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Abstract

The development of new powerful 3D scanning techniques has enabled the genera-
tion of broad updated anthropometric databases which constitute high valued data to
improve the ergonomic design of products adapted to the user population. Accordingly,
Ergonomics and Anthropometry are two fields more and more quantitative, so advanced
statistical methodologies and modern software tools are demanded to get full benefit from
anthropometric data.

This paper presents a new R package, called Anthropometry, that brings together
some statistical methodologies concerning clustering, statistical shape analysis, statistical
archetypal analysis and the statistical concept of data depth, especially developed to deal
with anthropometric data. They are proposed with the goal of providing effective solu-
tions to some common anthropometric problems, such as clothing design or workstations
design (focusing on the particular case of aircraft cockpits). The utility of the package
is shown by analyzing the anthropometric data obtained from a survey of the Spanish
female population performed in 2006 and from the 1967 United States Air Force Survey.

Keywords: R, anthropometric data, clustering, statistical shape analysis, archetypal analysis,
data depth.

1. Introduction

Ergonomics is the science that investigates the interactions between human beings and the
elements of a system. The application of ergonomic knowledge in multiple areas such as cloth-
ing and footwear design or both working and household environments is required to achieve
the best possible match between the product and its users. To that end, it is fundamental
to know the anthropometric dimensions of the targeted population. Anthropometry refers to
the study of the measurements and dimensions of the human body and it is considered a very
important branch of Ergonomics because its significant influence on the ergonomic design of
products (Pheasant 2003).

A major issue when developing new patterns and products that fit well the target population
is the lack of up-to-date anthropometric data. Improvements in health care, nutrition and
living conditions and the transition to a sedentary life style have changed the body dimensions
of people over recent decades. The anthropometric databases must therefore be updated reg-
ularly. Traditionally, human physical characteristics and measurements have been manually
taken by using rudimentary methods like calipers, rulers or measuring tapes (Simmons and
Istook 2003; Lu and Wang 2008; Shu, Wuhrer, and Xi 2011). These procedures are simple
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(user-friendly), non-invasive and no particularly expensive. However, measuring by hand a
statistically useful sampling of thousands of people is time-consuming and error-prone: the
set of measurements obtained and therefore the shape information is usually imprecise and
inaccurate.

In recent years, the development of new three-dimensional (3D) body scanner measurement
systems has represented a huge step forward in the way of collecting and updating anthro-
pometric data. This technology provides highly detailed, accurate and reproducible anthro-
pometric data from which 3D shape images of the people being measured can be obtained
(Istook and Hwang 2001; Lerch, MacGillivray, and Domina 2007; Wang, Wu, Lin, Yang, and
Lu 2007; D’Apuzzo 2009). The great potential of 3D body scanning techniques constitute
a true breakthrough in realistically characterizing people and they have made it possible to
conduct new anthropometric large-scale size surveys in different countries (for instance, in
the USA, the UK, France, Germany and Australia). In this context, the Spanish Ministry
of Health sponsored a 3D anthropometric study of the Spanish female population in 2006
(Alemany, González, Nácher, Soriano, Arnáiz, and Heras 2010). A sample of 10415 Spanish
females from 12 to 70 years old, randomly selected from the official Postcode Address File, was
measured. Associated software provided by the scanner manufacturers made a triangulation
deriving the 3D spatial location of a large number of points on the body surface. A 3D binary
image of the trunk of each woman (white pixel if it belongs to the body, otherwise black)
is produced from the collection of points located on the surface of each woman scanned, as
explained in Ibáñez, Simó, Domingo, Durá, Ayala, Alemany, Vinué, and Solves (2012a). The
two main goals of this study, which was conducted by the Biomechanics Institute of Valencia,
were as follows: firstly, to characterize the morphology of females in Spain in order to develop
a standard sizing system for the garment industry and secondly, to encourage an image of
healthy beauty in society by means of mannequins that are representative of the population.
In order to tackle both objectives, Statistics plays an essential role.

In every methodological and practical anthropometric problem, body size variability within
the user population is characterized by means of a limited number of anthropometric cases.
This is what is called a user-centered design process. An anthropometric case represents the
set of body measurements the product evaluator plan to accommodate in design (HFES 300
Committee 2004). A case may be a particular human being or a combination of measurements.
Depending on the features and needs of the product being designed, three types of cases can be
distinguished: central, boundary and distributed. If the product being designed is a one-size
product (one-size to accommodate people within a predetermined portion of the population)
such as working environments design, the cases are selected on an accommodation boundary.
However, if we focus on a multiple-size product (n sizes to fit n groups of people within a
predetermined portion of the population), being clothing design the most apparent example,
central cases are selected. The statistical methodologies that we have developed seek to
define central and boundary cases to tackle the clothing sizing system design problem and
the workplaces design problem (focusing on the particular case of an aircraft cockpit).

Clothing sizing systems divide a population into homogeneous subgroups based on some key
anthropometric dimensions (size groups), in such a way that all individuals in a size group
can wear the same garment (Ashdown 2007; Chung, Lin, and Wang 2007). An efficient and
optimal sizing system must accommodate as large a percentage of the population as possible,
in as few sizes as possible, that better describes the shape variability of the population. In
addition, the garment fit for accommodated individuals must be as good as possible. Each
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clothing size is defined from a person who is near the center for the dimensions considered in
the analysis. This central individual, which is considered as the size representative (the size
prototype), becomes the basic pattern from which the clothing line in the same size is designed.
Once a particular garment has been designed, fashion designers and clothing manufacturers
hire fit models to test and assess the size specifications of their clothing before the production
phase. Fit models have the appropriate body dimensions selected by each company to define
the proportional relationships needed to achieve the fit the company has determined (Ashdown
2005; Workman and Lentz 2000; Workman 1991). Fit models are usually people with central
measurements in each body dimension. The definition of an efficient sizing system depend to
a large extent on the accuracy and representativeness of the fit models.

Clustering is the statistical tool that classifies a set of individuals in groups (clusters), in such
a way that subjects in the same cluster are more similar (in some sense) to each other than
to those in other clusters (Kaufman, L. and Rousseeuw, P. J. 1990). In addition, clusters
are represented by means of a representative central observation. Therefore, clustering comes
up naturally as a useful statistical approach to try to define an efficient sizing system and
to elicite prototypes and fit models. Specifically, five of the methodologies that we have
developed are based on different clustering methods. Four of them are aimed at segmenting
the population into optimal size groups. The first one, hereafter referred to as trimowa, has
been published in Ibáñez, Vinué, Alemany, Simó, Epifanio, Domingo, and Ayala (2012b). It is
based on using a especial distance function that mathematically captures the idea of garment
fit. The second and third ones (called CCbiclustAnthropo and TDDclust belong to a paper in
progress (Vinué and Ibáñez 2014). The CCbiclustAnthropo methodology adapts to the field of
Anthropometry a particular clustering algorithm proposed for the analysis of gene expression
data. Besides, TDDclust uses the statistical concept of data depth (Liu, Parelius, and Singh
1999) to group observations according to the most central (deep) one in each cluster. As
mentioned, traditional sizing systems are based on using a suitable set of key body dimensions,
so clustering must be carried out in the Euclidean space. In the three previous procedures,
we have always worked in this way. Instead, in the fourth and last one, hereinafter called as
kmeansProcrustes, a clustering procedure is developed for grouping women according to their
body shape, represented by a configuration matrix of anatomical markers (landmarks). To
that end, the statistical shape analysis (Dryden and Mardia 1998) will be fundamental. This
contribution has been submitted for publication (Vinué, Simó, and Alemany 2014c). The fifth
clustering proposal is presented with the goal of identifying accurate fit models. It is based
on another clustering method originally developed for biological data analysis. This method,
called hipamAnthropom, has been published in Vinué, León, Alemany, and Ayala (2014b).
From well-defined fit models and prototypes, representative and precise mannequins of the
population can be made.

A sizing system is intended only to cover what is called “standard” population, leaving out
the individuals who might be considered outliers respect to a set of measurements. In this
case, outliers are called disaccommodated individuals. Clothing industries usually design
garments for the standard sizes in order to optimize market share. The four aforementioned
methods concerned with apparel sizing system design (trimowa, CCbiclustAnthropo, TDDclust
and kmeansProcrustes) take into account this fact. In addition, because hipamAnthropom is
based on hierarchical features, it is able to discover and return true outliers.

Unlike clothing design, where representative cases correspond to central individuals, in de-
signing a one-size product, such as working environments or the passenger compartment of
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any vehicle including aircraft cockpits, the most common approach is to search for boundary
cases. In these situations, the variability of human shape is described by extreme individuals,
which are those that have the smallest or largest values (or extreme combinations) in the
dimensions considered in the study. These design problems fall into a more general category:
the accommodation problem. The supposition is that the accommodation of boundaries will
facilitate the accommodation of interior points (with less-extreme dimensions) (Bertilsson,
Högberg, and Hanson 2012; Parkinson, Reed, Kokkolaras, and Papalambros 2006; HFES 300
Committee 2004). For instance, a garage entrance must be designed for a maximum case,
while for reaching things such as a brake pedal, the individual minimum must be obtained.
In order to tackle the accommodation problem, two methodological contributions based on
the statistical archetypal analysis are put forward. An archetype in Statistics is an extreme
observation that is obtained as a convex combination of other subjects of the sample (Cutler
and Breiman 1994). The first of these methodologies was published in Epifanio, Vinué, and
Alemany (2013), whereas the second one has been submitted for publication (Vinué, Epifanio,
and Alemany 2014a).

As far as we know, there is currently no reference in the literature related to Anthropometry
or Ergonomics that provides the programming of the algorithms proposed. In addition, to
the best of our knowledge, with the exception of modern human modelling tools like Jack
and Ramsis, which are two of the most widely used tools by a broad range of industries
(Blanchonette 2010), there are neither general software applications nor statistical packages
available from the Internet, to tackle the definition of an efficient sizing system or the accom-
modation problem. In this context, a new R package (R Development Core Team 2013) called
Anthropometry is introduced in this paper, which brings together all the abovementioned
methodologies. All of them were applied to the anthropometric study of the Spanish female
population and to the 1967 United States Air Force (USAF) survey. Anthropometry includes
several data files related to both anthropometric databases. All the statistical methodologies,
anthropometric databases and this R package were announced in the author’s PhD thesis
(Vinué 2014), which will soon be freely available on two Spanish institutional open archives.

The outline of the paper is as follows: Section 2 describes all the data files included in
Anthropometry. Section 3 gives a brief exposition of each statistical technique suggested and
Section 4 presents how they are implemented in this package. In Section 5, some examples of
their application are shown. Finally, concluding remarks are in Section 6.

2. Data

2.1. Spanish anthropometric survey

The Spanish National Institute of Consumer Affairs (INC according to its Spanish acronym)
of the Spanish Ministry of Health and Consumer Affairs commissioned a 3D anthropometric
study of the Spanish female population in 2006, after signing a commitment with the main
Spanish companies in the apparel industry. The Spanish National Research Council (CSIC
in Spanish) planned and developed the design of experiments, the Complutense University
of Madrid was responsible for providing advice on Anthropometry and the study itself was
conducted by the Biomechanics Institute of Valencia (Alemany et al. 2010). The target
sample was made up of 10415 women grouped into 10 age groups ranging from 12 to 70 years,
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randomly chosen from the official Postcode Address File.

As illustrative data of the whole Spanish survey, Anthropometry contains a database called
dataDemo, made up of a sample of 600 Spanish women and their measurements for five an-
thropometric variables: bust, chest, waist and hip circumferences and neck to ground length.
These variables are chosen because three main reasons: recommendations of experts, they are
commonly used in the literature and they appear in the European standard to sizing system.
Size designation of clothes. Part 2: Primary and secondary dimensions (European Committee
for Standardization 2002).

This data set will be used by trimowa, TDDclust and hipamAnthropom. As said, the women
shape is represented by a set of landmarks, specifically 66 points. A data file called landmarks

contains the configuration matrix of landmarks for each of the 600 women. The kmeansPro-
crustes methodology will need this data file.

As also noted above, a 3D binary image of each woman’s trunk is available. Hence, the
dissimilarity between trunk forms can be computed and a distance matrix between women
can be built. The distance matrix used in Vinué et al. (2014a) is included in Anthropometry
and it is called cMDSwomen.

2.2. USAF survey

This database saves the information provided by the 1967 United States Air Force (USAF)
Survey. It can be downloaded from http://www.dtic.mil/dtic/. This survey was conducted
during 1967 by the Anthropology Branch of the Aerospace Medical Research Laboratory
(Ohio). A sample of 2420 subjects of the Air Force personnel, between 21 and 50 years
of age, was measured at 17 Air Force bases across the United States of America. A total
of 202 variables were collected. The dataset associated with the USAF survey is available
in dataUSAF. In the methodologies related to the archetypal analysis, six anthropometric
variables from the total of 202 will be selected. They are the same selected in Zehner, Meindl,
and Hudson (1993) and are called cockpit dimensions because they are critical in order to
design an aircraft cockpit.

2.3. Geometric figures

In the kmeansProcrustes approach, a numerical simulation with controlled data is performed
to show the utility of our methodology. The controlled data are two geometric figures, a cube
and a parallelepiped, made up of 8 and 34 landmarks. These configurations are saved in four
files called cube8, cube34, parallelepiped8 and parallelepiped34, respectively.

3. Statistical methodologies

In Section 3.1, the trimowa, CCbiclustAnthropo, TDDclust and hipamAnthropom are de-
scribed. Section 3.2 focuses on the kmeansProcrustes methodology. Section 3.3 provides an
exposition of the methodologies based on the archetypal analysis.

As a practical guidance, the way of proceeding of the clustering-based approaches has been
the following: the data matrix was segmented using a primary control dimension (bust cir-
cumference in the case of trimowa, hipamAnthropom, kmeansProcrustes and TDDclust, and
waist circumference in the case of CCbiclustAnthropo, according to the classes suggested in

http://www.dtic.mil/dtic/
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the European standard to sizing system. Size designation of clothes. Part 3: Measurements
and intervals (European Committee for Standardization 2005)). Then, a further segmenta-
tion using other secondary control anthropometric variables is carried out. In this way, the
first segmentation provides a first easy input to choose the size, while the resulting clusters
(subgroups) for each bust (or waist) and other anthropometric measurements optimize sizing.

Regarding the methodologies using the archetypal analysis, the steps are as follows: first,
depending on the problem, to standardize or not the data. Then, selecting an accommodation
subsample for obtaining the archetypal individuals as the third and last step.

3.1. Antropometric dimensions based clustering

Trimowa

The aim of a sizing system is to divide a varied population into groups using some key body di-
mensions (Ashdown 2007; Chung et al. 2007). Three types of approaches can be distinguished
for creating a sizing system: traditional step-wise sizing, multivariate methods and optimiza-
tion methods. Traditional methods are not useful because they use bivariate distributions to
define a sizing chart and they do not consider the variability of other relevant anthropometric
dimensions. Recently, more sophisticated statistical methods have been developed, especially
using Principal Component Analysis (PCA) and clustering (Gupta and Gangadhar 2004; Hsu
2009b; Luximon, Zhang, Luximon, and Xiao 2012; Hsu 2009a; Chung et al. 2007; Zheng, Yu,
and Fan 2007; Bagherzadeh, Latifi, and Faramarzi 2010). Peter Tryfos was the first one that
suggested an optimization method (Tryfos 1986). Later on, McCulloch et al. (McCulloch,
Paal, and Ashdown 1998) modified the Tryfos’ approach.

The first clustering methodology proposed, called trimowa, is closed to that one developed in
McCulloch et al. (1998). However, there are two main differences. First, when searching for k
prototypes, a more statistical approach is assumed. To be quite specific, a trimmed version of
the Partioning Around Medoids (or k-medoids) clustering algorithm is used. The trimming
procedure allows us to remove outlier observations (Garćıa-Escudero, Gordaliza, Matrán, and
Mayo-Iscar 2008; Garćıa-Escudero, Gordaliza, and Matrán 2003). Second, the dissimilarity
measure defined in McCulloch et al. (1998) is modified by using an OWA (Ordered Weighted
Average) operator to consider the user morphology. Our approach allows us the derivation of
more realistic prototypes (medoids) because they correspond to real women of the database
and the selection of individual discommodities. In addition, the use of OWA operators has
resulted in a more realistic dissimilarity measure between individuals and prototypes. This
approach was published in Ibáñez et al. (2012b) and it is implemented in the trimowa function.

We learned from this situation that there is an ongoing search for advanced statistical ap-
proaches that can deliver practical solution solutions to the definition of central people and
optimal size groups. Consequently, we have come across in the literature two different statis-
tical strategies and we have aimed to discuss their potential usefulness in the definition of an
efficient clothing sizing system. These approaches are based on Biclustering and Data Depth
and will be summarized in the next two sections.

CCbiclustAnthropo

In the analysis of gene expression data, conventional clustering are limited to find local ex-
pression patterns. Gene data are organized in a data matrix where rows correspond to genes
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and columns to experimental samples (conditions). The goal is to find submatrices, i.e., sub-
groups of genes and subgroups of conditions, where the genes exhibit high correlation for every
condition (Madeira and Oliveira 2004). Biclustering is a novel clustering approach developed
with this goal in mind. This technique consists in simultaneous partitioning of the set of rows
and the set of columns into subsets.

In a traditional row cluster, each row is defined using all the columns of the data matrix.
Something analogue would occur with a column cluster. However, regarding biclustering,
each row in a bicluster is defined using only a subset of columns and vice versa. Therefore,
clustering derives a global model but biclustering defines a local one. This interesting property
made us think that maybe biclustering could be useful to derive efficient size groups, since
they would be only defined for the most relevant anthropometric dimensions that describe a
body in the detail necessary to design a garment that fit well.

Recently, a large number of biclustering methods have been developed. Some of them are
implemented in different sources, including R. Up to now, the most complete R package
for biclustering is biclust (Kaiser and Leisch 2008; Kaiser, Santamaria, Khamiakova, Sill,
Theron, Quintales, and Leisch 2011). The utility of the approaches included in biclust to deal
with anthropometric data was investigated in Vinué (2012). Among the conclusions reached,
the most important was concerned with the possibility to consider the Cheng & Church
biclustering algorithm (Cheng and Church 2000) (from now on, CC) as a potential statistical
approach to be used for defining size groups. Specifically, in Vinué (2012) an algorithm to find
size groups (biclusters) and disaccommodated women with CC was set out. This methodology
is called CCbiclustAnthropo and it is implemented in the CCbiclustAnthropo function.

Designing lower body garments depends not only on the waist circumference (the principal
dimension in this case), but also on other secondary control dimensions (for upper body
garments the bust circumference is usually needed only). Biclustering produces subgroups of
objects that are similar in one subgroup of variables and different in the remaining variables.
Therefore, it seems more interesting to use a biclustering algorithm with a set of lower body
dimensions. For that purpose, all the body variables related to the lower body part included
in the Spanish anthropometric survey were chosen (there were 36). As promising results, an
efficient partition into different biclusters was obtained. All individuals in the same bicluster
can wear a garment designed for the specifical body dimensions (waist and other variables)
which were the most relevant for defining the group. Each group is represented by the median
woman. The CC algorithm is nonexhaustive, i.e, some rows (and columns) do not belong to
any bicluster. This property can be used to fix a proportion of no accommodated sample.

The major interest of this approach was descriptive and exploratory and the important point
to note here is that CCbiclustAnthropo cannot be used with dataDemo, since this data
file does not contain variables related to the lower body part in addition to waist and hip.
However, this function is included in the package in the hope that it could be helpful or useful
for other researchers. All theoretical and practical details are given in Vinué (2014) and Vinué
(2012).

TDDclust

The statistical concept of data depth is other general framework for descriptive and inferential
analysis of numerical data in a certain number of dimensions. In essence, the notion of data
depth is a generalization of the median to data in higher-dimensions. A depth function
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measures the degree of centrality of a point regarding a probability distribution or a data set.
Highest depth values correspond to central points and lowest depth values correspond to tail
points (Liu et al. 1999; Zuo and Serfling 2000). Therefore, the depth paradigm is other very
interesting strategy to identify central prototypes.

The development of clustering and classification methods using data depth measures has
received increasing attention over the last few years (Dutta and Ghosh 2012; Lange, Mosler,
and Mozharovskyi 2012; López and Romo 2010; Ding, Dang, Peng, and Wilkins 2007). The
most relevant contribution to this field has been made by Rebecka Jörnsten in Jörnsten
(2004) (see also Jörnsten, Vardi, and Zhang (2002) and Pan, Jörnsten, and Hart (2004)). She
introduced two clustering and classification methods (DDclust and DDclass, respectively)
based on L1 data depth (see Vardi and Zhang (2000)). The DDclust method is proposed to
solve the problem of minimizing the sum of L1-distances from the observations to the nearest
cluster representatives. The L1 data depth is the amount of probability mass needed at a
point z to make z the multivariate L1-median (a robust representative) of the data cluster.

An extension of DDclust by incorporating a trimmed procedure is introduced, aimed at seg-
menting the data into efficient size groups, using central (the deepest) people. In what follows,
this methodology will be called TDDclust and it can be used within Anthropometry by using
a function with the same name. All details about TDDclust are described in Vinué (2014).

hipamAnthropom

Representative fit models are important for defining a meaningful sizing system. However,
there is no agreement among apparel manufacturers and almost every company employs a
different fit model. Companies try to improve the quality of garment fit by scanning their fit
models and deriving dress forms from the scans (Ashdown 2007; Song and Ashdown 2010).
A fit model’s measurements correspond to the commercial specifications established by each
company to achieve the company’s fit (Loker, Ashdown, and Schoenfelder 2005; Workman
and Lentz 2000; Workman 1991). Beyond merely wearing the garment for inspection, a fit
model provides objective feedback about fit, movement or comfort of a garment in place of
the consumer.

In order to provide new insights about this problem, the hipamAnthropom methodology is
proposed. It consists of two classification algorithms based on the HIerarchical Partitioning
Around Medoids (HIPAM) clustering method presented in Wit and McClure (2004), modified
to deal with anthropometric data. This procedure was published in Vinué et al. (2014b). The
dissimilarity measure defined in McCulloch et al. (1998) and a different method to obtain a
classification tree (Irigoien and Arenas 2008) were incorporated. One algorithm was called
HIPAMMO and the other one, HIPAMIMO. The outputs of both of them include a set of
central representative subjects or medoids taken from the original data set which constitute
our fit models. In addition, they can detect outliers. This methodology is available in the
hipamAnthropom function.

3.2. Statistical shape analysis: kmeansProcrustes

The clustering methodologies explained in Section 3.1 use a set of control anthropometric
variables as the basis for a different type of sizing system in which people are grouped in a
size group based on a full range of measurements. Consequently, clustering is done in the
Euclidean space. The shape of the women recruited into the Spanish anthropometric survey is
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represented by a set of correspondence points called landmarks. Taking advantage of this fact,
we have adapted the k-means clustering algorithm to the field of statistical shape analysis,
to define size groups of women according to their body shapes (Vinué et al. 2014c). The
representative of each size group is the mean woman.

The k-means method is based on the fact that the sample mean is the value that minimizes
the Euclidean distance from each point, to the centroid of the cluster to which it belongs. In
order to adapt k-means to shape analysis, it is sufficient merely to replace the sample mean
and the Euclidean distance by the Procrustes mean and the Procrustes distance, which are
basic concepts of the shape analysis (Dryden and Mardia 1998). Thus, k-means can be used
to cluster objects based on landmarks. Several attempts have been made in this regard, each
one adapting a different version of the k-means. Amaral et al. in Amaral, Dore, Lessa, and
Stosic (2010) adapted the Hartigan-Wong (H-W) version of k-means, while V. Georgescu in
Georgescu (2009) used an algorithm in some aspects similar to the Lloyd version of k-means.

The main difference between Lloyd and H-W is that H-W proceeds point by point. Therefore,
it requires the mean to be updated many more times than Lloyd. Unlike the sample mean
in the Euclidean space, the calculus of the Procrustes mean needs much more time. Conse-
quently, H-W should have a high computational burden in the shape space, losing efficiency,
especially with a large sample size. In order to confirm empirically these hypothesis, we
adapted both H-W and original Lloyd versions of k-means to the field of shape analysis and
we demonstrated, by means of a simulation study, that the original Lloyd version of k-means
is more efficient to clustering shapes than the H-W version (Vinué et al. 2014c).

The function to use the Lloyd version of k-means adapted to shape analysis (what we called
kmeansProcrustes) is LloydShapes. In addition, the function to use the Hartigan-Wong
version of k-means adapted to shape analysis is HartiganShapes. In addition, a trimmed
version of kmeansProcrustes can be executed with trimmedLloydShapes.

3.3. Archetypal Analysis

In ergonomic related problems, where the goal is to create more efficient people-machine
interfaces, a small set of extreme cases (boundary cases), called human models, is searched.
Designing for extreme individuals is appropriate where some limiting factor can define either
a minimum or maximum value which will accommodate the population. The basic principle is
that accommodating boundary cases will be sufficient to accommodate the whole population.

For too long, the classical solution to select this small group of boundary models was based
on the use of percentiles. However, percentiles are a kind of univariate descriptive statistic,
so they are suitable only for univariate accommodation and should not be used in designs
that involve two or more dimensions. In addition, they are not additive (Zehner et al. 1993;
Robinette and McConville 1981; Moroney and Smith 1972). Today, the alternative commonly
used for the multivariate accomodation problem is based on PCA (Friess and Bradtmiller 2003;
Hudson, Zehner, and Meindl 1998; Robinson, Robinette, and Zehner 1992; Bittner, Glenn,
Harris, Iavecchia, and Wherry 1987). However, it is known that the PCA approach presents
some drawbacks (Friess 2005). In Epifanio et al. (2013), a different statistical approach for
determining multivariate limits was put forward: the archetypal analysis (Cutler and Breiman
1994), and its advantages regarding to PCA were demonstrated. The function that allows us
to reproduce the results discussed in Epifanio et al. (2013) is archetypesBoundary.

Archetypes computed by archetypal analysis are a convex combination of the sampled indi-
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viduals, but they are not necessarily real observations. In some problems, it is crucial that the
archetypes are real subjects, observations of the sample, and not fictitious. To that end, we
have proposed a new archetypal concept: the archetypoid, which correspond to specific indi-
viduals and each observation of the data set can be represented as a mixture of these archety-
poids (Vinué et al. 2014a). We have developed an efficient computational algorithm based on
PAM to compute archetypoids (called archetypoid algorithm), we have analyzed some of their
theoretical properties, we have explained how they can be obtained when only dissimilarities
between observations are known (features are unavailable) and we have demonstrated some
of their advantages regarding classical archetypes. The stepArchetypoids function calls the
archetypoids function to run the archetypoid algorithm repeatedly.

4. The Anthropometry R package

First, the package must be loaded into R:

library(Anthropometry)

Next we briefly describe the R functions to execute each one of the methodologies introduced
in Section 3.

4.1. Antropometric dimensions based clustering

A key element of two of the aforementioned clustering methodologies, trimowa and hipamAn-
thropom, is the dissimilarity function used. It is based on the dissimilarity measure proposed
in McCulloch et al. (1998). The code to compute the dissimilarities with Anthropometry is
written in C and it is exported from the NAMESPACE file.

Both clustering methodologies incorporate the calculus of the dissimilarity matrix within their
main functions, trimowa and hipamAnthropom, respectively.

trimowa function

trimowa(x,w,K,alpha,niter,Ksteps,ahVect=c(23,28,20,25,25))

Its arguments are the following:

• x: Data frame. In our approach, this is each one of the subframes originated after
segmenting the whole anthropometric Spanish survey in twelve bust segments, accord-
ing to the European standard to sizing system. Size designation of clothes. Part 3:
Measurements and intervals. Each row corresponds to an observation, and each column
corresponds to a variable. All variables are numeric.

• w: The aggregation weights of the OWA operators. They are computed with the
WeightsMixtureUB.

• K: Number of clusters.

• alpha: Proportion of trimmed sample.



Guillermo Vinué 11

• niter: Number of random initializations.

• Ksteps: Steps per initialization.

• ahVect: Constants that define the ah slopes of the distance function in GetDistMatrix.
Given the five variables considered, this vector is c(23,28,20,25,25). This vector would
be other according to the variables considered.

TDDclust function

TDDclust(x,K,lambda,Th,A,T0,alpha,lplot,Trimm,data1)

Its arguments are the following:

• x: Data frame. Each row corresponds to an observation, and each column corresponds
to a variable. All variables must be numeric.

• K: Number of clusters.

• lambda: Tuning parameter that controls the influence the data depth has over the
clustering, see Jörnsten (2004).

• Th: Threshold for observations to be relocated, usually set to 0.

• A: Number of iterations.

• T0: Simulated annealing parameter. It is the current temperature in the simulated
annealing procedure.

• alpha: Simulated annealing parameter. It is the decay rate, default 0.9.

• lplot: Tracking convergence, default 0.

• Trimm: Proportion of no accommodated sample.

• data1: The same data frame as x, used to incorporate the trimmed observations to the
rest of them for the next iteration.

hipamAnthropom function

hipamAnthropom(x,asw.tol=0,maxsplit=5,local.const=NULL,orness=0.7,

type,ahVect=c(23,28,20,25,25),...)

Its arguments are the following:

• x: Data frame. In our approach, this is each one of the subframes originated after
segmenting the whole anthropometric Spanish survey in twelve bust segments, accord-
ing to the European standard to sizing system. Size designation of clothes. Part 3:
Measurements and intervals. Each row corresponds to an observation, and each column
corresponds to a variable. All variables are numeric.
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• asw.tol: If this value is given, a tolerance or penalty can be introduced (asw.tol > 0
or asw.tol < 0, respectively) in the branch splitting procedure. Default value (0) is
maintained. See (Wit and McClure 2004, p.154) for more details.

• maxsplit: The maximum number of clusters that any cluster can be divided when
searching for the best clustering.

• local.const: If this value is given (meaningful values are those between -1 and 1), a
proposed partition is accepted only if the associated asw is greater than this constant.
Default option for this argument is maintained, that is to say, this value is ignored. See
(Wit and McClure 2004, p.154) for more details.

• orness: Quantity to measure the degree to which the aggregation is like a min or max
operation. See WeightsMixtureUB and GetDistMatrix.

• type: Type of HIPAM algorithm to be used. The possible options are ’MO’ (for
HIPAMMO) and ’IMO’ (for HIPAMIMO).

• ahVect: Constants that define the ah slopes of the distance function in GetDistMatrix.
Given the five variables considered, this vector is c(23,28,20,25,25). This vector would
be other according to the variables considered.

• ...: Other arguments that may be supplied to the internal functions of the HIPAM
algorithms.

4.2. Statistical shape analysis

LloydShapes function

LloydShapes(dg,K,Nsteps=10,niter=10,stopCr=0.0001,simul,print)

Its arguments are the following:

• dg: Array with the 3D landmarks of the sample objects. Each row corresponds to an
observation, and each column corresponds to a dimension (x,y,z).

• K: Number of clusters.

• Nsteps: Number of steps per initialization. Default value is 10.

• niter: Number of random initializations. Default value is 10.

• stopCr: Relative stopping criteria. Default value is 0.0001.

• simul: A logical value. If TRUE, this function is used for a simulation study.

• print: Logical value. If TRUE, some messages associated with the running process are
displayed.
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HartiganShapes function

HartiganShapes(dg,K,Nsteps=10,niter=10,stopCr=0.0001,simul,initLl,

initials,print)

Its arguments are the following:

• dg: Array with the 3D landmarks of the sample objects. Each row corresponds to an
observation, and each column corresponds to a dimension (x,y,z).

• K: Number of clusters.

• Nsteps: Number of steps per initialization. Default value is 10.

• niter: Number of random initializations. Default value is 10.

• stopCr: Relative stopping criteria. Default value is 0.0001.

• simul: A logical value. If TRUE, this function is used for a simulation study.

• initLl: Logical value. If TRUE, see next argument initials. If FALSE, they are new
random initial values.

• initials: If initLl=TRUE, they are the same random initial values used in each iteration
of LloydShapes. If initLl=FALSE this argument must be passed simply as an empty
vector.

• print: Logical value. If TRUE, some messages associated with the running process are
displayed.

trimmedLloydShapes function

trimmedLloydShapes(dg,n,alpha,K,Nsteps=10,niter=10,

stopCr=0.0001,print)

Its arguments are the following:

• dg: Array with the 3D landmarks of the sample objects. Each row corresponds to an
observation, and each column corresponds to a dimension (x,y,z).

• n: Number of individuals.

• alpha: Proportion of trimmed sample.

• K: Number of clusters.

• Nsteps: Number of steps per initialization. Default value is 10.
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• niter: Number of random initializations. Default value is 10.

• stopCr: Relative stopping criteria. Default value is 0.0001.

• print: Logical value. If TRUE, some messages associated with the running process are
displayed.

4.3. Archetypal analysis

archetypesBoundary function

archetypesBoundary(data,numArchet,verbose,nrep)

• data: USAF 1967 database (see dataUSAF). Each row corresponds to an observation,
and each column corresponds to a variable. All variables are numeric.

• numArchet: Number of archetypes.

• verbose: Logical value. If TRUE, some details of the execution progress are shown
(this is the same argument as that of the stepArchetypes function of the archetypes
R package (Eugster and Leisch 2009)).

• nrep: For each archetype run archetypes nrep times (this is the same argument as that
of the stepArchetypes function of archetypes).

archetypoids function

archetypoids(i,data,huge=200,step,init,ArchObj,nearest,sequ,aux)

• i: Number of archetypoids.

• data: Data matrix. Each row corresponds to an observation and each column corre-
sponds to an anthropometric variable. All variables are numeric.

• huge: This is a penalization added to solve the convex least squares problems regarding
the minimization problem to estimate archetypoids, see Eugster and Leisch (2009).
Default value is 200.

• step: Logical value. If TRUE, the archetypoid algorithm is executed repeatedly within
stepArchetypoids. Therefore, this function requires the next argument init (but nei-
ther the ArchObj nor the nearest arguments) that specifies the initial vector of archety-
poids, which has been already computed within stepArchetypoids. If FALSE, the
archetypoid algorithm is executed once. In this case, the ArchObj and nearest argu-
ments are required to compute the initial vector of archetypoids.
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• init: Initial vector of archetypoids for the BUILD phase of the archetypoid algorithm.
It is computed within stepArchetypoids. See next nearest argument to know how this
vector is calculated.

• ArchObj: The list returned by the stepArchetypesMod function. This function is a
slight modification of the original stepArchetypes function of archetypes to apply the
archetype algorithm to raw data. The stepArchetypes function standardizes the data
by default and this option is not always desired. This list is needed to compute the
nearest individuals to archetypes. Required when step=FALSE.

• nearest: Initial vector of archetypoids for the BUILD phase of the archetypoid algorithm.
Required when step=FALSE. This argument is a logical value: if TRUE (FALSE), the
nearest (which) vector is calculated. Both vectors contain the nearest individuals to the
archetypes returned by the archetypes function of archetypes (In Vinué et al. (2014a),
archetypes are computed after running the archetype algorithm twenty times). The
nearest vector is calculated by computing the Euclidean distance between the archetypes
and the individuals and choosing the nearest. It is used in Epifanio et al. (2013). The
which vector is calculated by identifying consecutively the individual with the maximum
value of alpha for each archetype, until getting the number of archetypes defined. It is
used in Eugster (2012).

• sequ: Logical value. It indicates whether a sequence of archetypoids (TRUE) or only
a single number of them (FALSE) is computed. It is determined by the number of
archetypes computed by means of stepArchetypesMod.

• aux: If sequ=FALSE, this value is equal to i -1 since for a single number of archetypoids,
the list associated with the archetype object only has one element.

stepArchetypoids function

stepArchetypoids(i,nearest,data,ArchObj)

• i: Number of archetypoids.

• nearest: Initial vector of archetypoids for the BUILD phase of the archetypoid algorithm.
This argument is a logical value: if TRUE (FALSE), the nearest (which) vector is
calculated. Both vectors contain the nearest individuals to the archetypes returned by
the archetypes function of archetypes (In Vinué et al. (2014a), archetypes are computed
after running the archetype algorithm twenty times). The nearest vector is calculated
by computing the Euclidean distance between the archetypes and the individuals and
choosing the nearest. It is used in Epifanio et al. (2013). The which vector is calculated
by identifying consecutively the individual with the maximum value of alpha for each
archetype, until getting the number of archetypes defined. It is used in Eugster (2012).

• data: Data matrix. Each row corresponds to an observation and each column corre-
sponds to an anthropometric variable. All variables are numeric.



16 Anthropometry: An R Package for Analysis of Anthropometric Data

• ArchObj: The list returned by the stepArchetypesMod function. This function is a
slight modification of the original stepArchetypes function of archetypes to apply the
archetype algorithm to raw data. The stepArchetypes function standardizes the data
by default and this option is not always desired. This list is needed to compute the
nearest individuals to archetypes.

stepArchetypesMod function

stepArchetypesMod(data,k,nrep=3,verbose=TRUE)

• data: Data to obtain archetypes.

• k: Number of archetypes to compute, from 1 to k.

• nrep: For each k, run archetypes nrep times.

• verbose: If TRUE, the progress during exection is shown.

5. Examples

5.1. Antropometric dimensions based clustering

The following code executes the trimowa methodology. A similar code was used to obtain
the results described in Ibáñez et al. (2012b). In the next example, the number of random
initializations is 10, with three steps per initialization. Figure 1 shows the scatter plots of
bust circumference against neck to ground with the three medoids obtained for each bust
class without (left) and with (right) the prototypes defined by the European standard. Note
that any other number of clusters could be also obtained.

#Data loading:

dataDef <- dataDemo

num.variables <- dim(dataDef)[2]

bust <- dataDef$bust

#Aggregation weights calculation:

orness <- 0.7

w <- WeightsMixtureUB(orness,num.variables)

#Bust classes definition according to the European standard:

bustCirc_4 <- seq(74,102,4)

bustCirc_6 <- seq(107,131,6)

bustCirc <- c(bustCirc_4,bustCirc_6)

#Trimowa parameters:
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nsizes <- length(bustCirc)

K <- 3 ; alpha <- 0.01 ; niter <- 10 ; Ksteps <- 7

ahVect <- c(23,28,20,25,25)

#For reproducing results, seed for randomness:

set.seed(2014)

res_trimowa <- list()

for (i in 1 : (nsizes-1)){

data = dataDef[(bust >= bustCirc[i]) & (bust < bustCirc[i + 1]), ]

res_trimowa[[i]] <- trimowa(data,w,K,alpha,niter,Ksteps,ahVect=ahVect)

}

#Medoids provided for each bust class:

medoids <- list()

for (i in 1 : (nsizes-1)){

medoids[[i]] <- res_trimowa[[i]]$meds

}

#Plotting arguments:

bustVariable <- "bust"

xlim <- c(70,150)

color <- c("black", "red", "green", "blue", "cyan", "brown", "gray",

"deeppink3", "orange", "springgreen4", "khaki3", "steelblue1")

variable <- "necktoground"

ylim = c(110,160) #see range(dataDef[,variable])

title <- "Medoids \n bust vs neck to ground"

#Figure 1 (left and right):

plotMedoids(dataDef,medoids,nsizes,bustVariable,variable,color,

xlim,ylim,title,FALSE)

plotMedoids(dataDef,medoids,nsizes,bustVariable,variable,color,

xlim,ylim,title,TRUE)

In addition, the following sentences illustrate how to use the hipamAnthropom methodology.
Specifically, some results returned by the HIPAMIMO algorithm are shown. Figure 2 displays
the medoids (left) and the outlier women (right) corresponding to each bust size.

We emphasize that dataDemo is divided into twelve bust segments here as well. Thus, each seg-
ment has a small sample size. This might explain that this algorithm (and also HIPAMMO)
does not find big homogeneous clusters and therefore, identifies a lot of women as outliers
in each class for this case. One of the features of the HIPAM algorithm is that it is a very
sensitive algorithm to identify outliers. A broad discussion, analysis and thoughts of the
anthropometric meanining of these outliers is given in Vinué et al. (2014b) (including its
supplementary material).
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Figure 1: Bust vs neck to ground, jointly with our medoids (left) and the prototypes defined
by the European standard (right).

#Data loading:

dataDef <- dataDemo

bust <- dataDef$bust

#Bust classes definition according to the European standard:

bustCirc_4 <- seq(74,102,4)

bustCirc_6 <- seq(107,131,6)

bustCirc <- c(bustCirc_4,bustCirc_6)

#HipamAnthropom parameters:

nsizes <- length(bustCirc)

maxsplit <- 5 ; orness <- 0.7 ; type <- "IMO"

#type <- "MO" for HIPAM_{MO}

ahVect <- c(23, 28, 20, 25, 25)

#For reproducing results, seed for randomness:

set.seed(2013)

hip <- list()

for(i in 1 : (nsizes - 1)){

data = dataDef[(bust >= bustCirc[i]) & (bust < bustCirc[i + 1]), ]

d <- as.matrix(data)

hip[[i]] <- hipamAnthropom(d,maxsplit=maxsplit,orness=orness,

type=type,ahVect=ahVect)

}
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#hipamBigGroups is a function of Anthropometry that returns the medoids

#of the clusters with more than 2 elements:

list.meds <- lapply(1:(nsizes - 1), FUN = hipamBigGroups, hip)

#outlierHipam is a function of Anthropometry that returns the individuals

#of the clusters with 1 or 2 elements (outliers):

list_outl1_2 <- sapply(1 : (nsizes - 1), FUN = outlierHipam, hip)

#Plotting arguments:

bustVariable <- "bust"

xlim <- c(70,150)

color <- c("black", "red", "green", "blue", "cyan", "brown", "gray",

"deeppink3", "orange", "springgreen4", "khaki3", "steelblue1")

variable <- "hip"

ylim <- c(80,160)

title <- "Medoids HIPAM_IMO \n bust vs hip"

title_outl <- "Outlier women HIPAM_IMO \n bust vs hip"

#Figure 2 (left and right):

plotMedoids(dataDef,list.meds,nsizes,bustVariable,variable,color,

xlim,ylim,title,FALSE)

plotTrimmOutl(dataDef,list_outl1_2,nsizes,bustVariable,variable,color,

xlim,ylim,title_outl)
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Figure 2: Bust vs hip with the medoids (left) and with the outliers (right) obtained using
HIPAMIMO.

Next, a basic example of the TDDclust methodology is shown.
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#In the interests of simplicity of the computation involved

#only a small sample (the first 50 individuals) is selected:

dataDef <- dataDemo[1:50,c(2,3,5)] #Neck to ground, waist and bust variables.

data1 <- dataDemo[1:50,c(2,3,5)]

#TDDclust parameters:

K=3 ; lambda=0.5 ; Th=0

A=5 ; T0=0 ; alpha=.9

lplot=0 ; percTrimm=0.1

Dout <- TDDclust(x=dataDef,K=K,lambda=lambda,Th=Th,A=A,T0=T0,alpha=alpha,

lplot=lplot,Trimm=percTrimm,data1=data1)

#Clustering results:

table(Dout$NN[1,])

#Final value of the optimal partition:

Dout$Cost

#Iteration in which the optimal partition was found:

Dout$klBest

#Trimmed observations:

Dout$indivTrimmed

5.2. Statistical shape analysis

Next, the results obtained with the trimmed kmeansProcrustes by using five iterations, five
number of steps per initialization and a relative stopping criteria of 0.0001 are presented.
Figure 3 displays the boxplots for neck to ground measurement for the three clusters calculated
(left) and the projection on the plane xy of the registrated points and mean shape for cluster
1 (right).

landmarks1 <- na.exclude(landmarks)

num.points <- (dim(landmarks1)[2]) / 3

#In the interests of simplicity of the computation involved

#only a small sample (the first 50 individuals) is selected:

landmarks2 <- landmarks1[1:50,]

n <- dim(landmarks2)[1]

#Array with the 3D landmarks of the sample objects:

dg <- array(0,dim = c(num.points,3,n))

for(k in 1:n){

for(l in 1:3){

dg[,l,k] <- as.matrix(as.vector(landmarks2[k,][seq(l,dim(landmarks2)[2]+

(l-1),by=3)]),ncol=1,byrow=T)

}

}
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#kmeansProcrustes parameters:

K <- 3 ; alpha <- 0.01 ; Nsteps <- 5 ; niter <- 5 ; stopCr <- 0.0001

#For reproducing results, seed for randomness:

set.seed(2013)

res <- trimmedLloydShapes(dg,n,alpha,K,Nsteps,niter,stopCr,TRUE)

#Numerical and graphical results:

asig <- res$asig #table(asig) shows the clustering results.

copt <- res$copt #optimal centers.

#To identify the trimmed individuals of the optimal iteration:

iter_opt <- res$trimmsIter[length(res$trimmsIter)]

trimm <- res$trimmWomen[[iter_opt]][[res$betterNstep]]

#Generalised Procrustes analysis into each cluster:

out_proc <- list()

for(h in 1 : K){

out_proc[[h]] = shapes::procGPA(dg[, , asig == h], distances = T,

pcaoutput = T)

}

data <- dataDemo[1:50,]

data <- data[-trimm,]

#Figure 3 (left):

boxplot(data$necktoground ~ as.factor(asig), main = "Neck to ground")

#Figure 3 (right):

plotshapes(out_proc[[1]]$rotated)

points(copt[,,1], col = 2)

legend("topleft", c("Registrated data", "Mean shape"), pch = 1,

col = 1:2, text.col = 1:2)

title("Procrustes registrated data for cluster 1 \n

with its mean shape superimposed", sub = "Plane xy")

5.3. Archetypal analysis

Three archetypoids for dataUSAF are calculated with the following code. Figure 4 shows the
percentiles of three archetypoids, beginning with nearest (left) and with which (right).

#Cockpit design problem:

#In the interests of simplicity of the computation involved

#only a small sample (the first 50 individuals) is selected:

m <- dataUSAF[1:50,]

#Variable selection (cockpit dimensions):

sel <- c(48,40,39,33,34,36)

#Changing to inches:

mpulg <- m[,sel] / (10 * 2.54)
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Figure 3: Boxplots for the neck to ground measurement for three clusters (left) and projection
on the plane xy of the registrated points and mean shape for cluster 1 (right). Results provided
by trimmed kmeansProcrustes.

#Data preprocessing:

preproc <- accommodation(mpulg,TRUE,0.95,TRUE)

#For reproducing results, seed for randomness:

set.seed(2010)

#Run archetype algorithm repeatedly from 1 to numArch archetypes:

numArch <- 10 ; nrep <- 20

lass <- stepArchetypesMod(data=preproc$data,k=1:numArch,verbose=FALSE,

nrep=nrep)

screeplot(lass)

i <- 3 #number of archetypoids to compute.

res <- archetypoids(i,preproc$data,huge=200,step=FALSE,ArchObj=lass,

nearest=TRUE,sequ=TRUE)

res_which <- archetypoids(i,preproc$data,huge=200,step=FALSE,ArchObj=lass,

nearest=FALSE,sequ=TRUE)

aux <- res$archet

aux_wh <- res_which$archet

#In this case, the nearest and which archetypoids match

#(although the nearest and which archetypes do not),

#so it’s enought to represent a single percentiles plot:
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percs <- list()

#In case the nearest and which archetypoids don’t match:

#percs_wh <- list()

for(j in 1:length(aux)){

percs[[j]] <- sapply(1:dim(preproc$data)[2],compPerc,aux[j],preproc$data,0)

#percs_wh[[j]] <- sapply(1:dim(preproc£data)[2],compPerc,aux_wh[j],

#preproc£data,0)

}

m <- matrix(unlist(percs),nrow=6,ncol=length(percs),byrow=F)

#m1 <- matrix(unlist(percs_wh),nrow=6,ncol=length(percs_wh),byrow=F)

#Figure 4:

barplot(m,beside=TRUE,

main = paste(i, " archetypoids", sep = ""),

ylim=c(0,100), ylab="Percentile")

3 archetypoids
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20

40
60

80
10

0

Figure 4: Percentiles of three archetypoids, beginning with nearest and with which for
dataUSAF. In this case, the nearest and which archetypoids coincide.

6. Conclusions

New three-dimensional whole-body scanners have drastically reduced the cost and duration
of the measurement process. These types of systems, in which the human body is digitally
scanned and the resulting data converted into exact measurements, make it possible to obtain
accurate, reproducible and updated anthropometric data. These databases constitute very
valuable information to effectively design better-fitting clothing and workstations, to under-
stand the body shape of the population and to reduce the design process cycle. Therefore,
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rigorous statistical methodologies and software applications must be developed to make the
most of them.

This paper introduces a new R package called Anthropometry that brings together differ-
ent statistical methodologies concerning clustering, the statistical concept of data depth, the
statistical shape analysis and the archetypal analysis, especially developed to deal with an-
thropometric data. They use the data obtained from a 3D anthropometric survey of the
Spanish female population and from the USAF survey. Procedures related to clustering, data
dept and shape analysis are aimed at defining optimal clothing size groups and central pro-
totypes. The two approaches based on the archetypal analysis are useful for determining
boundary human models which could be useful to improve industry practice in workspace
design.

The Anthropometry R package is a positive contribution to tackle some statistical problems
related to Ergonomics and Anthropometry. It provides a useful software tool to engineers
and researchers in these fields so that they can analyze their anthropometric data in a com-
prehensive way.
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Kaiser S, Santamaria R, Khamiakova T, Sill M, Theron R, Quintales L, Leisch F (2011).
biclust: BiCluster Algorithms. R package version 1.0.1, URL http://CRAN.R-project.

org/package=biclust.

Kaufman, L and Rousseeuw, P J (1990). Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley, New York.

Lange T, Mosler K, Mozharovskyi P (2012). “Fast nonparametric classification based on data
depth.” Statistical Papers, 5, 1–22.

Lerch T, MacGillivray M, Domina T (2007). “3D Laser Scanning: A Model of Multidisci-
plinary Research.” Journal of Textile and Apparel, Technology and Management, 5, 1–22.

Liu RY, Parelius JM, Singh K (1999). “Multivariate Analysis by Data Depth: Descriptive
Statistics, Graphics and Inference.” The Annals of Statistics, 27(3), 783–858.

Loker S, Ashdown S, Schoenfelder K (2005). “Size-specific Analysis of Body Scan Data to
Improve Apparel Fit.” Journal of Textile and Apparel, Technology and Management, 4(3),
1–15.
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