
A step-by-step guide to writing a simple package that uses S4

methods: a “hello world” example

Robin K. S. Hankin

August 19, 2008

1 Introduction

This vignette proves that it is possible for a ‘normal’ person1 to write a package using S4 methods.
It gives a step-by-step guide to creating a package that contains two S4 classes (brobs and glubs)
and a bunch of basic utilities for manipulating them.

This document focuses on the S4 aspects of the package. For an overview of the mathematical
properties of Brobdingnagian numbers, their potential and their limitations, see the .Rd files and
the entry in Rnews (forthcoming).

If you like this vignette and package, and find it useful, let me know. If there is anything wrong
with it, let me know.

I would not recommend that anyone uses S4 unless there is a good reason for it (many of
my packages use S3 methods which I found to be perfectly adequate for my needs). Reasons for
using S4 might include a package having a large number of object classes that have a complicated
hierarchical structure, or a complicated set of methods that interact with the object classes in a
complicated manner.

In the package, brobs are dealt with in brob.R, and glubs are treated in glub.R which appro-
priately generalizes all the brob functionality.

This document could not have been prepared (and should not be read) without consulting the
following resources:

ˆ John M. Chambers (1998), Programming with Data. New York: Springer, ISBN 0-387-98503-
4 (The Green Book).

ˆ W. N. Venables and B. D. Ripley (2000), S Programming. Springer, ISBN 0-387-98966-8.

ˆ John Chambers (2006). How S4 methods work (available on CRAN).

1.1 Overview

The idea of Brobdingnag package is simple: the IEEE representation for floating point numbers
cannot represent numbers larger than about 1.8× 10308. The package represents a number by the
natural logarithm of its magnitude, and also stores a Boolean value indicating its sign. Objects
so stored have class brob; complex numbers may be similarly represented and have class glub.

With this scheme, multiplication is easy but addition is hard. The basic identity is:

log(ex + ey) =
{

x + log (1 + ey−x) if x > y
y + log (1 + ex−y) otherwise

In practice this gets more complicated as one has to keep track of the sign; and special dispen-
sation is needed for zero (= e−∞).

One can thus deal with numbers up to about e1.9×10308 ' 107.8×10307
, although at this outer

limit accuracy is pretty poor.
1That is, someone without super powers (such as might manifest themselves after being bitten by a radioactive

member of R-core, for example)

1



2 Class definition

The first thing we need to do is to define the brob class. This uses the setClass() function:

> setClass("swift", representation = "VIRTUAL")

> setClass("brob", representation = representation(x = "numeric",

+ positive = "logical"), prototype = list(x = numeric(), positive = logical()),

+ contains = "swift")

It is simpler to ignore the first call to setClass() here; for reasons that will become apparent
when discussing the c() function, one needs a virtual class that contains class brob and glub. To
understand virtual classes, see section 15.

The second call to setClass() is more germane. Let’s take this apart, argument by argument.
The first argument, representation, specifies “the slots that the new class should have and/or
other classes that this class extends. Usually a call to the ‘representation’ function”. The helppage
for representation gives a few further details. Thus this argument specifies two ‘slots’: one for
the value and one for the sign. These are specified to be numeric and logical (NB: not Boolean)
respectively.

The second argument, prototype, specifies default data for the slots. This kicks in when
defining a zero-length brob; an example would be extracting x[FALSE] where x is a brob.

The third argument, contains, tells R that class swift (which was specified to be virtual),
has brob as a subclass. We will need this later when we start to deal with glubs, which are also
a subclass of swift.

Let’s use it:

> new("brob", x = 1:10, positive = rep(TRUE, 10))

An object of class "brob"
Slot "x":
[1] 1 2 3 4 5 6 7 8 9 10

Slot "positive":
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Notes:

ˆ Function new() is the only way to create objects of class brob. So, any object of class brob
must have been created with function new(). This is part of what the “formal” tag for S4
means2.

ˆ Function new() requires its arguments to be named, and no partial argument matching is
performed.

ˆ Function new() is not intended for the user. It’s too picky and difficult. To create new
brobs, we need some more friendly functions—as.brob() and brob()—discussed below.

ˆ There is, as yet, no print method, so the form of the object printed to the screen is less than
ideal.

2.1 Validity methods

Now, an optional step is to define a function that tests whether the arguments passed to new()
are acceptable. As it stands, the following code:

> new("brob", x = 1:10, positive = c(TRUE, FALSE, FALSE))

2Compare S3, in which I can say
a <- 1:10; class(a) <- "lilliput"

2



An object of class "brob"
Slot "x":
[1] 1 2 3 4 5 6 7 8 9 10

Slot "positive":
[1] TRUE FALSE FALSE

will not return an error, but is not acceptable because the arguments are different lengths (and
will not recycle neatly).

So, we define a validity method:

> .Brob.valid <- function(object) {

+ len <- length(object@positive)

+ if (len != length(object@x)) {

+ return("length mismatch")

+ }

+ else {

+ return(TRUE)

+ }

+ }

Advice on the form of the validity-testing function—here .Brob.valid()—is given in the help
page for setValidity: “The method should be a function of one object that returns ‘TRUE’ or a
description of the non-validity”. Examples are given in section 7.1.6 of the Green Book.

In this package, I define a whole bunch of functions whose name starts with .Brob.; these are
internal and not intended for the user. They are also not documented.

So now we have a function, .Brob.valid(), that checks whether its argument has slots of the
same length. We need to tell R that this function should be invoked every time a brob is created.
Function setValidity() does this:

> setValidity("brob", .Brob.valid)

Slots:

Name: x positive
Class: numeric logical

Extends: "swift"

Thus, from now on [ie after the above call to setValidity()], when calling new("brob", ...)
the two arguments x and positive must be the same length: recycling is not carried out.

Functions like .Brob.valid() that are user-unfriendly all have names beginning with .Brob.
These functions are there to help the organization of the package and are not intended to be used
by the end-user.

Clever, user-friendly operations such as recycling are carried out in the more user-friendly
functions such as as.brob().

If one were to call new() with arguments of differing lengths, as in

new("brob",x=1:10,positive=TRUE)

then new() would report the error message in function .Brob.valid(), because the positive
argument had length 1 and the x was length 10; and the validity method .Brob.valid() requires
both arguments to be the same length3.

So now new() works, but isn’t exactly user-friendly: often one would want the above call to
recycle the second argument to length 10 to match the first. This deficiency is remedied in the
next section.

3Placing the above call in try() and showing the error explicitly would cause the package to fail R CMD check.

3



3 Basic user-friendly functions to create brobs

The basic, semi user-friendly function for creating brobs is brob():

> "brob" <- function(x = double(), positive) {

+ if (missing(positive)) {

+ positive <- rep(TRUE, length(x))

+ }

+ if (length(positive) == 1) {

+ positive <- rep(positive, length(x))

+ }

+ new("brob", x = as.numeric(x), positive = positive)

+ }

Thus brob(x) will return a number formally equal to ex. Function brob() does helpful things
like assuming the user desires positive numbers; it also carries out recycling:

> brob(1:10, FALSE)

An object of class "brob"
Slot "x":
[1] 1 2 3 4 5 6 7 8 9 10

Slot "positive":
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Note that brob() isn’t exactly terribly user-friendly: it’s confusing. brob(5) returns a number
formally equal to e5, not 5. This is documented in the help page, where the user is encouraged to
use function as.brob() instead.

4 Testing for brobs: an is.brob() function

Function is() will test for an object being a brob:

> is(brob(1:5), "brob")

[1] TRUE

(see help(is) for more details) but a small package like this, with only brobs and glubs to
consider, could benefit from an S3-style function is.brob(). This is easy to define:

> is.brob <- function(x) {

+ is(x, "brob")

+ }

> is.glub <- function(x) {

+ is(x, "glub")

+ }

now the user can just type is.brob(x) to find out whether an object is a brob4.
We also define an is.glub() function similarly. So now we can check for objects being brobs

and glubs.
4This approach is fine for a tiny package like Brobdingnag, with only two or three classes. However, in the context

of a more complicated package such as Matrix, which uses dozens of different classes in a complicated hierarchical
structure, one might prefer to type is(x,"dpoMatrix-class") rather than define a plethora of functions along the
lines of is.dpoMatrix-class().

4



5 Coercion: an as.brob() function

Next, some ways to coerce objects to class brob:

> "as.brob" <- function(x) {

+ if (is.brob(x)) {

+ return(x)

+ }

+ else if (is.complex(x)) {

+ warning("imaginary parts discarded")

+ return(Recall(Re(x)))

+ }

+ else if (is.glub(x)) {

+ warning("imaginary parts discarded")

+ return(Re(x))

+ }

+ else {

+ return(brob(log(abs(x)), x >= 0))

+ }

+ }

So now we can coerce objects of various classes to brobs5. The only way to create a brob is to
use new(), and the only function that calls this is brob(). And as.brob() calls this.

Note the user-friendliness of as.brob(). It takes numerics, brobs, and glubs (which give a
warning).

Check as.brob():

> as.brob(1:10)

An object of class "brob"
Slot "x":
[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 1.7917595 1.9459101
[8] 2.0794415 2.1972246 2.3025851

Slot "positive":
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

6 Coercion: an as.numeric() function

Now we need some methods to coerce brobs to numeric. This is a two-stage process.

> setAs("brob", "numeric", function(from) {

+ out <- exp(from@x)

+ out[!from@positive] <- -out[!from@positive]

+ return(out)

+ })

This call to setAs() makes as(x,"numeric") carry out the function passed as the third
argument when given a brob.

5The recommended way, appropriate for a complicated package such as Matrix, would be to execute
setAs("numeric", "brob", .Brob.numeric_to_brob) and setAs("complex", "brob", .Brob.complex_to_brob).
Then, if x is numeric, as(x,"brob") would return the appropriate brob via .Brob.numeric_to_brob(); we could
then make as.brob() a generic with setGeneric() and define methods for it. Doing it this way would save function
as.brob() having to test for its argument being a brob [carried out in the first few lines of as.brob()] because as()

has such a test built in, implicitly.

5



But in this package, the user isn’t supposed to type as(x,"numeric"): the user is supposed to
type as.numeric(x)6. To accomplish this, we have to tell R that function as.numeric() should
execute as(x,"numeric") when given a brob. This is done by calling function setMethod():

> setMethod("as.numeric", signature(x = "brob"), function(x) {

+ as(x, "numeric")

+ })

We similarly need to make as.complex() work for brobs:

> setAs("brob", "complex", function(from) {

+ return(as.numeric(from) + (0+0i))

+ })

> setMethod("as.complex", signature(x = "brob"), function(x) {

+ as(x, "complex")

+ })

We’ll need similar methods for glubs too.
Better check:

> x <- as.brob(1:4)

> x

An object of class "brob"
Slot "x":
[1] 0.0000000 0.6931472 1.0986123 1.3862944

Slot "positive":
[1] TRUE TRUE TRUE TRUE

> as.numeric(x)

[1] 1 2 3 4

So that works.

7 Print methods

Print methods are not strictly necessary, but make using the package much easier. First, a helper
function:

> .Brob.print <- function(x, digits = 5) {

+ noquote(paste(c("-", "+")[1 + x@positive], "exp(", signif(x@x,

+ digits), ")", sep = ""))

+ }

Then an S3 method:

> print.brob <- function(x, ...) {

+ jj <- .Brob.print(x, ...)

+ print(jj)

+ return(invisible(jj))

+ }

6Users can be expected to be familiar with functions such as as.numeric() and as.complex(), which is why
the Brobdingnag package recommends this form. However, this might not be appropriate for a more complicated
package such as Matrix because, to quote Martin Maechler, “it seems very ugly to define more than very few
as.FOO() methods, and very natural to work with as(*, "FOO") [constructions]”. Of course, there’s nothing to stop
a user typing as(x,"numeric") if they wish.

6



And finally a call to setMethod():

> setMethod("show", "brob", function(object) {

+ print.brob(object)

+ })

This two-stage methodology is recommended in the Venables and Ripley. The .Brob.print()
function does the hard work. Example of it in use:

> as.brob(1:4)

[1] +exp(0) +exp(0.69315) +exp(1.0986) +exp(1.3863)

See how the brob object is printed out nicely, and with no special effort required of the user.

8 Get and Set methods

To be anal retentive about things, one should define C++ style accessor functions as follows:

> setGeneric("getX", function(x) {

+ standardGeneric("getX")

+ })

> setGeneric("getP", function(x) {

+ standardGeneric("getP")

+ })

> setMethod("getX", "brob", function(x) {

+ x@x

+ })

> setMethod("getP", "brob", function(x) {

+ x@positive

+ })

but in practice I just use @ to access the slots. These are just here for good form’s sake.

9 Length

Now a length:

> setMethod("length", "brob", function(x) {

+ length(x@x)

+ })

10 Extracting elements of a vector

Next thing is to define some methods for extraction. This is done with setMethod() for extraction,
and setReplaceMethod() for replacement.

> setMethod("[", "brob", function(x, i, j, drop) {

+ if (!missing(j)) {

+ warning("second argument to extractor function ignored")

+ }

+ brob(x@x[i], x@positive[i])

+ })

7



See how the third argument to setMethod() is a function whose arguments are the same as
those to "["() . Argument j must be there otherwise one gets a signature error. I’ve put in a
warning if a second argument that might be interpreted as j is given.

Now a method for replacement. This is a call to setReplaceMethod():

> setReplaceMethod("[", signature(x = "brob"), function(x, i, j,

+ value) {

+ if (!missing(j)) {

+ warning("second argument to extractor function ignored")

+ }

+ jj.x <- x@x

+ jj.pos <- x@positive

+ if (is.brob(value)) {

+ jj.x[i] <- value@x

+ jj.pos[i] <- value@positive

+ return(brob(x = jj.x, positive = jj.pos))

+ }

+ else {

+ x[i] <- as.brob(value)

+ return(x)

+ }

+ })

See how the replacement function tests for the replacement value being a brob and acts ac-
cordingly.

11 Concatenation function cbrob()

It is not possible to make c() behave as expected for brobs7 (that is, if any of its arguments are
brobs, to coerce all its arguments to brobs and then concatenate).

However, it is possible to define a function cbrob() that does the job. This has to be done in
several stages.

First we define another user-unfriendly helper function .Brob.cPair() which takes two argu-
ments, coerces them to brobs, and concatenates them:

> .Brob.cPair <- function(x, y) {

+ x <- as.brob(x)

+ y <- as.brob(y)

+ brob(c(x@x, y@x), c(x@positive, y@positive))

+ }

This is just c() for the two slots separately. The idea is that function .Brob.cPair() takes
two arguments; both are coerced to brobs and it returns the concatenated vector of brobs.

Now, we need to set up a (user-unfriendly) generic function .cPair():

> setGeneric(".cPair", function(x, y) {

+ standardGeneric(".cPair")

+ })

Function .cPair() is not substantive (sic): it exists purely in order to be a generic function
that dispatches to .Brob.cPair().

Now we use setMethod() to organize the dispatch:
7The ideas in this section are entirely due to John Chambers, who kindly replied to a question of mine on the

R-devel email list

8



> setMethod(".cPair", c("brob", "brob"), function(x, y) {

+ .Brob.cPair(x, y)

+ })

> setMethod(".cPair", c("brob", "ANY"), function(x, y) {

+ .Brob.cPair(x, as.brob(y))

+ })

> setMethod(".cPair", c("ANY", "brob"), function(x, y) {

+ .Brob.cPair(as.brob(x), y)

+ })

> setMethod(".cPair", c("ANY", "ANY"), function(x, y) {

+ c(x, y)

+ })

The four calls are necessary for the four different signatures that might be encountered. Note
the ANY class in the second, third, and fourth call. Thus if someone wants to write a new class of
object (a lugg, say), and wants to concatenate luggs with a brob, this will work provided that they
use setAs() to make as.brob() coerce correctly for lugg objects. The method used here allows
this to be done without any changes to the Brobdingnag package.

The final stage is the definition of cbrob(), a user-friendly wrapper for the above stuff:

> "cbrob" <- function(x, ...) {

+ if (nargs() < 3)

+ .cPair(x, ...)

+ else .cPair(x, Recall(...))

+ }

Note the recursive definition. If cbrob() is called with any set of arguments that include a
brob anywhere, this will result in the whole lot being coerced to brobs [by .Brob.cPair()]. Which
is what we want (although glubs will require more work).

Just test this:

> a <- 1:3

> b <- as.brob(1e+100)

> cbrob(a, a, b, a)

[1] +exp(0) +exp(0.69315) +exp(1.0986) +exp(0) +exp(0.69315)
[6] +exp(1.0986) +exp(230.26) +exp(0) +exp(0.69315) +exp(1.0986)

So it worked: everything was coerced to a brob because of the single object of class brob in
the call.

12 Maths

The math group generic functions are set with function setMethod(). But, before this can be
called, function sqrt() needs a specific brob method:

> setMethod("sqrt", "brob", function(x) {

+ brob(ifelse(x@positive, x@x/2, NaN), TRUE)

+ })

Just check that:

> sqrt(brob(4))

[1] +exp(2)

9



With these out of the way we can use setMethod() to define the appropriate functions in the
math group generic:

> setMethod("Math", "brob", function(x) {

+ switch(.Generic, abs = brob(x@x), log = {

+ out <- x@x

+ out[!x@positive] <- NaN

+ out

+ }, exp = brob(x), cosh = {

+ (brob(x) + brob(-x))/2

+ }, sinh = {

+ (brob(x) - brob(-x))/2

+ }, acos = , acosh = , asin = , asinh = , atan = , atanh = ,

+ cos = , sin = , tan = , tanh = , trunc = callGeneric(as.numeric(x)),

+ lgamma = , cumsum = , gamma = , ceiling = , floor = as.brob(callGeneric(as.numeric(x))),

+ stop(paste(.Generic, "not allowed on Brobdingnagian numbers")))

+ })

See how the third argument to setMethod() is a function. This function has access to
.Generic, in addition to x and uses it to decide which operation to perform.

See how functions acos() to trunc() just drop through to callGeneric(as.numeric(x)).
See also the method for log(), which uses facts about brobs not known to S4.

Just a quick check:

> sin(brob(4))

[1] -0.928768

So that works.

13 Operations

Now we need to make sure that brob(1) + brob(3) works: the operations +, -, *, / must work
as expected. This is hard.

First step: define some user-unfriendly functions that carry out the operations. For example,
function .Brob.negative() simply returns the negative of a brob. These functions are not for
the user.

> .Brob.negative <- function(e1) {

+ brob(e1@x, !e1@positive)

+ }

> .Brob.ds <- function(e1, e2) {

+ xor(e1@positive, e2@positive)

+ }

> .Brob.add <- function(e1, e2) {

+ e1 <- as.brob(e1)

+ e2 <- as.brob(e2)

+ jj <- rbind(e1@x, e2@x)

+ x1 <- jj[1, ]

+ x2 <- jj[2, ]

+ out.x <- double(length(x1))

+ jj <- rbind(e1@positive, e2@positive)

+ p1 <- jj[1, ]

+ p2 <- jj[2, ]

10



+ out.pos <- p1

+ ds <- .Brob.ds(e1, e2)

+ ss <- !ds

+ out.x[ss] <- pmax(x1[ss], x2[ss]) + log1p(+exp(-abs(x1[ss] -

+ x2[ss])))

+ out.x[ds] <- pmax(x1[ds], x2[ds]) + log1p(-exp(-abs(x1[ds] -

+ x2[ds])))

+ out.x[(x1 == -Inf) & (x2 == -Inf)] <- -Inf

+ out.pos <- p1

+ out.pos[ds] <- xor((x1[ds] > x2[ds]), (!p1[ds]))

+ return(brob(out.x, out.pos))

+ }

> .Brob.mult <- function(e1, e2) {

+ e1 <- as.brob(e1)

+ e2 <- as.brob(e2)

+ return(brob(e1@x + e2@x, !.Brob.ds(e1, e2)))

+ }

> .Brob.power <- function(e1, e2) {

+ stopifnot(is.brob(e1) | is.brob(e2))

+ if (is.brob(e2)) {

+ return(brob(log(e1) * brob(e2@x), TRUE))

+ }

+ else {

+ s <- as.integer(2 * e1@positive - 1)

+ return(brob(e1@x * as.brob(e2), (s^as.numeric(e2)) >

+ 0))

+ }

+ }

> .Brob.inverse <- function(b) {

+ brob(-b@x, b@positive)

+ }

Note the complexity of .Brob.add(). This is hard because logs are good at multiplying but
bad at adding [ss and ds mean “same sign” and “different sign” respectively].

The first step is to make sure that the unary operators + and - work. We do this by a call to
setMethod():

> setMethod("Arith", signature(e1 = "brob", e2 = "missing"), function(e1,

+ e2) {

+ switch(.Generic, "+" = e1, "-" = .Brob.negative(e1), stop(paste("Unary operator",

+ .Generic, "not allowed on Brobdingnagian numbers")))

+ })

Note the second argument is signature(e1 = "brob", e2="missing"): this effectively re-
stricts the scope to unary operators. The switch() statement only allows the + and the -.

Check:

> -brob(5)

[1] -exp(5)

So that works.
Next step, another user-unfriendly helper function that does the dirty work:

> .Brob.arith <- function(e1, e2) {

+ switch(.Generic, "+" = .Brob.add(e1, e2), "-" = .Brob.add(e1,

11



+ .Brob.negative(as.brob(e2))), "*" = .Brob.mult(e1, e2),

+ "/" = .Brob.mult(e1, .Brob.inverse(as.brob(e2))), "^" = .Brob.power(e1,

+ e2), stop(paste("binary operator \"", .Generic, "\" not defined for Brobdingnagian numbers")))

+ }

And now we can call setMethod():

> setMethod("Arith", signature(e1 = "brob", e2 = "ANY"), .Brob.arith)

> setMethod("Arith", signature(e1 = "ANY", e2 = "brob"), .Brob.arith)

> setMethod("Arith", signature(e1 = "brob", e2 = "brob"), .Brob.arith)

Better check it:

> 1e+100 + as.brob(10)^100

[1] +exp(230.95)

14 Comparison

This is pretty much the same as the others. First, some user-unfriendly helper functions:

> .Brob.equal <- function(e1, e2) {

+ (e1@x == e2@x) & (e1@positive == e2@positive)

+ }

> .Brob.greater <- function(e1, e2) {

+ jj.x <- rbind(e1@x, e2@x)

+ jj.p <- rbind(e1@positive, e2@positive)

+ ds <- .Brob.ds(e1, e2)

+ ss <- !ds

+ greater <- logical(length(ss))

+ greater[ds] <- jj.p[1, ds]

+ greater[ss] <- jj.p[1, ss] & (jj.x[1, ss] > jj.x[2, ss])

+ return(greater)

+ }

These are the fundamental ones. We can now define another all-encompassing user-unfriendly
function:

> ".Brob.compare" <- function(e1, e2) {

+ e1 <- as.brob(e1)

+ e2 <- as.brob(e2)

+ switch(.Generic, "==" = .Brob.equal(e1, e2), "!=" = !.Brob.equal(e1,

+ e2), ">" = .Brob.greater(e1, e2), "<" = !.Brob.greater(e1,

+ e2) & !.Brob.equal(e1, e2), ">=" = .Brob.greater(e1,

+ e2) | .Brob.equal(e1, e2), "<=" = !.Brob.greater(e1,

+ e2) | .Brob.equal(e1, e2), stop(paste(.Generic, "not supported for Brobdingnagian numbers")))

+ }

See how this function coerces both arguments to brobs. Now the call to setMethod():

> setMethod("Compare", signature(e1 = "brob", e2 = "ANY"), .Brob.compare)

> setMethod("Compare", signature(e1 = "ANY", e2 = "brob"), .Brob.compare)

> setMethod("Compare", signature(e1 = "brob", e2 = "brob"), .Brob.compare)

Better check:

12



> as.brob(10) < as.brob(11)

[1] TRUE

> as.brob(10) <= as.brob(10)

[1] TRUE

So that works.

15 Logic

(The material in this section works in R-2.4.1, but not R-2.4.0).
First a helper function:

> .Brob.logic <- function(e1, e2) {

+ stop("No logic currently implemented for Brobdingnagian numbers")

+ }

Now the calls to setMethod():

> setMethod("Logic", signature(e1 = "swift", e2 = "ANY"), .Brob.logic)

> setMethod("Logic", signature(e1 = "ANY", e2 = "swift"), .Brob.logic)

> setMethod("Logic", signature(e1 = "swift", e2 = "swift"), .Brob.logic)

Note that the signatures specify swift objects, so that glubs will be handled correctly too in
one fell swoop. Note the third call to setMethod(): without this, a call to Logic() with signature
c("swift","swift") would be ambiguous as it might be interpreted as c("swift","ANY") or
c("ANY","swift").

Here, class swift extends brob and glub; so both brobs and glubs are swift objects. But no
object is a “pure” swift; it’s either a brob or a glub. This is useful here because I might dream
up some new class of objects that are “like” brobs in some way (for example, a class of objects
whose elements are quaternions with Brobdingnagian components) and it would be nice to specify
behaviour that is generic to brobs and glubs and the new class of objects too.

16 Miscellaneous generics

We now have to tell R that certain functions are to be considered generic. The functions are
max(), min(), range(), prod(), and sum(). The help page for (eg) max() specifies that the
arguments must be numeric, and brobs aren’t numeric.

In versions of R prior to 2.6-0 (I think), log() needs to be made a generic with setGeneric().
But, in versions 2.6-0 and above, all the group generics (including log) are primitive, which means
that the generic function is implicit and cannot be changed. This applies to the other group
generics too (max, min, prod, range sum). So to work with both types of R, one needs to check
whether or not log (or max or whatever) is generic before calling setGeneric().

> if (!isGeneric("log")) {

+ setGeneric("log", group = "Math")

+ }

> if (!isGeneric("sum")) {

+ setGeneric("max", function(x, ..., na.rm = FALSE) {

+ standardGeneric("max")

+ }, useAsDefault = function(x, ..., na.rm = FALSE) {

+ base::max(x, ..., na.rm = na.rm)

13



+ }, group = "Summary")

+ setGeneric("min", function(x, ..., na.rm = FALSE) {

+ standardGeneric("min")

+ }, useAsDefault = function(x, ..., na.rm = FALSE) {

+ base::min(x, ..., na.rm = na.rm)

+ }, group = "Summary")

+ setGeneric("range", function(x, ..., na.rm = FALSE) {

+ standardGeneric("range")

+ }, useAsDefault = function(x, ..., na.rm = FALSE) {

+ base::range(x, ..., na.rm = na.rm)

+ }, group = "Summary")

+ setGeneric("prod", function(x, ..., na.rm = FALSE) {

+ standardGeneric("prod")

+ }, useAsDefault = function(x, ..., na.rm = FALSE) {

+ base::prod(x, ..., na.rm = na.rm)

+ }, group = "Summary")

+ setGeneric("sum", function(x, ..., na.rm = FALSE) {

+ standardGeneric("sum")

+ }, useAsDefault = function(x, ..., na.rm = FALSE) {

+ base::sum(x, ..., na.rm = na.rm)

+ }, group = "Summary")

+ }

Now we need some more user-unfriendly helper functions:

> .Brob.max <- function(x, ..., na.rm = FALSE) {

+ p <- x@positive

+ val <- x@x

+ if (any(p)) {

+ return(brob(max(val[p])))

+ }

+ else {

+ return(brob(min(val), FALSE))

+ }

+ }

> .Brob.prod <- function(x) {

+ p <- x@positive

+ val <- x@x

+ return(brob(sum(val), (sum(p)%%2) == 0))

+ }

> .Brob.sum <- function(x) {

+ .Brob.sum.allpositive(x[x > 0]) - .Brob.sum.allpositive(-x[x <

+ 0])

+ }

> .Brob.sum.allpositive <- function(x) {

+ if (length(x) < 1) {

+ return(as.brob(0))

+ }

+ val <- x@x

+ p <- x@positive

+ mv <- max(val)

+ return(brob(mv + log1p(sum(exp(val[-which.max(val)] - mv))),

+ TRUE))

+ }

14



Note the final function that sums its arguments, which are all assumed to be positive, in
an intelligent, accurate, and efficient manner. No checking is done (this is not a user-friendly
function!).

We can define .Brob.sum() in terms of this: return the difference between the sum of the
positive arguments and and the sum of minus the negative arguments.

> setMethod("Summary", "brob", function(x, ..., na.rm = FALSE) {

+ switch(.Generic, max = .Brob.max(x, ..., na.rm = na.rm),

+ min = -.Brob.max(-x, ..., na.rm = na.rm), range = cbrob(min(x,

+ na.rm = na.rm), max(x, na.rm = na.rm)), prod = .Brob.prod(x),

+ sum = .Brob.sum(x), stop(paste(.Generic, "not allowed on Brobdingnagian numbers")))

+ })

Better check:

> sum(as.brob(1:100)) - 5050

[1] -exp(-Inf)

showing acceptable accuracy.

17 Examples of the package in use

We can try to evaluate a factorial. Stirling’s approximation is n! ∼
√

2πn e−nnn:

> stirling <- function(x) {

+ sqrt(2 * pi * x) * exp(-x) * x^x

+ }

And this should work seamlessly with Brobs:

> stirling(100)

[1] 9.324848e+157

> stirling(as.brob(100))

[1] +exp(363.74)

And are they the same?

> as.numeric(stirling(100)/stirling(as.brob(100)))

[1] 1

. . . pretty near. But the great advantage of Brobdingnagian numbers is that they can handle
numbers larger than the IEEE limit:

> stirling(1000)

[1] NaN

> stirling(as.brob(1000))

[1] +exp(5912.1)

and this is accurate to about 12 sig figs, which is accurate enough for many purposes. The number
of sig figs decreases with progressively larger numbers, essentially because increasing amounts of
floating point accuracy is gobbled up by storing the exponent of a large number, and less is left
for the mantissa.

15



Acknowledgments

I gratefully acknowledge the help given to me by many members of the R-help and R-devel lists,
especially Martin Maechler, Brian Ripley, and John Chambers.

16



Robin K. S. Hankin
National Oceanography Centre, Southampton
European Way
Southampton SO14 3ZH
United Kingdom
E-mail: r.hankin@noc.soton.ac.uk URL: http://www.noc.soton.ac.uk

17


