even close to convergence:

WA R AR R R R A R A R
# Gelman-Rubin Diagnostic
WA R AR R R R A R A R

Generally the Gelman diagnostic should be < 1.85

Out of 37 variables: 37 > 1.01
31 = 1.05
25 > 1.1

The worst variables are:

Point est. Upper C.I.
p.faci[3,1] 3.505785 14.090565
p.faci[3,3] 3.838753  7.326779
p.faci[5,1] 2.694420 5.754130
p.faci[5,3] 2.666437 5.508339

3.2.9 Run MixSIAR (for real)
1. Under “MCMC run length”, click “short”.
2. Click “RUN MODEL” button.

This will take roughly 40 minutes to complete, so be patient!

3.2.10 Check diagnostics (again)

After the model is finished, click the “Process output” button again. Based on the Gelman-
Rubin diagnostic, our “short” run is much closer to convergence:

B R S R
# Gelman-Rubin Diagnostic
B R S R

Generally the Gelman diagnostic should be < 1.05

Out of 37 variables: 28 > 1.01
19 = 1.065
12 = 1.1

The worst variables are:

Point est. Upper C.I.
p.global[1] 1.170947 1.546743

p.faci[1,1] 1.170947  1.546743
p.faci[1,3] 1.129189  1.485320
p.global[3] 1.129189  1.485320
p.faci[2,3] 1.127919  1.486975

We will call these good enough for the purposes of this tutorial—would NOT accept
these as final results.
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Figure 11: Posterior plot of Group 1 geese diet. For medians and credible interval limits,
look in the Summary Statistics at p.Group 1.Grass, p.Group 1.Enteromorpha, p.Group
1.U.lactuca, and 1.Group 6.Zostera.

3.2.11 Interpreting output

You should see posterior plots of diet by Group (Figure 11, “posterior_density_diet_p_Group
1.pdf”, etc.). Note that there is no global/overall estimated diet—this is because we fit Group

as a fixed effect instead of a random effect.

As in the other working examples, MixSIAR also prints and saves summary statistics. As

an example, to find the median diet proportions for Group 1 geese (7.2%, 11.9%, 21.6%,
57.7%), look in Summary Statistics for the 50% values of p.Group 1.Enteromorpha, p.Group
1.Grass, p.Group 1.U.lactuca, and p.Group 1.Zostera. The 95% credible interval for

Grass contribution to Group 1 geese diet would be found in Summary Statistics, 2.5%

and 97.5% of p.Group 1.Grass. See that these values agree with the posterior plot of

Group 1 diet in Figure 11.

3.3 Lake Example

The “Lake Example” data is simulated based on Francis et al. [5] and we include it as a
example of how MixSIAR can include a continuous effect. Here we examine the diet of
zooplankton in 21 lakes using;:

e 2 biotracers (613C, §1°N)

¢ 1 continuous effect (Secchi Depth : Mixed Layer Depth)
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e Raw source data

Fitting a model with a continuous effect is more complex than the categorical fixed /random
effects and can be a bit finicky.
3.3.1 Load mix data

1. Click “Load mixture data”, then “Load mixture data file” in the new window.

2. Choose “lake_consumer.csv”. This file has the C and N isotope values, and contin-
uous covariate (Secchi.Mixed).

3. Select which columns are isotopes (d13C and d15N) and which is the continuous
effect (Secchi.Mixed).

4. Click “I'm finished”.

3.3.2 Load source data
1. Click “Load source data”

2. We do not have concentration dependence data (see “lake_sources.csv” file), so
click “No”.

3. We have the original “raw” source data—click “Load raw source data”.

4. Choose “lake_sources.csv” when prompted for the file, and click “Ok”.

5. Click “I'm finished”.

3.3.3 Load discrimination data

1. Click “Load discrimination data”.

2. Choose “lake_discrimination.csv” when prompted for the file, and click “Ok”.

3.3.4 Make isospace plot

Click “Make isospace plot”. Your plot should match that of Figure 12.

28



1
1
. R 1
¢ Surface POM I
° 1

e ——— -

Subsurface PONI

8N (%0)

Terrestrial Detritus

-36 -34 -32 -30 -28
5'°C (%)

Figure 12: Stable isotope input for the Lake Example. Consumer data are highly vari-
able, but much of this variance is explained by the Secchi:Mixed continuous covariate.
Error bars indicate combined source and discrimination uncertainty £ 1 SD.

3.3.5 Specify MCMC parameters

First run using the “test” settings to make sure the model is setup correctly. When you're
satisfied eveything is ok, then choose the “normal” MCMC run length. For more descrip-
tion of these parameters, see Table 2.

3.3.6 Error term options

In the Lake Example we want “Residual error only”.

3.3.7 Run MixSIAR

Click the “RUN MODEL” button at the bottom. The Lake Example took my laptop ~13
minutes for “normal”.

3.3.8 Check diagnostics

After the model is finished, click the “Process output” button. Based on the Gelman-
Rubin and Geweke diagnostics, our “normal” run has converged well enough to accept
the results:
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A R R R A A A
# Gelman-Rubin Diagnostic
A R R R A A A

Generally the Gelman diagnostic should be < 1.05

Out of 71 variables: @ = 1.01
0 = 1.05
0 =1.1

The worst variables are:

Point est. Upper C.I.
p.ind[18,2] 1.009192  1.016706
p.ind[8,3] 1.008704 1.011874
ilr.cont1[1] 1.007628 1.023459

R A A R A R
# Geweke Diagnostic
R A A R A R

The Geweke diagnostic is a standard z-score, so we'd expect 5% to be outside +/-1.96
Mumber of variables outside +/-1.96 in each chain (out of 71):

Chain 1 Chain 2 Chain 3
Feweke 9 3 ]

3.3.9 Interpreting output

MixSIAR fits a continuous covariate as a linear regression in ILR/transform-space. Two
terms are fit for the proportion of each source: an intercept and a slope. The plot uses the
posterior median estimates of the intercept and slope, and the lines are curved because
of the ILR-transform back into p-space (Figure 13). For details, or if you would like to
make modifications, see plot_continous_var.r.
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Figure 13: Plot of lake zooplankton diet as a function of Secchi depth:Mixed layer
depth ratio. The plot uses the posterior median estimates of the intercept and slope, and

the lines are curved because of the ILR-transform back into p-space.

The other posterior plots MixSIAR produces for a continuous effect show the estimated
diet for the minimum, median, and maximum individuals (Figure 14).
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Figure 14: Lake zooplankton diet for the min, median, and max individuals.

3.4 Palmyra Example

The “Palmyra Example” data is actual data from McCauley et al. [13] and analyzes the

diet of 3 large reef predators (Taxa = fixed effect) around the Palmyra Atoll with:
e 2 biotracers ((513C, (515N)
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3.4.1

1.
2.

3.4.2

3.4.3

1.
2.

3.4.4

1 fixed effect (Taxa)

Raw source data

Load mix data

Click “Load mixture data”, then “Load mixture data file” in the new window.

Choose “palmyra_consumer.csv”. This file has the C and N isotope values, and
fixed effect (Taxa).

Select which columns are isotopes (d13C and d15N) and which is the fixed effect
(Taxa).

Click “I'm finished”.

Load source data

. Click “Load source data”

We do not have concentration dependence data (see “palmyra_sources.csv” file), so
click “No”.

We do have the original “raw” source data—click “Load raw source data”.

Choose “palmyra_sources.csv” when prompted for the file, and click “Ok”.

Click “I'm finished”.

Load discrimination data
Click “Load discrimination data”.

Choose “palmyra_discrimination.csv” when prompted for the file, and click “Ok”.

Make isospace plot

Click “Make isospace plot”. Your plot should match that of Figure 15.

32



Blacktip shark
® Grey reef shark
Red Snapper

164 Reef

M, ¢ Lagoon

Pelagic pie, o
.-}::.

o e

f .

|
14 - | IPS
I

-18 -15 -12 -9 -6
5'°C (%)

Figure 15: Stable isotope input for the Palmyra Example. Error bars indicate combined
source and discrimination uncertainty = 1 SD. The lagoon source error bars are wider
than the other sources because it is assumed to be one trophic step below them (and thus
has additional discrimination uncertainty). See McCauley et al. [13], Appendix A, for
explanation.

3.4.5 Specify MCMC parameters

First run using the “test” settings to make sure the model is setup correctly. When you're
satisfied eveything is ok, then choose the “short” MCMC run length. For more descrip-
tion of these parameters, see Table 2.

3.4.6 Error term options

In the Palmyra Example we want “Residual * Process”.

3.4.7 Run MixSIAR

Click the “RUN MODEL” button at the bottom. The Palmyra Example took my laptop
~75 minutes for “short”.

3.4.8 Check diagnostics

After the model is finished, click the “Process output” button. Based on the Gelman-
Rubin and Geweke diagnostics, our “short” run has converged well enough to accept
the results:
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R R R R T A
# Gelman-Rubin Diagnostic
R R R R T A

Generally the Gelman diagnostic should be < 1.05

Out of 15 variables: 2 > 1.081
0 = 1.05
0 =1.1

The worst variables are:

Point est. Upper C.I.

p.faci[1,3] 1.010946 1.032718
p.global[3] 1.010946 1.032718
p.faci[1,2] 1.009324  1.030703
p.global[2] 1.009324  1.030703
p.faci[3,3] 1.007461  1.008460

W A A R A A R A 1
# Geweke Diagnostic
W A A R A A R A 1

The Geweke diagnostic is a standard z-score, so we'd expect 5% to be outside +/-1.96
Number of variables outside +/-1.96 in each chain (out of 15):

Chain 1 Chain 2 Chain 3
Geweke ] ] ]

3.4.9 Interpreting output

Your posterior density plots for blacktip and grey reef sharks should match Figure 16.

Blacktip shark Grey reef shark
1.00- 1.00-
’7‘ Lagoon ’7‘ Lagoon
Pelagic Pelagic
Reef Reef
0.75~ 0.75-
= =
2 2
i=4 =4
3 i3
o o
s s
£0.50- £0.50-
1% 1%
o o
a o
° °
2 2
< <
o o
%] (%]
0.25- 0.25-
0.00- 0.00-
' ' ' ' ' ' ' ' ' '
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Proportion of Diet Proportion of Diet

Figure 16: Posterior diet estimates for blacktip and grey reef sharks in the Palmyra
Example. Median diet proportions are (27.6% Lagoon, 49.8% Pelagic, 21.9% Reef) for
blacktip sharks , and (2.6% Lagoon, 91.3% Pelagic, 6% Reef) for grey reef sharks.
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Check that the medians and 95% ClIs in the summary statistics match the posterior plots
in Figure 16:

Mean SD 2. 2% 5% 25% 20% 75% 95% 97.5%
p.Blacktip shark.Lagoon 0.276 0.047]0.188]0.200 0.245]0.276]0.305 0.354)0.370
p.Grey reef shark.Lagoon ©.026 0.009]0.009}0.012 0.020§0.026]0.033 0.042]0.045
p.Red Snapper.Lagoon 6.073 0.633 6.017 0.623 0.651 0.671 0.094 0.130 0,147
p.Blacktip shark.Pelagic ©.487 0.106[0.259]0.298 0.417 [0.498]0.565 0.643 0.667
p.Grey reef shark.Pelagic ©.909 0.036]0.830]0.844 0.8860.913]0.936 0.958 |0.963
p.Red Snapper.Pelagic 0.461 0.113 Q0,229 0.299 0.396 0.452 0.511 0.669 0.788
p.Blacktip shark.Reef 0.237 0.127 |0.045]0.061 ©0.141)0.219]06.317 0.472]0.525
p.Grey reef shark.Reef 0.065 0.040 )|0.006J0.009 0.034]0.060§0.091 0.137]0.153
p.Red Snapper.Reef 0.466 0.133 0.0658 0.219 0.412 0.478 0.541 0.651 0.698

3.5 Killer Whale Example

The Killer Whale Example demonstrates the difference informative priors make, and illus-
trates how to construct them.

e 2 biotracers (613C, §1°N)
e Source data as means + SDs

* Informative vs. uninformative priors

3.5.1 Load mix data
1. Click “Load mixture data”, then “Load mixture data file” in the new window.
2. Choose “killerwhale_consumer.csv”. This file has the C and N isotope values.
3. Select which columns are isotopes (d13C and d15N).
4. Click “I'm finished”.

3.5.2 Load source data
1. Click “Load source data”

2. We do not have concentration dependence data (see “killerwhale_sources.csv” file),
so click “No”.

3. We only have source summary statistics (mean, SD, and sample size), not the origi-
nal “raw” data—Click “Load source means and SDs”.

4. Choose “killerwhale_sources.csv” when prompted for the file, and click “Ok”.

5. Click “I'm finished”.
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3.5.3 Load discrimination data
1. Click “Load discrimination data”.
2. Choose “killerwhale_discrimination.csv” when prompted for the file, and click
IIOkII.
3.5.4 Make isospace plot

Click “Make isospace plot”. Your plot should match that of Figure 17. Notice that the
high degree of correlation places the sources on a line, which makes it difficult for the
model to determine if killer whales are eating Chinook vs. Coho, or Sockeye vs. Steel-
head vs. Chum. We can give the model additional information to resolve this problem

by using an informative prior.

Chinook

Coho |

Chum
Steelhead '

__?__ 1

ockeye

-19 -18 -17 -16 -15 -14
5'°C (%)

Figure 17: Stable isotope input for the Killer Whale Example. Error bars indicate com-
bined source and discrimination uncertainty &= 1 SD. Notice that the high degree of cor-
relation places the sources on a line, which makes it difficult for the model to determine
if killer whales are eating Chinook vs. Coho, Sockeye vs. Steelhead vs. Chum.

3.5.5 Constructing the informative prior

From Semments et al. [23]:

One of the benefits to conducting mixture models in a Bayesian framework is that infor-
mation from other data sources can be included via informative prior distributions Moore
and Semmens [15]. Suppose we have collected 14 fecal samples from the killer whale
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population we are studying, and we find 10 chinook, 1 chum, 0 coho, 0 sockeye, and 3
steelhead. The sum of the Dirichlet hyperparameters roughly correspond to prior sam-
ple size, so one approach would be to construct a prior with @ = (10,1,0,0,3). A down-
side of this prior is that a sample size of 14 represents a very informative prior, with
much of the parameter space given very little weight. Keeping the relative contribu-
tions the same, the hyperparameters can be rescaled to have the same mean, but differ-
ent variance. An alternative is to scale the prior to have a weight of 5, equal to the same
weight as the “uninformative” prior « = (1,1,1,1,1). This prior could be represented as

w= (192,52, %2, % %) = (357,036,0.01,001,1.07).

In the MixSIAR GUI, under ”Spec1fy prior”, click “Informative.” In the box, enter your «
vector in R format, e.g. c (. D &

Specify prior
"Uninformative”/Generalist

® Informative

¢(3.57,0.36,0.01,0.01,1.07) |

You cannot have a parameters = 0, so while we had no coho and sockeye in our fecal
samples, we set their « parameters = 0.01. Remember that the sources are sorted alphabeti-
cally. Click the “Plot prior” button to compare your informative prior with the uninfor-
mative prior « = (1,1,1,1,1), as in Figure 18.

Source 1 Source 1
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W Your prior: (3.57,0.36,0.01,0.01,1.07) @ "Uninformative" prior(1,1,1,1,1)

Figure 18: Informative prior for Killer Whale Example. The fecal data was (10,1,0,0,3),
and then the a vector is scaled to sum to the number of sources, keeping the same mean.

37



3.5.6 Specify MCMC parameters

First run using the “test” settings to make sure the model is setup correctly. When you're
satisfied eveything is ok, then choose the “very long” MCMC run length. For more de-
scription of these parameters, see Table 2.

3.5.7 Error term options

In the Killer Whale Example, choose “Residual only”.

3.5.8 Run MixSIAR

Click the “RUN MODEL” button at the bottom. The Killer Whale Example took my lap-
top ~5 minutes for “very long”.

3.5.9 Check diagnostics

After the model is finished, click the “Process output” button. Check the Gelman-Rubin
and Geweke diagnostics as usual.

3.5.10 Interpreting output

Your posterior density plot with the informative prior should match the right panel of
Figure 19. If you run the model again using the uninformative prior, you should get the
left panel of Figure 19.
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Figure 19: Posterior diet estimates for the Killer Whale Example. On the left are the
results using the uninformative priora = (1,1,1,1,1), and on the right are the results
using the informative prior « = (3.57,0.36,0.01,0.01,1.07).

Check that the medians and 95% Cls in the summary statistics match the right plot (in-
formative prior) in Figure 19:

Mean SD 2.5% 5% 25% 50% 75% 95% 97.5%

p.global.chinook 0.505 ©.032 0.429 0.447 0.487 0.508 0.526 ©.553 0.561
p.global.cChum 0.063 0.088 0.000 0.000 0.004 0.025 0.090 0.244 0.324
p.global.cCoho 0.000 ©.000 0.000 ©.000 0.000 ©0.000 0.000 0.000 0.000
p.global.Sockeye 0.003 0.017 0.000 ©0.000 0.000 0.000 0.000 0.008 0.032
p.global.Steelhead 0.430 ©.072 0.221 0.289 0.405 0.450 0.476 0.504 0.512

Our prior was quite informative on Coho and Sockeye, effectively setting them to 0. No-
tice, however, that there was still significant information in our data—evidenced by the
posteriors for Chinook and Steelhead being very different from their priors (Chinook
prior mean = 10/14 = 71.4%, Chinook posterior mean = 50.5%, Steelhead prior mean =
3/14 = 21.4%, Steelhead posterior mean = 43.0%).

3.6 Isopod Example

The Isopod Example is from Galloway et al. [6] and demonstrates MixSIAR applied to an
8-dimensional fatty acid dataset. Here the mixture data are isopod polyunsaturated fatty
acid (PUFA) profiles, with 5 replicates at each of 6 sites in Puget Sound, WA:

¢ 8 biotracers (carbon 16.4w3, 18.2w6, 18.3w3, 18.4w3, 20.4w6, 20.5w3, 22.5w3, 22.6w3)

¢ 1 random effect (Site)
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e Source data as means and SDs

Fatty acid data greatly increase the number of biotracers beyond the typical 2 stable iso-
topes, 813C and 6'°N, which gives the mixing model power to resolve more sources. We
caution, however, that it is not only a matter of # biotracers > # sources + 1. As the num-
ber of sources increases, the “uninformative” prior « = 1 has greater influence, illus-
trated in the Cladocera Example, Figure .

3.6.1 Load mix data

1. Click “Load mixture data”, then “Load mixture data file” in the new window.

2. Choose “isopod_consumer.csv”. This file has the fatty acid and random effect (Site)
values.

3. Select which columns are “isotopes” (c16.4w3, c18.2w6, c18.3w3, c18.4w3, c20.4w6 ,
c20.5w3, c22.5w3, c22.6w3).

4. Select Site as a random effect

5. Click “I'm finished”.

Here we treat Site as a random effect. This makes sense if we are interested in the overall
population and think of Site as a nuisance factor. Fitting Site as a fixed effect would make
more sense if we were interested specifically in the diet at each Site, as opposed to the
overall population diet and variability between Sites. This differs from the analysis in
Galloway et al. [6].

3.6.2 Load source data

1. Click “Load source data”

2. We do not have concentration dependence data (see “isopod_sources.csv” file), so
click “No”.

3. We only have source summary statistics (mean, SD, and sample size), not the origi-
nal “raw” data—Click “Load source means and SDs”.

4. Choose “isopod_sources.csv” when prompted for the file, and click “Ok”.

5. Click “I'm finished”.
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3.6.3 Load discrimination data

1. Click “Load discrimination data”.

2. Choose “isopod_discrimination.csv” when prompted for the file, and click “Ok”.

Note that Galloway et al. [6] conducted feeding trials to create a “resource library”. In
the mixing model, the sources are actually consumers fed exclusively each of the sources.
This allowed them to set the discrimination = 0 (see “isopod_discrimination.csv”).

3.6.4 Make isospace plot

Click “Make isospace plot”. When there are more than 2 biotracers, MixSIAR currently

plots every pairwise combination. Here, that means (g) = 28 plots are produced. In the

future, MixSIAR will offer non-metric multidimensional scaling (NMDS) plots for these
cases.

3.6.5 Specify MCMC parameters

First run using the “test” settings to make sure the model is setup correctly. When you're
satisfied eveything is ok, then choose the “normal” MCMC run length. For more descrip-
tion of these parameters, see Table 2.

3.6.6 Error term options

In the Isopod Example, choose “Residual only”.

3.6.7 Run MixSIAR

Click the “RUN MODEL” button at the bottom. The Isopod Example took my laptop ~60
minutes for “normal”.

3.6.8 Check diagnostics

After the model is finished, click the “Process output” button. Check the Gelman-Rubin
and Geweke diagnostics as usual:
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W A A R A R
# Gelman-Rubin Diagnostic
W A A R A R

Generally the Gelman diagnostic should be < 1.05

Out of 23 variables: 2 = 1.081
6 = 1.05
0 =1.1

hhe worst variables are:

Point est. Upper C.I.
p.global[1] 1.013676 1.038449
p.global[2] 1.010528 1.023756
p.global[3] 1.009386 1.027817
p.faci[4,1] 1.003440 1.011701
p.faci[6,3] 1.002001 1.00579@

The Geweke diagnostic is a standard z-score, so we'd expect 5% to be outside +/-1.96
Number of variables outside +/-1.96 in each chain (out of 23):

Chain 1 Chain 2 Chain 3
Geweke 2 3 ]

3.6.9 Interpreting output

Since we fit Site as a random effect, we can make inference on diet at the overall popula-
tion level (p.global, posterior plot in Figure 20):

Overall Population
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Figure 20: Posterior diet estimates for the overall population in the Isopod Example.
Median diet proportions are 10% Brown algae, 53.7% Green algae, 35.2% Red algae.
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Check that the medians and 95% Cls in the summary statistics for p.global match the
posterior distributions in Figure 20:

Mean 5D 2.5% 5% 25% 50% 75% 95% 97.5%
Site.sD 0.679 0.333 0,222 0.295 0.449 0,605 0.826 1.312 1.538
p.global.Brown 0.111 0.062|0.022]0.030 0.0660.100§0.145 0.227 |0.266
p.global.Green 0.533 0.0930.334]0.373 0.477 |0.537]0.595 0.6810.7083
p.global.Red 0.356 0.09510.178]0.206 0.296)0.352]0.413 0.52410.570

We also have posterior plots for each Site (Site shown in Figure 21):
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Figure 21: Posterior estimates of isopod diet at Site CP. Median diet proportions are
5.8% Brown algae, 39.1% Green algae, 54.9% Red algae.

3.7 Cladocera Example

The Cladocera Example is from Galloway et al. [7] and demonstrates MixSIAR applied
to a 22-dimensional fatty acid dataset. Here the 14 mixture datapoints are Cladocera (wa-
ter fleas) fatty acid profiles from 6 lakes in Finland over 2 seasons. Besides the high di-
mensionality, the other difference with this analysis is that we fit each mixture datapoint
individually, because there is no clear covariate structure (some sites have 2 seasons, some
have 1, some sites in the same lake). We do this by creating an “id” column and treating
“id” as a fixed effect.

¢ 22 biotracers (carbon 14.0, 16.0, 16.1w9, 16.1w7, 16.2w4, 16.3w3, 16.4w3, 17.0, 18.0,
18.1w9, 18.1w7, 18.2w6, 18.3w6, 18.3w3, 18.4w3, 18.5w3, 20.0, 22.0, 20.4w6, 20.5w3,
22.6w3, BrFA)
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* Mix datapoints fit independently

e Source data as means and SDs

Fatty acid data greatly increase the number of biotracers beyond the typical 2 stable iso-
topes, 61°C and §'°N, which gives the mixing model power to resolve more sources. We
caution, however, that it is not only a matter of # biotracers > # sources + 1. As the num-
ber of sources increases, the “uninformative” prior « = 1 has greater influence, illus-
trated in Figure .

3.7.1 Load mix data
1. Click “Load mixture data”, then “Load mixture data file” in the new window.

2. Choose “cladocera_consumer.csv”. This file has the fatty acid and fixed effect (id)
values.

3. Select which columns are “isotopes” (c14.0, ¢16.0, c16.1w9, c16.1w7, c16.2w4, c16.3w3,
c16.4w3, c17.0, c18.0, c18.1w9, c18.1w7 , c18.2w6, c18.3w6, c18.3w3, c18.4w3, c18.5w3,
c20.0, c22.0, c20.4w6, c20.5w3, c22.6w3, BrFA).

4. Select “id” as a fixed effect

5. Click “I'm finished”.

Here we treat “id” as a fixed effect—this will estimate the diet of each mixture data-
point separately (sample size of 1). This makes sense to do when you think there will

be clear differences between sites/seasons/etc., but only have 1 or 2 points from each
site/season (i.e, you don’t have enough data to estimate a site/season effect). If you are inter-
ested in the site/season effect, you need replicates within each site/season, and then it is
best to fit site/season as a fixed or random effect.

3.7.2 Load source data

1. Click “Load source data”

2. We do not have concentration dependence data (see “cladocera_sources.csv” file),
so click “No”.

3. We only have source summary statistics (mean, SD, and sample size), not the origi-
nal “raw” data—Click “Load source means and SDs”.

4. Choose “cladocera_sources.csv” when prompted for the file, and click “Ok”.

5. Click “I'm finished”.
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3.7.3 Load discrimination data

1. Click “Load discrimination data”.

2. Choose “cladocera_discrimination.csv” when prompted for the file, and click “Ok”.

Note that Galloway et al. [7] conducted feeding trials to create a “resource library”. In
the mixing model, the sources are actually consumers fed exclusively each of the sources.
This allowed them to set the discrimination = 0 (see “cladocera_discrimination.csv”).

3.7.4 Make isospace plot: DON'T

Do NOT click “Make isospace plot”! When there are more than 2 biotracers, MixSIAR
currently plots every pairwise combination. Here, that means (222) = 231 plots are pro-

duced. Yikes! In the future, MixSIAR will offer non-metric multidimensional scaling
(NMDS) plots for these cases.

3.7.5 Plot prior

Click “Plot prior” to see our “uninformative” « = (1,1,1,1,1,1,1) prior, as in Figure

22. Fatty acid data greatly increase the number of biotracers beyond the typical 2 stable
isotopes, 813C and 6'°N, which gives the mixing model power to resolve more sources.
We caution, however, that it is not only a matter of # biotracers > # sources + 1. As the
number of sources increases, the “uninformative” prior & = 1 has greater influence, illus-
trated in the difference between the plots with 7 sources (Figure 22) vs. 3 sources (Figure
3).
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Figure 22: Uninformative « = (1,1,1,1,1,1,1) prior for 7 sources. Compare to the unin-
formative prior with 3 sources (Figure 3).

3.7.6 Specify MCMC parameters

First run using the “test” settings to make sure the model is setup correctly. When you're
satisfied eveything is ok, then choose the “normal” MCMC run length. For more descrip-
tion of these parameters, see Table 2.

3.7.7 Error term options

In the Cladocera Example, choose “Process only (N = 1)":

Error skructure
Resid * Process

Residual only
@ Process only (N=1)

This will fit the “process error” model of MixSIR, which we MUST do when we only
have one mix datapoint (or here, one mix datapoint per fixed effect). With only one dat-
apoint, there is no information to estimate an additional mixture variance term, so we
have to assume a fixed variance based on the variance of the sources (see Moore and
Semmens [15] and Stock and Semmens [25]).
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3.7.8 Run MixSIAR

Click the “RUN MODEL” button at the bottom. The Cladocera Example took my laptop

~30 minutes for “normal”.

3.7.9 Check diagnostics

After the model is finished, click the “Process output” button. Check the Gelman-Rubin
and Geweke diagnostics as usual (these are not great, and should be run longer for a fi-

nal analysis):

R R R R S R R A
# Gelman-Rubin Diagnostic
R R R R S R R A

Generally the Gelman diagnostic should be < 1.05

Out of 106 wariables:

2
0

30 = 1.01

> 1.05
> 1.1

hhe worst variables are:

p.fac1i[1,7]
p.global[7]
p.faci[1,4]
p.global[4]

Point est.

1.059743
1.059743
1.035258
1.035258

Upper C.I.
1.183363
1.183363
1.076738
1.076738

B g g g R g g B g g 2

# Geweke Diagnostic

B g g g R g g B g g 2

The Geweke diagnostic is a standard z-score, so we'd expect 5% to be outside +/-1.96
Number of variables outside +/-1.96 in each chain (out of 106):

Chain 1 Chain 2 Chain 3

Geweke 17 25

3.7.10 Interpreting output

Since we fit “id” as a fixed effect, there is no inference on diet at the overall population
level (no p.global). You should see posterior plots for all 14 mixture samples, as in Fig-

ure 23.
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Figure 23: Posterior estimates of Cladocera diet for samples 7 and 14. Cladocera diet
for sample 7 is dominated by Chl+Cya, while diet for sample 14 is comprised of Crypto

and Bacil.

3.8 Storm-petrel Example

The “Storm-petrel Example” is based on Bicknell et al. [1] and shows MixSIAR in a non-
diet application: movement. Here the mixture data are juvenile (non-breeding) birds and
the source data are adult (breeding) birds from 3 breeding colonies. Discrimination is
set to zero, making the reasonable assumptions that 1) juvenile and adult birds feeding
in the same region will look isotopically identical, and 2) discrimination is the same for

juvenile and adult birds. We have:

e 2 biotracers (613C, 6'°N)
¢ 1 fixed effect (Region)
e Raw source data

4

See “stormpetrel_consumer.csv”, “stormpetrel_sources.csv”, and “stormpetrel_discrimination.csv”.

7

3.9 Snail Example

The “Snail Example” data is from Yanes et al. [28] and demonstrates how MixSIAR han-
dles I-dimensional data. The preference of land snails between C3 and CAM plants is ana-

lyzed with:

e 1 biotracer (6!3C)
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e Raw source data

VA

See “snail_consumer.csv”, “snail_sources.csv”, and “snail_discrimination.csv”.

3.10 Mantis Example

The “Mantis Example” data is from deVries et al. [4] and demonstrates two additional
features in MixSIAR:

* Multiple informative priors

¢ Combining sources a posteriori using the combine_sources function
3.10.1 Load mix data

library(MixSIAR)

# find mantis consumer data file within MizSIAR package
mix.filename <- system.file("extdata", "mantis_consumer.csv", package = "MixSIAR")

# Load mizture data

mix <- load_mix_data(filename=mix.filename,
iso _names=c("d13C","d15N"),
factors="Habitat",
fac_random=FALSE,
fac_nested=FALSE,
cont_effects=NULL)

3.10.2 Load source data

# find mantis source data file
source.filename <- system.file("extdata", "mantis_source.csv", package = "MixSIAR")

# Load source data

source <- load_source_data(filename=source.filename,
source_factors=NULL,
conc_dep=FALSE,
data_type="means", mix)

3.10.3 Load discrimination data

49



# find discrimination data file
discr.filename <- system.file("extdata", "mantis_discrimination.csv", package = "MixSIAF

# Load discrimination data
discr <- load_discr_data(filename=discr.filename, mix)

3.10.4 Plot data

plot_data(filename="isospace_plot",
plot_save_pdf=TRUE,
plot_save_png=FALSE,
mix,source,discr)

® coral

e seagrass fish |

8"°N (%)

Figure 24: Stable isotope input for the Mantis Example. Both consumer and source data
are by Habitat (color) and source data are labeled. Error bars indicate combined source

and discrimination uncertainty &+ 1 SD.

3.10.5 Define and plot priors

# default "UNINFORMATIVE" / GENERALIST prior (alpha = 1)
alpha.unif <- rep(1l, source$n.sources)
plot_prior(alpha.prior=alpha.unif,
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source=source,
filename="prior_uninf")
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Figure 25: “Uninformative” /generalist prior for mantis shrimp example with 6 sources.

But wait... the GENERALIST prior does not reflect our a priori ecological knowledge!
The current thought is that ‘smasher’ mantis shrimp SPECIALIZE on hard-shelled prey,
because they have specialized hammer-like clubs allowing them to break open shells.
Let’s construct a "specialist" informative prior reflecting the expectation that N. bredini
consumes primarily hard-shelled prey. This will be a more conservative test of the hy-
pothesis that N. bredini specializes on hard-shelled prey. We rescale the aj so they sum to
K, the number of sources:

alpha.spec <- c(1,1,4,4,1,4)

alpha.spec <- alpha.spec*length(alpha.spec)/sum(alpha.spec)
plot_prior(alpha.prior=alpha.spec,

source=source,

filename="prior_specialist")
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Figure 26: “Specialist” prior for mantis shrimp example, where hard-shelled prey receive
4x weight of soft-bodied prey.

We also have data on prey abundance in the two habitats (coral, seagrass). Let’s con-
struct informative priors using prey abundance so that the a; sum to K, the number of
sources. Note: MixSIAR cannot set different informative priors for different levels of a factor
(here, coral vs. seagrass). In order to run the abundance prior model, the only option is to run
separate models.

alpha.grass <- ¢(0.35,1.61,0.43,(51.65+0.26),5.18,40.5)*6/100
plot_prior(alpha.prior=alpha.grass, source=source, filename="prior_seagrass")

alpha.coral <- c((14.31+24.74),0.01,15.48,(13.81+4.71),8.44,18.51)%6/100
plot_prior(alpha.prior=alpha.coral, source=source, filename="prior_coral")
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Figure 27: “ Abundance” priors for mantis shrimp example, where the «; reflect prey
abundance in the two habitats: seagrass (left) and coral rubble (right).

3.10.6 Write JAGS model file
We’ll use the default Resid * Process error structure:

model filename <- "MixSTAR model.txt"

resid_err <- TRUE

process_err <- TRUE

write_JAGS_model(model filename, resid_err, process_err, mix, source)

3.10.7 Run model
Takes about 40 minutes to run.

# Good idea to use 'test' first to check <f

# 1) the data are loaded correctly, and

# 2) the model is specified correctly

# jJags.1 <- run_model (run="test", mixz, source, discr, model_filename,

# alpha.prior = alpha.spec, resid_err, process_err)

# After a test run works, increase the MCMC run to a wvalue that may converge

jags.spec <- run_model (run="normal", mix, source, discr, model_filename,
alpha.prior = alpha.spec, resid_err, process_err)
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3.10.8 Confirm MCMC has converged using diagnostics

output_JAGS(jags.spec, mix, source)

3.10.9 Combine sources a posteriori

In this study, the primary scientific question was whether N. bredini specializes on hard-
shelled prey. To directly answer this question, we can use the combine_sources function
to group our original 6 sources into 2 groups: hard-shelled versus soft-bodied.

combined <- combine_sources(jags.spec, mix, source, alpha.spec,
groups=list(hard=c("clam","crab","snail"),
soft=c("alphworm","brittlestar","fish")))

original <- combine_sources(jags.spec, mix, source, alpha.spec
groups=list(alphworm="alphworm",
brittlestar="brittlestar",
clam="clam",
crab="crab",
fish="fish",
snail="snail"))

An important consideration when grouping sources a posteriori is that you are effec-
tively changing the prior weighting on the sources. Aggregating uneven numbers of
sources will turn an "uninformative’/generalist prior into an informative one. In the
mantis shrimp example, this has no effect because each new group has the same number
of sources (3), and each group member had the same prior weight (0.4 for soft-bodied,
1.6 for hard-shelled). To highlight this effect, MixSIAR automatically generates a plot of
the new, aggregated prior so you can compare to the original and what an “uninforma-
tive” /generalist prior would be with the new number of sources (as if you aggregated
sources BEFORE running the model).

“** WARNING *** Aggregat-
ing sources after running the mixing model (a posteriori) effectively changes the prior
weighting on the sources. Aggregating uneven numbers of sources will turn an "unin-
formative’/generalist prior into an informative one. Please check your new, aggregated
prior (red), and note the difference between it and the original prior (blue). The right
(grey) column shows what the ‘uninformative’/generalist prior would be if you aggre-
gate sources before running the mixing model (a priori).

ff
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Figure 28: Original, 6-source (blue) and aggregated, 2-source (red) prior distributions,
automatically output from combine_sources function.

3.10.10 Summary statistics (original 6-source model)

summary_stat (original)

W A R R e R i
# Summary Statistics
HHAH R R R R A A A R R R R R R

Mean SD 2.5% 25% 50% 75%
.841 0.435 0.299 0.543 0.743 1.026
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.027 0.037 0.000 0.002 0.012 0.038
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summary_stat (combined)

HHH R R R A R R R R R R R
# Summary Statistics
HHHRHH AR R A A R R R A A A R R R R R A

Mean SD 2.5% 25% 50% 75%
.841 0.435 0. .543 0.743 1.026

7.5%
.979
.383

9
Epsilon.1 1
5
.coral .000 0.070 0. .557 0.603 0.647 0.729
3]
4]
i)

0]

Epsilon.2 2.646 1.091 1. 1.883 2.452 3.165
6]
0]

.coral .400 0.070 0. .353 0.397 0.443 0.550
.seagrass 0.687 0.079 0. .642 0.694 0.740 0.815
.seagrass 0.313 0.079 0. .260 0.306 0.358 0.500

3.10.11 Plot credible intervals

plot_intervals(original,toplot="facl")

Proportions by Habitat
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Figure 29: Proportion estimates from original 6-source mantis shrimp model: posterior
medians (points), 50% credible intervals (thick lines), and 90% credible intervals (thin
lines).

plot_intervals(combined,toplot="facl")
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Figure 30: Proportion estimates after aggregating sources into 2 groups, hard-shelled
and soft-bodied: posterior medians (points), 50% credible intervals (thick lines), and 90%
credible intervals (thin lines).

plot_intervals(combined,toplot="facl",levels=1)
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Figure 31: Proportion estimates after aggregating sources into 2 groups, only for Sea-
grass habitat: posterior medians (points), 50% credible intervals (thick lines), and 90%
credible intervals (thin lines).

plot_intervals(combined,toplot="facl",levels=2)
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Figure 32: Proportion estimates after aggregating sources into 2 groups, only for Coral
habitat: posterior medians (points), 50% credible intervals (thick lines), and 90% credible
intervals (thin lines).
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3.11 Alligator Example

The “Alligator Example” highlights the main advantage of MixSIAR over previous mix-

ing model software-the ability to include fixed and random effects as covariates explain-
ing variability in mixture proportions, and calculate relative support for multiple models
via information criteria (LOO/WAIC) using the compare_models function.

Nifong et al. [17] were interested in freshwater vs. marine resource use by alligators.
Their specific scientific questions were:

1. What is puarine VS P freshwater?

2. How does pyarine vary with the covariates Length, Sex, and Individual?

3. How variable are individuals” diets relative to group-level variability?
Nifong et al. [17] modeling approach:

* group consumers into 8 subpopulations (all combos of Sex x Size Class)

— 2 sexes {male, female}

— 4 size classes {small juvenile, large juvenile, subadult, adult}
¢ run 8 separate mixing models for each using SIAR [19].

e to calculate p;4ine estimates for the overall population, had to also run a mixing
model with all consumers

Instead, using MixSIAR allows the following analysis:
¢ fit several models with fixed /random/continuous effects

¢ evaluate relative support for each model using the compare_models function

3.11.1 Run models

See “mixsiar_script_alligator.R” for code to run the following 8 models:
1. NULL

Habitat (3: fresh, intermediate, marine)

Sex (2: male, female)

Size class (4: small juv, large juv, sub-adult, adult)

Length (continuous effect)

Sex + Size class (both as fixed effects)

Sex + Length (intercept by sex, same slope)

® N S Ok » DN

Sex : Size class (create new factor = sex * sclass, closest to original analysis)
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3.11.2 Compare models using LOO

The JAGS models should be stored in a list, jags.mod, where jags.mod[[i]] is the ith
model object. Confirm that all models have converged, and then we can use compare_models.

compare_models uses the 1oo package to compute LOO (leave-one-out cross-validation)
or WAIC (widely applicable information criterion) for 2 of more fit MixSIAR models.
LOO and WAIC are “methods for estimating pointwise out-of-sample prediction ac-
curacy from a fitted Bayesian model using the log-likelihood evaluated at the posterior
simulations of the parameter values” [26]. In brief:

¢ LOO and WAIC are preferred over AIC or DIC
¢ LOO is more robust than WAIC

® J1oo estimates standard errors for the difference in LOO/WAIC between two mod-
els (dLOOic)

* We can calculate the relative support for each model using Akaike weights (p.75 in
3). Interpretation: “an estimate of the probability that the model will make the best
predictions on new data, conditional on the set of models considered” [14].

names (jags.mod) <- c("Null", "Habitat", "Sex", "Size class", "Length",
"Sex + Size class", "Sex + Length", "Sex : Length")

(comparison.table <- compare_models(jags.mod))

Model LOOic se LOOic dLOOic se_ dLOOLic weight

Length 1678.3 31.3 0.0 NA ©0.799

Sex + Length 1681. 31. 2. 2.2 .187
Size class 1687. 31. 9. 11. .008
12. .083
13. .0e2
43. . 000
30. . 000
31. . 000

=oAD RAD

Sex : Length 1698. 29.
Habitat 1747. 28.

12.
69.

4
8
Sex + Size class 1689. 31.5 10.
8
8

Sex 1831. 17.6
Null 1834. 16.7

W o

The model with a continuous effect of Length had the lowest LOOic and received 80% of
the Akaike weight, indicating an 80% probability it is the best model (expected predic-
tive performance on new data, out of the models considered, given the data observed).
The model with Sex + Length cannot be ruled out (19% weight). dLOOic is the difference
in LOOic between each model and the model with lowest LOOic.

We can also plot parine as a function of Length from the best model:
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Figure 33: Posterior estimate of p,,ine as a function of length from Model 5 ('Length’).
Solid line indicates median, shading is the 95% CI.

You can calculate posteriors for derived quantities using the MCMC draws as well. Make
sure to calculate the quantity for each individual draw. Here, we show the specialization
index of Newsome et al. [16] as a function of Length:

1.00

0.751

0.50+1

Specialization index (g)

0.251

0.00

100 200 300
Total length (cm)

Figure 34: Posterior estimate of ¢ as a function of length from Model 5. Solid line indi-
cates median, and shading is the 95% CI. Small and large alligators specialize on fresh-
water and marine prey, respectively, while average length alligators are generalists as
they transition from freshwater to marine.
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4 Using MixSIAR with your own data

After you've run the working examples, you should be confident that MixSIAR is in-
stalled and working correctly, and now you can begin using it to analyze your own bio-
tracer data. You may find it more convenient to use the script version than the GUL

4.1 Running your own data

The process for running MixSIAR on your data is the same as in the working examples:

1. Open R. Check to see that all of the necessary MixSIAR files and your data files
are in your working directory (can use getwd (), setwd(), and list.files() com-
mands in R). See Data file format and loading.

Create the MixSIAR GUI using source ("mixsiar_gui.r") and mixsiar_gui().
Load your files using the “Read-in data” buttons.

Plot your data with the “Make isospace plot” button. Refer to Section 3.1.4.

S N T

Choose your MCMC parameters (“# of Chains”, “Chain Length”, “Burn-in”, and
“Thin”). Refer to Section 3.1.6.

6. Choose your error structure. See Sections 3.1.7 and 3.7.7, and for more explanation,
Stock and Semmens [25].

7. Choose your prior. Refer to Section 3.1.5 for the uninformative prior and Section
3.5.5 on how to construct an informative prior.

8. Plot your prior with the “Plot prior” button.
9. Choose your output options for summary statistics, plots, and diagnostics.
10. Click “RUN MODEL.”
11. When the model is finished, click “Process output”.
12. Check that the model has converged using the diagnostics. Refer to Section 3.1.9.

13. Look at your results—posterior density plots and summary statistics. See Section
3.1.12.

14. Save your workspace if you wish. See Section 3.1.13.
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4.2 Data file format and loading

Check to see that all of the necessary files are in the correct format and in your working direc-
tory. In all files, extra unused columns are not a problem and column order is not impor-
tant. You need 3 .csv files:

1. Mixture/consumer biotracer values (with covariates if desired). After you load
the file, you will tell MixSIAR which columns to use as “Isotopes”, Random Ef-
fects, and Continuous Effects. Covariates can be numerical or text. If you include
two Random Effects, you will be asked “Should MixSIAR run a hierarchical analy-
sis?” You should answer “Yes” if your second covariate is clearly nested within the
first (e.g. Pack within Region), and “No” if the two are not nested (e.g. Month and
Sex). The labels you use in the mixture file must match those in the source and discrimina-
tion files (i.e. if you use ‘d13C” here, then you must use 'Meand13C’, 'SDd13C’, and
‘Concd13C’ in the source and discrimination files). Here is the top of “wolves_consumer.csv”:

di3C d15N Region Pack
-23.68 7.96 1 1
-23.61 7.78 1 1
-23.76 7.72 1 1
-23.61 7.77 1 1
-24.37 7.33 1 1
-23.93 7.65 1 1

2. Source isotope values (with covariate and/or concentration dependence optional).
There are several options for the source data file, depending on the type of data
you have. Three different source data scenarios are demonstrated in the four work-
ing examples.

* “Raw source data”—original measurements. Column labels must match those in the
mixture file (e.g. "d13C’). The Lake Example had “Raw source data” without a co-
variate (“lake_sources.csv”):

[Source |.c|13c d15M

Surface POM -27.861 -0.724
Surface POM -25.534 -3.627
Surface POM -29.447  1.63
Surface POM -29.538 -3.245
Surface POM -29.758 0.393

Subsurface POM -35.225 -0.736
Subsurface POM -34.928 -1.289
Subsurface POM -34.325 1.821
Subsurface POM -32.309 -0.515

Terrestrial Detritus | -31.933 -2.495
Terrestrial Detritus | -29.082 -2.504
Terrestrial Detritus | -29.997 -2.333
Terrestrial Detritus | -30.608 -1.481
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* “Source means+SDs”"—summary statistics. Add “Mean” and “SD” to the biotracer
labels you used in the mixture file (i.e. if you used '"d13C’ before, then you must
use '‘Meand13C” and "SDd13C’). You cannot enter “0” as a standard deviation. You
must also have a column titled “n” with the sample size of each source estimate.
If you do not know the sample size, entering an arbitrary large number (e.g. 1000)
will have MixSIAR effectively treat the means and SDs as known parameters in-
stead of fitting them with the data. The Geese Example had “Source means+SDs”
data with concentration dependence and without a covariate (“geese_sources.csv”):

Sources Meandl5M SDd15M Meandl13C sDd13C Concdl5M Concdl3C n
Zostera 6.4889844701 1.4594632432 -11.170227684 1.2149561571 0.0297 0.3593
Grass 4.4321601033 2.2680708955 -30.8798439532 0.6413182104 0.0355 0.4026
U.lactuca 11.1926127957 1.1124384641 -11.170900037 1.9583305583 0.0192 0.2098
Enteromorpha 9.8162797509 0.8271039322 -14.0570109233 11724676718 0.0139 0.1844

* “Concentration dependence” (optional). Add “Conc” to the isotope labels you used
in the mixture file (i.e. "d13C” becomes "Concd13C’). These can simply be the ele-
mental concentrations for each source (e.g. [C], [N]), or can incorporate digestibil-
ity as in Koch and Phillips [11] (e.g. Digest [C], Digest [N]). Concentration depen-
dence is built into the MixSIAR model following Equation 1 in Parnell et al. [19].
The Geese Example included concentration dependence for “Source means+SDs”
(“geese_sources.csv”, above), but you can also add "Concd13C’, etc. to “Raw source
data” in the same way. Before loading the source data file, make sure “Do you have
Concentration Dependence data?” is marked “Yes”.

* “Covariate” (optional). Either “Source means+SDs” or “Raw source data” can have
a covariate column, as in the Wolves Example (“wolves_sources.csv”, below). The
covariate label must match that in the mixture data file. Before loading the source
data file, make sure “Does your source data vary by <covariate>?” is marked “Yes”.

LRegiun Meandl3C SDd13C MeandlSN SDd15M n

Deer 1 -26.88 1.1 3.07 1.35 24
Deer 2 -27.15 0.67 2.8 1.14 37
Deer 3 -27.47 0.75 2.76 232 9
Salmon 1 -18.58 1.34 12.26 1.18 6
Salmon 2 -22.38 2.85 11.92 112 5
Salmon 3 -22.38 2.85 11.92 112 &5
Marine Mammals 1 -14.7 1.08 16.26 1.06/ 7
Marine Mammals 2 -14. 47 0.95 15.55 169 6
Marine Mammals 3 -12.48 0.75 16.21 178 6

3. Discrimination data. Add “Mean” and “SD” to the isotope labels you used in the
mixture file (i.e. if you used ‘d13C” before, then you must use 'Meand13C” and
’SDd13C’). Discrimination data is assumed to be of the form Mean + SD, and “0”
SD is permitted, as in “wolves_discrimination.csv”:
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4.3 Using the MixSIAR script version

If you are familiar with R, you can use the script version of MixSIAR instead of the GUL
The script version has a couple advantages:

1. Repeatability: You can run different models and have a record of the commands that
created each one. There are many reasons you’d want to do this. For example, you
may want to compare model results with an uninformative prior vs. an informa-
tive prior, one error term option vs. another, grouping sources a priori vs. a posteri-
ori, etc.

2. Speed: Clicking through the GUI buttons can get onerous after a while. You can
modify the example .R files and run your entire analysis with source("your_file.R").

3. Installation ease: Some users aren’t able to install the GTK+ software that the GUI
depends on. It may be worth figuring out the script version (R skills!) instead of
figuring out how to get GTK+ installed.

The script examples are written as vignettes, which you can access via:

browseVignettes("MixSIAR")

We have also included clean, runnable .R scripts for all the working examples in the
example_scripts folder of the MixSIAR package install. You can locate these scripts
with:

mixsiar.dir <- find.package("MixSIAR")

pasteO(mixsiar.dir,"/example_scripts")

source(pasteO(mixsiar.dir,"/example_scripts/mixsiar_script_geese.R"))

The script is largely the same as the GUI, with only a couple differences detailed below
(using the Geese Example).

4.3.1 Load mix data

Fixed and random effects are both entered as “factors=", and then for a random effect
“fac_random=TRUE”, for a fixed effect “fac_random=FALSE”.

?load mix data

mix <- load_mix_data(filename="geese_consumer.csv",
iso_names=c("d13C","d15N"),
factors="Group",
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fac_random=FALSE,
fac nested=FALSE,
cont_effects=NULL)

4.3.2 Load source data

?load_source data

source <- load_source_data(filename="geese_sources.csv",
source factors=NULL,
conc_dep=TRUE,
data_type="means", mix)

* source_factors: Are your source data by a factor (must match one of the factors
in mixture data).

¢ conc_dep=TRUE/FALSE: Do you have concentration dependence data?

* data_type="means”/”raw”: Do you have raw source data, or summary statistics
(Means, SD, and n)?

4.3.3 Load discrimination data

discr <- load_discr_data(filename="geese_discrimination.csv", mix)

4.3.4 Make isospace plot

7plot_data
plot_data(filename="isospace_plot", plot_save pdf=TRUE,
plot_save png=FALSE, mix,source,discr)

4.3.5 Calculate normalized surface area (if 2 biotracers)

if (mix$n.iso==2) calc_area(source=source,mix=mix,discr=discr)
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Brett [2] described the interaction between the “uninformative” prior and the shape of
the mixing polygon (which arises from the positions of the source means and their vari-
ances) as a bias of mixing models. This phenomenon may be better described as weakly
informative data, but we agree that Brett’s surface area metric may be useful in recogniz-
ing when this may be a problem for a mixing model.

The calc_area function calculates the normalized surface area as defined by Brett [2],

except it combines the source and discrimination variance (1/02,,,,.. + (751. <), as that is
what is used in the mixing model equations.
4.3.6 Plot prior

Uninformative case:

plot_prior(alpha.prior=1,source)

Informative case (from Killer Whale Example):

kw.alpha <- ¢(10,1,0,0,3)

kw.alpha <- kw.alpha*length(kw.alpha)/sum(kw.alpha)

kw.alpha[which(kw.alpha==0)] <- 0.01

plot_prior(alpha.prior=kw.alpha,source=source,plot_save_pdf=TRUE,
plot_save_png=FALSE,filename="prior_plot")

4.3.7 Write JAGS model

?write_JAGS_model

model filename <- "MixSTAR model.txt"

resid_err <- TRUE

process_err <- FALSE

write_JAGS_model(model filename, resid_err, process_err, mix, source)

The GUI has 3 error structure options [25]. To create them in the script version:
1. Process * Resid: resid_err=TRUE, process_err=TRUE
2. Residual only: resid_err=TRUE, process_err=FALSE

3. Process only (N = 1): resid_err=FALSE, process_err=TRUE

4.3.8 Run JAGS model

Note that if using an informative prior, you need to set alpha.prior here.
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?run_model
jags.1l <- run_model (run="test",mix,source,discr,model_filename,
alpha.prior = 1,resid_err,process_err)

4.3.9 Process output

?7output_JAGS
output_JAGS(jags.1l, mix, source)

4.4 GitHub Issues page

We would love to hear feedback, positive or negative, if you use MixSIAR. Drawing our
attention to errors helps us fix them, and hearing how people are using MixSIAR can
help us improve the model in the future. If you have a question, bug report, or sugges-
tion, please use the GitHub Issues page:

4 | @ citHub, Inc. (US) | https://github.com/brianstock/MixSIAR/issues v| @ || ®search wBa O 3

& spotify Bsurfline ©*Webofscience RGoogle Scholar ™ Public library EJucsblibrary [jucsDvPN @ Globus ©)MixsIAR EIRINLA Forum EEmyDG

O This repasitory Pull requests Issues Gist A +- -
brianstock / MixSIAR QOunwatch~ 13 Hsar 2 YFork 10
Pull requests Labels Milestones Fliters ~ is:issue is:open
o
7 (D 140pen + 25 Closed Author ~ Labels Milestones = Assignee = Sort = @
0 model that combines a fixed and random effect doesnt load mixture data [ 1 y)

#38 opened on Jul 30 by BriceSemmens

T (D plotting biplots of three tracers [ 1
#37 opened on Jul 30 by zouzoukuzyk
4~
1 @ Fixed and random effects [T a1
#36 opened on Jul 30 by andrewcparnell L8
(I 2 initial values for MCMC chains in jags() call suggestion ~

#35 opened on Jul 25 by brianstock

1 @ Request for introduction of MixSIAR model theory including model fuctions 3

#34 openad on Jul 21 by mymyabe5186

0 updates for MixSIAR manual H2

#32 openad on Jul 20 by AndrewLJackson

The GitHub Issues setup is a very convenient way to ask questions and file bug reports.
Unlike email, it provides a community forum, where you can see previous questions/issues
and get feedback from many people! See below for an example:
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https://github.com/brianstock/MixSIAR/issues

Effective number of parameters ST e 1ssue

[CA=ELL R dianalafferty opened this issue on Jan 29 - 4 comments

o
dlanalafferty commented on Jan 29 Labels
question
Is it possible o get pD (effective number of parameters) in the output files?
Milestone
brianstock commented on Jan 30 No milestone
Yes. If you're running the GUI, the raw rjags output exists in the "mixsiar” environment. You can print it to Assignee
the screen with: No one—assign yourself
mixsiar$jags.l Motifications

4~ Unsubscribe

To output the pD by itself with:

mixsiar$jags.18BUGSoutput§pD

3 participants

@ brianstock closed this on Jan 30 =

™ £ Lock conversation

- rabvnpalce commenied on .lan 30

You can also contact the authors at blstock@ucsd.edu or semmens@ucsd.edu.

4.5 Citing MixSIAR

If you use MixSIAR results in publications, please cite the MixSIAR manual as (similar to
how you cite R) :

Stock, B. C. and B. X. Semmens (2016). MixSIAR GUI User Manual.
Version 3.1. https://github.com/brianstock/MixSIAR/. doi:10.5281/zenodo.47719.

A manuscript introducing MixSIAR will be available in the near future! Until then, most
of the math underlying these models is in [18]:

Parnell, A. C., Phillips, D. L., Bearhop, S., Semmens, B. X., Ward,

E. J., Moore, J. W., Jackson, A. L., Grey, J., Kelly, D. J., and

Inger, R. (2013). Bayesian stable isotope mixing models. Environmetrics,
24(6), 387-399.

The primary citation for Bayesian mixing models is [15]:

Moore, J. W. and Semmens, B. X. (2008). Incorporating uncertainty
and prior information into stable isotope mixing models. Ecology
Letters, 11(5), 470-480.

The residual error term was introduced by [19]:

Parnell, A. C., Inger, R., Bearhop, S., and Jackson, A. L. (2010).
Source partitioning using stable isotopes: coping with too much
variation. PLoS One, 5(3), e9672.
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If you are using a hierarchical structure/random effects (Wolves Example), see [24]:

Semmens, B. X., Ward, E. J., Moore, J. W., and Darimont, C. T. (2009).
Quantifying inter-and intra-population niche variability using hierarchical
Bayesian stable isotope mixing models. PLoS One, 4(7), e6187.

If you are using continuous effects, see [5]:

Francis, T. B., Schindler, D. E., Holtgrieve, G. W., Larson, E.

R., Scheuerell, M. D., Semmens, B. X., and Ward, E. J. (2011). Habitat
structure determines resource use by zooplankton in temperate lakes.
Ecology letters, 14(4), 364-372.

Hopkins and Ferguson [9] made the case for including covariance in the error structure,
by default included in all MixSIAR models other than “Process Error only (N=1)":

Hopkins, J. B., and J. M. Ferguson. 2012. Estimating the diets
of animals using stable isotopes and a comprehensive Bayesian mixing
model. PLoS One 7:e28478.

Stock and Semmens [25] explain and demonstrate the differences in the error terms (“Pro-
cess Error only” vs. “Process * Resid” vs. “Resid only”):

Stock, B. C., and Semmens, B. X. (2016). Unifying error structures
in commonly used biotracer mixing models. Ecology, 97(10), 2562-2569.

5 Introductions to Bayesian Analysis

Markov Chain Monte Carlo and Applied Bayesian Statistics: a short course
http://www.stats.ox.ac.uk/~cholmes/Courses/BDA/bda_mcmc.pdf

Getting Started with JAGS, rjags, and Bayesian Modelling

http://jeromyanglim.blogspot.com/2012/04/getting-started-with-jags-rjags-and.
html

Gibbs Sampling Made Easy
http://xcorr.net/2011/07/13/gibbs-sampling-made-easy-jags-rkward-coda/

A Primer on Bayesian Statistics in Health Economics and Outcomes Research
http://www.shef.ac.uk/content/1/c6/02/55/92/primer.pdf

Bayesian Modeling in the Social Sciences: an Introduction to Markov-Chain Monte Carlo
http://jackman.stanford.edu/mcmc/icpsr99.pdf
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5.1 Convergence Diagnostics

Patrick Lam notes

http://www.people.fas.harvard.edu/~plam/teaching/methods/convergence/convergence_
print.pdf

SAS Support (trace plot analysis description)

http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.
htm#statug_introbayes_sect008.htm
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