
Chapter 15

An Interface to Julia

15.1 R and Julia

This chapter describes an interface from R to computations in the Julia language,
implemented in the XRJulia package and following the XR structure described in
Chapter 13. The interface is described as it would be used in an application project,
via an application package that incorporates computational techniques integrated
into R but using functions and/or data types implemented in Julia. The XRJulia

package, the XR package it imports and the juliaExamples package are available
from github.com/johnmchambers.

Julia is described as a “high-level, high-performance dynamic programming
language for technical computing”.1 Its intended applications focus on computa-
tional methods for numerical, scientific and similar applications. Its design com-
bines high-level programming structures with efficient code, compiled on-the-fly
from Julia language source code.

The language and user environment are quite similar to R in many respects.
Interacting with Julia, one types in expressions; the system computes results and
prints output back. Function definitions and calls are very much the heart of
programming with Julia. Many of the base functions and operators closely resemble
those in R.

A particularly strong similarity, not shared with many other languages, is that
Julia, like R, implements functional OOP: generic functions with methods selected
according to the classes of one or more of the arguments in the call. Classes are
called “types” in Julia and the system for type definition works differently; in
particular, the use of macro-like templates for type and method definition is a key

1http://julialang.org

321

© 2016 by Taylor & Francis Group, LLC

322 CHAPTER 15. AN INTERFACE TO JULIA

feature. But type definitions are objects, including the specification of properties,
as in R.

The interface provides direct analogues to Julia function calls and other compu-
tations through methods for evaluator objects from the "JuliaInterface" class
or through equivalent R function calls (Sections 15.2 and 15.3).

An application using the interface can define proxy functions in R that call
corresponding functions in Julia, including the functional methods defined for these
functions (Section 15.4). Proxy classes in R can be defined corresponding to types
in Julia, with access to fields consistent with reference classes in R (Section 15.5).
Julia does not have encapsulated methods.

Julia emphasizes a form of functional computing, suggestive of the FUNCTION

principle, but the design is not related to functional programming, in the sense
of protecting against side effects. Arguments are passed as references and in this
sense Julia types are more analogous to reference classes than functional OOP
classes in R.

In some sizable collections of functions (for example, some graphics applica-
tions) function values are largely irrelevant, with the side-effects of the function
call on external objects being the main point.

Nevertheless, for “programming in the small”, programming with Julia is largely
based on defining functions. These are easy to define in the language and are im-
mediately available for use:

function myMean(x)

sum(x)/length(x)

end

This defines the function and assigns it as "myMean".
Functions are generic by default. Julia has optional typing; by not declaring

the type of the argument to myMean(), we essentially define a default method.
Definitions of functions with the same function name but with explicit type dec-
larations are the equivalent of method definitions. Argument names are arbitrary
in methods; there are no formal arguments.

For medium-scale programming, Julia has packages (collections of source code)
and within a package modules, which are declarations surrounding a collection of
source code. As in other languages, modules can be imported by various mecha-
nisms and used to define the namespace for new applications.

Applications using the interface are likely to define some Julia functions and
types in module(s) associated with the package. These may usefully define methods
for existing functions, simply by declaring the arguments to correspond to types
that will also often be defined in the application’s Julia code. The interface includes
facilities for importing packages and modules from Julia (Section 15.3).

15.2. JULIA COMPUTATIONS 323

Another strong similarity between R and Julia is in their treatment of R’s basic
vectors, matrices and arrays. As in R, Julia has taken over the essential organization
of these data structures originating in Fortran. The XRJulia interface converts
data with such structure into the corresponding class in the other language. In
addition, there is a general data conversion mechanism following the XR structure
that supports conversion of arbitrary classes in either language (Section 15.6).

15.2 Julia Computations

Computations in Julia using the XRJulia interface are carried out by a Julia interface
evaluator, an object from the "JuliaInterface" class. The current evaluator from
this class is returned by the function RJulia():

ev <- RJulia()

If no evaluator exists, one is started.
The XRJulia interface uses a connection, via a socket, to a process running Julia.

By default, this will be a process on the machine running R. The Julia process is
started when the evaluator is initialized, and given a startup script that tells it to
accept and execute commands written on the socket by the R process.

At the time this book appears, the XRJulia interface is new, and all the exam-
ples shown here used the default configuration. The design, however, anticipates
a more general use of sockets, as illustrated by the parallel package, for example.
The evaluator object would be initialized to communicate with an existing socket
connection to a Julia process using a similar startup script.

ev2 <- RJulia(connection = jCon)

In this case, jCon will be an open socket connection object; for example, to a Julia

process initialized on a remote host for an R interface.
The choice of a connected rather than embedded interface was partly to illus-

trate this approach, given that the Python interface in Chapter 14 was embedded,
but there are other advantages.

While embedded interfaces tend to be more efficient, at least in communicating
between the languages, connected interfaces free the server computations from
constraints on the design due to running the server language within the R process.

Since a connected interface is communicating with an independent process,
there should be no constraints on the Julia computations because of the interface.
Connected interfaces also raise the possibility of distributing computations across
machines; for example, using a more powerful machine that you have to pay for
when capacity is needed but a local process for less demanding computations.

324 CHAPTER 15. AN INTERFACE TO JULIA

General expressions and commands can be evaluated by the methods:

ev$Eval(expr, ...)

ev$Command(expr, ...)

In Julia, in contrast to R, not all statements can be evaluated as expressions; these
statements usually have side-effects but no value, and will throw an error if called
through $Eval(). For these the appropriate method is $Command(), which has the
same arguments as $Eval() and evaluates the Julia string but makes no attempt
to treat the result as an expression:

ev$Command("rtpi = sqrt(pi)")

Any piece of code that is complete and valid in Julia should be executable via
$Command().

The $Eval() and $Command() methods and all other methods in this section
have functional equivalents juliaEval(), juliaCommand(), etc. These have the
same arguments as the methods, plus an argument evaluator=, by default and
usually the current Julia evaluator, which will be started if none exists.

For computations where no special evaluator is needed, the functional forms
may be more natural looking in R and avoid explicit reference to the evaluator
object. They do nothing but call the corresponding method.

In these methods, expr is a character string to be parsed and evaluated by
the Julia evaluator. Additional arguments are objects that will be inserted into
the expressions corresponding to C-style "%s" fields in the string. These may be
results previously computed through the interface and returned as proxies for the
Julia object or R objects, which will be substituted as a string that evaluates to
the Julia equivalent of the R object:

> y <- juliaEval("reverse(%s)", 1:5)

> y

Julia proxy object

Server Class: Array{Int64,1}; size: 5

> juliaEval("pop!(%s)",y)

[1] 1

Scalar results are usually converted back to R values; more extensive or structured
results are assigned in Julia and returned as proxy objects.

Objects can be explicitly sent to Julia and got back by the $Send() and $Get()

methods and their functional equivalents. In both directions the computations rely
on some conversions between objects in the two languages, as we’ll consider in more
detail in Section 15.6.

15.2. JULIA COMPUTATIONS 325

> juliaGet(y)

[1] 5 4 3 2

> x <- matrix(rnorm(1000),20,5)

> xm <- juliaSend(x)

> xm

Julia proxy object

Server Class: Array{Float64,2}; size: 100

> xjm <- juliaGet(xm)

> all.equal(x, xjm)

[1] TRUE

Julia has a full set of typed arrays, differing in details from R but very naturally
mapped to R arrays. Essentially no information is lost in transferring numerical
matrices, as in this example.

Julia operates with its own version of the FUNCTION principle; most interesting
computations are done by functions. Defining new functions and/or new functional
methods is the central step in programming-in-the-small, just as in R. Care is
needed because this is functional computing rather than functional programming:
functions frequently have side effects. In the examples above, for instance, the call
to pop!() altered the object y.

For convenience, a function call has a short-cut for $Eval() that avoids messing
with format strings. The first argument is the character string name of the Julia

function, the remainder the arguments to the call. The expression to call the
function pop!() above could have been written:

juliaCall("pop!",y)

juliaCall() or the $Call() method may be useful if the function name is com-
puted rather than a constant or if the function is only called in one instance.
Otherwise it’s usually more convenient to define proxy functions in R, as discussed
in Section 15.4.

As an alternative to a separate call to $Get(), the $Eval() and $Call()

methods have an optional argument, .get=, that can be used to force conversion
of an arbitrary result by supplying it as .get = TRUE.

> xt <- juliaCall("transpose",xm, .get=TRUE)

> dim(xt)

[1] 5 20

The proxy functions in Section 15.4 also have a .get argument with the same
interpretation.

326 CHAPTER 15. AN INTERFACE TO JULIA

15.3 Julia Programming

As with R packages and Python modules, the names to refer to functions and
other objects in Julia are organized by modules. In all three languages, the result
is the ability to refer to objects by a fully qualified form, package::name in R and
module.name in the other languages.

All three languages take slightly different routes to the organization of source
when the evaluator is searching for a module or equivalent. In R and Python, the
package/module is defined by the directory and file structure of the package. In
R a package is a directory structured as we discussed in Section 7.1. In Python a
module is a single file of source. Julia has both forms, in its own style.

Julia, like R, has the notion of a package within which directories and files are
organized according to a particular structure. However, the Julia evaluator will also
recognize separate files of source code through the file suffix ".jl". Either way,
the directory or file must contain a matching module declaration in a particular
form in the source code.

The XRJulia package, for example, has a file and module containing the various
functions and data types used through the interface. This could have any name;
for simplicity we use the package name and put the code in the file

inst/julia/XRJulia.jl

in the package source. This file declares the module of the same name:

module XRJulia

... # all the Julia source code

end

The evaluator will look for packages or files in one of a list of declared directory
locations, analogous to .libPaths() in R. An application package that contains
any Julia modules of its own will need to make these available by calling the
function:

juliaAddToPath(directory, package)

In general, this will add any named directory to the search path, from the spec-
ified R package, or a directory unrelated to any R package if package="". The
directory is interpreted relative to the installation directory of the package. A
package can refer to its own installation directory by omitting the package argu-
ment. If the package follows the XR convention of putting the files of Julia code
into a directory "inst/julia" in the package source, that directory can be added
to the search list by the empty call:

15.3. JULIA PROGRAMMING 327

juliaAddToPath()

Importing modules not associated with an R package may raise difficulties for
portability; see Section 13.4, page 270 for some comments.

Once a module is accessible by being on the search path, it must be imported
to make its objects available by reference. As in R, there are some base objects
always available, including the standard library. Objects from other modules need
to be made available by importing; unlike R, the fully qualified reference will not
load the module automatically.

The interface function

juliaImport(module, ...)

generates suitable "import" commands in Julia. Fully qualified imports are pro-
vided by calling juliaImport() with only the module name. To use the name in
an unqualified form, supply it explicitly as a separate argument. If we wanted to
use the undigit() function in Julia module Digits:

juliaImport("Digits") # Julia calls to Digits.undigit()

juliaImport("Digits", "undigit") # Julia calls to undigit()

Julia actually has two directives, using and import, that behave somewhat differ-
ently. The main difference is that using makes all the exported names available
in unqualified form. The XRJulia package supports the equivalent range of op-
tions using the argument list to juliaImport() See the online documentation for
details.

The functions and methods in the previous section were essentially equivalent,
but for the path and import operations in this section the functional version is
preferred. A call to juliaAddToPath() from the source code of a package adds the
directory to a table of the path lists for all interfaces. Similarly, the juliaImport()
function adds to a table of import directives. The functional form will add the
path and module information to the current "JuliaInterface" evaluator and to
all future evaluator objects.

For application packages, the functional form is preferred, except in the unusual
case where one evaluator object needs its own path or imports. Then the method
would be used for that evaluator explicitly.

Modules and source files are distinct concepts in Julia, even though a module
can correspond to a single source file. The function juliaSource(), or the inter-
face method $Source(), parses and evaluates the code in a specified file, using the
Julia function include().

The Julia commands require and reload also evaluate the contents of a spec-
ified file, but they put their results into the main module, meaning that assign-
ments in the file will not be visible from interface expressions: juliaSource()

328 CHAPTER 15. AN INTERFACE TO JULIA

works through the evaluator so that all results are stored in the same module as
other interface computations.

Julia, like R, returns the value of the last expression computed in the file. The
following little source file defines a Julia type and returns an example object from
it by calling the generator function:

type testT

x::Array{Int64,1}
y::ASCIIString

end

testT([1,-99,666], "test1")

Assuming that this is file "testT.jl" in the current working directory of the R

process, we can use it to compute a proxy for the object returned by testT():

> xt <- juliaSource("testT.jl")

> xt

Julia proxy object

Server Class: testT; size: NA

> juliaGet(xt)

R conversion of Julia object of composite type "testT"

Julia fields:

$x

[1] 1 -99 666

$y

[1] "test1"

The field names for an object of type "testT" are used in evaluating the juliaGet()
call to create an Robject of class "from Julia". Data conversion techniques will
be discussed in Section 15.6.

In developing software for the interface, it may be convenient to have Julia

print some result, rather than having to convert that to an R object and bring it
back. For this purpose, you can use the juliaPrint() function. It can take one
argument, typically a proxy object. Or, you can give it several arguments that
will be interpreted as if given to the $Eval() method and will print the result of
that computation. See page 337 for an example.

15.4. JULIA FUNCTIONS 329

15.4 Julia Functions

A proxy function in R to call a Julia function of a specific name is returned by

JuliaFunction(name, module)

with the argument module only required to ensure that the corresponding module
is imported, if it is not by default. As an example, the Julia function svdfact()

computes a singular value factorization of a matrix. An R proxy function for it
could be created by:

svdJ <- JuliaFunction("svdfact")

Calls to svdJ() will generate calls through the XRJulia interface to svdfact().
The arguments to svdJ() will be converted as needed from the R objects; more
likely, except for simple scalars, they are R proxies for Julia objects previously
computed or converted. By default, the evaluator used is the current Julia eval-
uator, which will be started if necessary; an optional argument allows a different
evaluator to be specified. The svdfact() function is part of the standard library,
so no explicit module import is needed.

We can construct the decomposition of the Julia array xm shown on page 325:

> sxm <- svdJ(xm)

> sxm

Julia proxy object

Server Class: SVD{Float64,Float64}; size: NA

The composite Julia type for the result has essentially the same information as
the result of the R function svd(). In Section 15.5, proxy R classes for the type
will be shown. With or without a proxy class, the interface evaluator can get the
information in the decomposition back to R, as we will show in Section 15.6.

Julia functions are generic by default; that is, a function definition actually
creates a method associated with that function name. Optional type declarations
for the arguments specify the signature for the method. Additional function defi-
nitions for the same name, with different type declarations for the arguments, will
define additional methods for the generic.

As with R, the classes (types) of the actual arguments in a call will be used
to select the best method for that call. An important difference, however, is that
Julia uses the selection to compile the appropriate method for this case.

This distinction has some implications for an interface from R. There is no
formal argument list for the function, and indeed no pre-determined number of
arguments. Different methods may have different argument names or number of
arguments.

330 CHAPTER 15. AN INTERFACE TO JULIA

Julia methods are best seen as prescriptions for creating (by compilation) an
actual executable method. Method “dispatch” examines the type declarations
for existing methods to find a match to the types of the actual arguments. The
svdfact() function, for example, is implemented for (currently) 9 signatures cor-
responding to the function declarations:

svdfact(D::Diagonal, thin=true)

svdfact(M::Bidiagonal, thin::Bool=true)

svdfact{T<:BlasFloat}(A::StridedMatrix{T};thin=true)
svdfact{T}(A::StridedVecOrMat{T};thin=true)
svdfact(x::Number; thin::Bool=true)

svdfact(x::Integer; thin::Bool=true)

svdfact{T<:BlasFloat}(A::StridedMatrix{T}, B::StridedMatrix{T})
svdfact{TA,TB}(A::StridedMatrix{TA}, B::StridedMatrix{TB})
svdfact(A::Triangular)

Many of these are templates; that is, specific argument types will match the sig-
nature for some macro-style substitution of the template argument, such as T, TA,
TB in the methods above. It is part of the central Julia design that this provides a
flexible, dynamic method selection system. It would not be straightforward, how-
ever, to check on the R side that the arguments to the proxy are consistent with
the available methods.

Since argument names are not restricted by the generic function, as the example
shows, function calls in Julia cannot refer to arguments by name. Julia does provide
a mechanism for “keyword” arguments. These are defined by a special syntax in
the formal argument list for a particular method; in effect, they match elements
in a dictionary to keyword arguments in the call. But ordinary arguments are
accepted only positionally.

Considering these characteristics, the present version of the XRJulia interface
leaves argument checking up to the server language side of the interface. Proxy
functions in R for Julia functions pass the actual arguments on unmodified. The
number and order of actual arguments should be what is intended for the Julia call
and named arguments will be passed on with the same names. Note that named
(aka keyword) arguments must follow positional arguments in the call.

If the module argument is specified in the call to JuliaFunction(), the named
function is assumed to be exported from that Julia module. The body of the proxy
function will include an import call for the module; because the XRJulia evaluator
keeps a table of imported modules, only one actual import command will be issued
to Julia. The actual Julia function call uses a fully qualified name; therefore, proxy
functions can interface to two functions of the same name in distinct modules.

15.5. JULIA TYPES 331

15.5 Julia Types

Julia provides for definitions of what are called “composite types” and are in effect
classes with specified fields. Since Julia supports a form of functional OOP, these
are used more as functional classes in R. They appear in Julia as type declarations
in method definitions, analogous to the signatures for R methods. They do not
have encapsulated methods, in contrast to classes in Python or Java.

Unlike functional class objects in R, Julia objects use reference semantics; when
you change a field in a Julia object the change is not local to the function call where
it takes place.

A call to setJuliaClass() creates a proxy class in R for a type in Julia:

setJuliaClass(juliaType, module)

The arguments are the type name in Julia and the module name, which can be
omitted for classes in the base software. Metadata in Julia defines the fields, which
will be accessible as reference class fields in R, using the `$` operator.

Many relevant Julia types are parametrized, in that their definition contains
one or more template- or macro-style arguments. In the example on page 329, the
result returned was a proxy for an object of type "SVD{Float64,Float64}". The
"SVD" type is parametrized by (at least) two numeric types, for the input data
and the output values.

When the type is parametrized, either the specific version or the whole family
may have a proxy class defined in R. The field names of the class are generally
defined by the family, with only the field types affected by the specific type; how-
ever, it may be undesirable in R to use the same proxy class for all the specific
types. When a proxy object is returned from Julia, the XRJulia interface looks
first for a proxy class to the parametrized type and then for the unparametrized
version. The application package can choose which version to set up, or both. In
the example:

setJuliaClass("SVD")

would create a proxy class for any member of the family; all have the same fields,
"U", "S" and "Vt". If this proxy class had been defined before setting up the proxy
function svdJ():

> sxm <- svdJ(xm)

> sxm

R Object of class "SVD_Julia", for Julia proxy object

Server Class: SVD{Float64,Float64}; size: NA

> sxm$S

332 CHAPTER 15. AN INTERFACE TO JULIA

Julia proxy object

Server Class: Array{Float64,1}; size: 5

Julia types have the additional option of being "immutable"; effectively, this
means that all the fields are read-only in the sense discussed in Chapter 11. Their
fields may be accessed but not assigned. Having the relevant fields read-only may
be a useful way to avoid accidental invalidation of the object when fields must
have a fixed relationship. Such is definitely the case with "SVD" and other matrix
factorizations; manipulating values in any of the fields will usually invalidate the
object as a correct factorization. And in fact the "SVD" type is declared immutable.

If XRJulia detects an immutable type, it makes the proxy fields read-only.

> sxm$S <- 0

Error: Server field "S" of server class "SVD{Float64,Float64}"
is read-only

15.6 Data Conversion

Data conversion in XRJulia is based on that described in Section 13.8 for XR,
including facilities for representing general objects from R and from Julia, but
provides additional features that may be particularly relevant for numeric and
other algorithmic interface applications.

R and Julia have a number of similarities in the representation of important
classes of data, particularly those corresponding to vectors, matrices and arrays
in R. There is also a natural relation between classes in R and composite types
in Julia. Data conversion in XRJulia uses these characteristics for a cleaner and
more direct matching between the languages than provided by the default strategy.
You can usually assume that objects map automatically in both directions if they
come from classes that are vectors or arrays of any of the types known in R or that
consist of slots/fields that can themselves be mapped.

Applications can customize the conversion when that is helpful. Conversion
to Julia implements methods directly for asServerObject(), omitting the JSON

intermediate form. Conversion to R (page 335) uses methods for the generic func-
tions toR() in Julia and asRObject() in R. We’ll note limitations for converting
some Julia types. Applications can often work directly from the general repre-
sentation forms for the corresponding classes in the other language. An example
using the R "data.frame" class is on page 337; a small example with a Julia class
is in Section 15.3, page 328.

15.6. DATA CONVERSION 333

Vectors and Arrays in R and Julia

The two languages share an approach to arrays. In both languages, arrays are
defined by a block of elements of a particular type; in other words, a "vector" in
R terminology. This vector is interpreted as a k-way array by associating with it k
integers for the range of indices in each dimension. In R the concept is implemented
as the "array" class with slots for data and dimensions. Julia has a parametrized
set of types, without explicit fields for data and dimensions but with a paradigm
for programming that supports essentially the same range of objects.

In addition to the matching of array structure between the languages, R and
Julia support a variety of basic data types for arrays, as opposed to the JSON

notation, which only supports lists of arbitrary elements. Conversion between
corresponding classes is automatic in both directions provided the basic Julia type
corresponds to one of the R vector types.

Julia has a set of parametrized Array types

Array{T,N}

where T is a Julia type corresponding to the type of the elements and N is the
number of dimensions.

Vectors in R map into one of the Array{T,1} types, with T determined by the
R type of the vector. The type parameter T has a variety of options, considerably
more than the range of basic types in R. Integer, floating point and bit-string types
have options for length; R maps "integer", "numeric" and "raw" into particular
choices that reflect the R implementation. Julia type "Any" corresponds to type
"list". Sending vectors of various types from R will create suitable Julia array
objects:2

> ev$Send(1:3)

Julia proxy object

Server Class: Array{Int64,1}; size: 3

> ev$Send(c(1,2,3))

Julia proxy object

Server Class: Array{Float64,1}; size: 3

> ev$Send(c("red","white","blue"))

Julia proxy object

Server Class: Array{ASCIIString,1}; size: 3

> ev$Send(list("Today", 1:2, FALSE))

Julia proxy object

Server Class: Array{Any,1}; size: 3

2In this section, we are looking at implementation details and will revert to showing
the method version of $Send(), etc., rather than the equivalent functions.

334 CHAPTER 15. AN INTERFACE TO JULIA

The Julia server language expression is the list of elements, written out explicitly:

> ev$AsServerObject(1:3)

[1] "[1,2,3]"

> ev$AsServerObject(c(1,2,3))

[1] "[1.0,2.0,3.0]"

> ev$AsServerObject(c("red", "white", "blue"))

[1] "[\"red\",\"white\",\"blue\"]"
> ev$AsServerObject(list("Today", 1:2, FALSE))

[1] "{ \"Today\", [1,2], false }"

Julia interprets the list as an array of the type needed, similar to the c() function
in R, except that elements of length > 1 effectively force a list-style object.

Complex is not a basic type in Julia but essentially a parametrized type for
representing pairs of values. The "complex" vector in R corresponds to one of
those, for pairs of floating point numbers.

> cx

[1] 7.8+3.8i 5.5+3.4i 5.2+3.1i 6.8+0.1i

> cxj <- ev$Send(cx)

> cxj

Julia proxy object

Server Class: Array{Complex{Float64},1}; size: 4

> ev$Get(cxj)

[1] 7.8+3.8i 5.5+3.4i 5.2+3.1i 6.8+0.1i

Complex vectors in R are sent by a call to the generator function for the Julia type:

> ev$AsServerObject(cx)

[1] "complex([7.8,5.5,5.2,6.8], [3.8,3.4,3.1,0.1])"

The Complex types in Julia have a generator with two vectors for the real and
imaginary parts as arguments.

An R array object will also map to one of the Julia parametrized array types.
For example, the iris3 object in the datasets package is a three-way array:

> dim(iris3)

[1] 50 4 3

> typeof(iris3)

[1] "double"

Sending this object to Julia produces a corresponding Julia array object:

15.6. DATA CONVERSION 335

> irisJ <- ev$Send(iris3)

> irisJ

Julia proxy object

Server Class: Array{Float64,3}; size: 600

A general array object in R is sent to Julia by first creating the one-way array
with the data part and then using the Julia function reshape() to specify the
dimensions:

> xm <- matrix(1:6,3,2)

> ev$AsServerObject(xm)

[1] "reshape([1,2,3,4,5,6], 3,2)"

> ev$Send(xm)

Julia proxy object

Server Class: Array{Int64,2}; size: 6

Converting Julia objects

The conversion of Julia objects to R retains JSON notation in the string returned
by the Julia evaluator to R. Where the Julia type has a matching R class, the JSON
form uses the representation of a general R object by a specialized dictionary
containing an element named ".RClass". The conversion produces an object of
the corresponding R class. R methods for asRObject() may further specialize
conversion of this object.

Two special R classes are particularly important: "vector R" and "from Julia".
The first of these explicitly represents various types of vectors in R, which would
otherwise be ambiguous if written as just a JSON list. The second explicitly iden-
tifies a Julia object from a composite type, converted with a named list of the
(converted) data in each of its slots. This representation is not dependent on the
existence of a proxy class in R for the Julia type.

The Julia side of the interface consists of a collection of methods for the function
toR(). Its argument is an arbitrary Julia object and it returns another object such
that the JSON representation produces an R object matching the original Julia
object.

Objects from the parametrized "Array{T,N}" types are returned as R vectors
or arrays. The returned object will be a vector if N is 1 and an array otherwise.
The type of the R vector will be numeric, integer, logical or character for T a
corresponding Julia scalar type. Type Any will be returned as a list. Returned
arrays are constructed by reshaping the array into a one-way array and converting
this for the ".Data" slot; therefore, the same type matching applies as for vectors.

336 CHAPTER 15. AN INTERFACE TO JULIA

Dictionaries will be returned as named lists of their elements. While Julia

dictionaries are parametrized by the type for the keys and the type for the elements,
named lists imply character string keys. JSON dictionaries also require strings as
keys, so the necessary coercion has already taken place to produce the JSON string.

Scalars of the types recognized by JSON will turn into vectors of length 1 of
the corresponding R vector class.

Putting all this together, the convertible Julia objects include all:

1. Scalars, arrays and dictionaries; and

2. Composite types

provided that the elements of the arrays and dictionaries and the fields of the com-
posite types are themselves convertible objects. Any such object will be converted
by the $Get() method or by a proxy function with .get = TRUE, to an R object
of the simple forms described above.

Application packages may want to specialize the object returned, to generate a
particular R class or perform some transformation of the fields in the Julia object.
The most natural approach is to write one or more functional methods in Julia

for the function toR(). In the Julia code for XRJulia, toR() takes as its argument
the Julia object that results from evaluating an expression or command. The
value returned by toR() should be the Julia object that will be converted to JSON

representation and sent to R.
Two-way array objects, for example, will be turned into a dictionary with

an explicit R representation for class "matrix". The Julia function RObject()

produces the explicit representation; the method for array objects will finish by
calling toR() again with the value returned by RObject().

Application methods are likely to do something similar, transforming the Julia
type into a chosen class of R objects. Take a look at methods for toR() in the
XRJulia package, in file "julia/XRJulia.jl".

Occasionally, the application may need to do some further computations on
the particular class of R objects returned in this way, by defining a method in R

for the function asRObject(). In both R and Julia you need to import the generic
function asRObject() or toR() into the application package in order to define
methods for it.

Some current limitations on conversions are due to basic types that do not
correspond between the languages. Julia has a range of parametrized scalar types
that have no direct R equivalent; it’s unclear how important these may be for
data-based applications, but some extensions to the XRJulia facilities may address
these types in the future.

Other types in Julia are useful as programming steps but have a transient form
that doesn’t survive current conversion computations. In the example on the next

15.6. DATA CONVERSION 337

page, we used juliaPrint() to print an object returned by the keys() function,
rather than converting the result to R. The object returned by keys() is an iterator
over a dictionary, a useful type in Julia. But as a composite type for conversion,
it contains the entire object over which the iteration takes place, not the keys as
strings.

General R class representation: an example

The representation of a general R object as a dictionary with special keys allows
computations for a class that does not have an obvious Julia counterpart. For an
example, let’s look once more at "data.frame". As we discussed in Section 10.5,
whether formally defined or not, "data.frame" effectively extends "list", with
slots "names" and "row.names", equivalent to:

setClass("data.frame",

slots = c(names = "character",

row.names = "data.frameRowLabels"),

contains = "list")

Julia has no type directly corresponding to this: It’s essentially a dictionary, con-
strained by requiring the elements to represent variables with the same number
of observations, plus a field for the row names. We could define such a composite
type, but currently there is not much that can be done with it. More likely, a data
frame sent from R will be the source for derived matrix objects, as it often is in R.

The conversion to Julia therefore uses the dictionary representation for a gen-
eral R class. Section 13.8, page 289, showed an example in JSON notation, for
class "ts". The Julia dictionary form is similar. Let’s look at a small sample from
the data frame version of the "iris" data:

> iSample <- iris[sample(150,6),]

> jSample <- juliaSend(iSample)

> jSample

Julia proxy object

Server Class: Dict{Any,Any}; size: 7

> juliaPrint("keys(%s)", jSample)

{".type","names",".Data",".RClass",".extends","row.names",
".package"}

Elements ".type", ".extends" and ".package" further describe the object’s
class. All other elements are the slots of the R object, converted to Julia. The
".Data" element is a list (type "Array{Any,1}") of the 5 variables in the data
frame.

338 CHAPTER 15. AN INTERFACE TO JULIA

Assuming some Julia computations modified this object or created a similar
one, getting it back will create the correct R object. As we can test:

> iSampleBack <- juliaGet(jSample)

> all.equal(iSampleBack, iSample)

[1] TRUE

It’s important that this works because of methods in both R and Julia, but not

methods for the specific "data.frame" class in either case.
In the to-Julia direction, the relevant method is for asServerObject():

> selectMethod("asServerObject",

+ c("data.frame", "JuliaObject"))

Method Definition:

function (object, prototype)

{
attrs <- attributes(object)

if (is.null(attrs) || identical(names(attrs), "names"))

.asServerList(object, prototype)

else .asServerList(XR::objectDictionary(object), prototype)

}
<environment: namespace:XRJulia>

Signatures:

object prototype

target "data.frame" "JuliaObject"

defined "list" "JuliaObject"

The method is inherited from the "list" method. If the object was simply a list,
with or without names, it would be sent directly as a dictionary or array in Julia.
But the method checks for additional attributes which will always be there for a
class that extends "list", such as "data.frame". If so, the object converted, from
objectDictionary(), will turn into a Julia dictionary with an element having the
reserved name ".RClass", in this case containing "data.frame".

The converted slots will be in elements of the dictionary with the slot names.
Julia computations designed for the imported R object could modify these elements
or construct new Julia objects with the same structure.

Coming back to R, the object will start as a dictionary in JSON. This turns into
a list, with names. The asRObject() method for "list" checks for ".RClass"

among the names; if found, an object from that class will be constructed.

