
Distributed Storage and Lists

Stefan Theußl

December 14, 2011

Abstract

Distributed lists are list-type objects where elements (i.e., arbitrary
R objects) are stored in serialized form on a distributed storage. The
latter is often used in high performance computing environments to pro-
cess large quantities of data. First proposed by Google, data located in
such an environment is most efficiently processed using the MapReduce
programming model. The R package DSL provides an environment for
creating and handling of distributed lists. The package allows to make
use of different types of storage backends, in particular the Hadoop Dis-
tributed File System. Furthermore, it offers functionality to operate on
such lists efficiently using the MapReduce programming model.

1 Introduction

Distributed lists are list-type objects using a distributed storage to store their
elements. Typically, distributed lists are advantageous in environments where
large quantities of data need to be processed at once since all data is stored out
of the main memory which is often limited. Usually, a “distributed file system”
(DFS) can serve as a container to hold the data on a distributed storage. Such
a container can hold arbitrary objects by serializing them to files.

A recurrent function when computing on lists in R (R Development Core
Team, 2011) is lapply() and variants thereof. Conceptually, this is similar
to a “Map” function from functional programming where a given (R) function
is applied to each element of a vector (or in this case a list). Furthermore,
another typical type of function often applied to lists is a function which com-
bines contained elements. In functional programming this is called “Reduce”
but variants thereof also exists in other areas (e.g., in the MPI standard, see
http://www.mpi-forum.org/docs/mpi22-report/node103.htm#Node103).

First proposed by Google the Map and Reduce functions are often suffi-
cient to express many tasks for analyzing large data sets. They implement a
framework which follows closely the MapReduce programming model (see Dean
and Ghemawat, 2004, and http://en.wikipedia.org/wiki/MapReduce). Note
however, that as pointed out e.g., in Lämmel (2007) Map and Reduce operations
in the MapReduce programming model do not necessarily follow the definition
from functional programming. It rather aims to support computation (i.e., map

1

and reduction operations) on large data sets on clusters of workstations in a dis-
tributed manner. Provided each mapping operation is independent of the others,
all maps can be performed in parallel. Hadoop (http://hadoop.apache.org/)
is an open source variant of this framework.

Package DSL is an extension package for R for creating and handling list-
type objects whose elements are stored using a distributed storage backend.
For operating on such distributed lists efficiently the package offers methods
and functions from the MapReduce programming model. In particular, DSL al-
lows to make use of the Hadoop Distributed File System (HDFS, see Borthakur,
2010) and Hadoop Streaming (MapReduce) for storing and distributed process-
ing of data. In Section 2, we describe the underlying data structures, and the
MapReduce functionality. Examples are discussed in Section 3. Section 4 con-
cludes the paper.

2 Design and Implementation

2.1 Data Structures

2.1.1 Distributed Storage

The S3 class "DStorage" defines a virtual storage where files are kept on a
file system which possibly spans over several workstations. Data is distributed
automatically among these nodes when using such a file system. Objects of
class "DStorage" “know” how to use the corresponding file system by supplied
accessor and modifier methods. The following file systems are supported to be
used as distributed storage (DS):

"LFS": the local file system. This type uses functions and methods from the
packages base and utils delivered with the R distribution to handle files.

"HDFS": the Hadoop distributed file system. Functions and Methods from pack-
age hive (Theußl and Feinerer, 2011) are used to interact with the HDFS.

Essentially, such a class needs methods for reading and writing to the dis-
tributed storage (DS). Note however that files are typically organized according
to a published standard. Thus, one should not write or modify arbitrary files or
directories on such a file system. To account for this, class "DStorage" specifies
a directory base_dir which can be modified freely but avoids that read/write
operations can escape from that directory. The following (DSL-internal) meth-
ods are available for objects of class "DStorage".

� DS_dir_create()

� DS_get()

� DS_list_directory()

� DS_put()

2

� DS_read_lines()

� DS_unlink()

� DS_write_lines()

Depending on the type of storage suitable functions from different pack-
ages will be used to interact with the corresponding file system. Whereas
DS_dir_create(), DS_list_directory(), DS_read_lines(), DS_unlink(),
and DS_write_lines() mimic the behavior of corresponding functions of pack-
age base (dir.create(), dir(), readLines, unlink(), and writeLines(), re-
spectively), functions DS_get() and DS_put() can be used to read/write R
objects from/to disk.

The main reason of having such a virtual storage class in R is that it allows
for easy extension of memory space in the R working environment. E.g., this
storage can be used to store arbitrary (serialized) R objects. These objects are
only loaded to the current working environment (i.e., into RAM) when they
are needed for computation. However, it is in most cases not a good idea to
place many small files on such a file system due to efficiency reasons. Putting
several serialized R objects into files of a certain maximum size (e.g., line by
line as key/value pairs) circumvents this issue. Indeed, frameworks like Hadoop
benefit from such a setup (see Section Data Organization in Borthakur, 2010).
Thus, a constructor function must take the following arguments:

type: the file system type,

base_dir: the directory under which chunks of serialized objects are to be
stored,

chunksize: the maximal size of a single chunk.

E.g., a DS of type "LFS" using the system-wide or a user-defined temporary
directory as the base directory (base_dir) and a chunk size of 10MB can be
instanciated using the function DStorage():

> ds <- DStorage(type = "LFS", base_dir = tempdir(),

+ chunksize = 10 * 1024^2)

Further methods to class "DStorage" are a corresponding print() and a
summary() method.

> ds

DStorage.

- Type: LFS

- Base directory on storage: /tmp/Rtmp5vb4Th

- Current chunk size [bytes]: 10485760

> summary(ds)

3

DStorage.

- Type: LFS

- Base directory on storage: /tmp/Rtmp5vb4Th

- Current chunk size [bytes]: 10485760

- Registered methods:

dir_create, fetch_last_line, get, list_directory

put, read_lines, unlink, write_lines

2.1.2 Distributed Lists

Distributed lists are defined in R by the S3 class "DList". Objects of this class
behave similar to standard R lists but use a distributed storage of class "DStor-
age" to store their elements. Distributed lists can be easily constructed using
the function DList() or can be coerced using the generic function as.DList().
Available methods support coercion of R lists and character vectors representing
paths to data repositories as well as coercion of "DList" objects to lists.

> dl <- DList(letters = letters, numbers = 0:9)

> l <- as.list(letters)

> names(l) <- LETTERS

> dl2 <- as.DList(l)

> identical(as.list(dl2), l)

[1] TRUE

> dl3 <- as.DList(system.file("examples", package = "DSL"))

Note that the above example uses a default storage type, namely "LFS" using
a temporary directory generated with tempdir() as the base directory. In order
to set a user defined storage the DStorage argument to the DList() constructor
is used.

> dl <- DList(letters = letters, numbers = 0:9, DStorage = ds)

Conceptually we want a distributed list to support a set of intuitive oper-
ations, like accessing each element (stored somewhere on a DFS) in a direct
way, displaying the distributed list and each individual element, obtaining in-
formation about basic properties (e.g., the length of the list), or applying some
operation on a range of elements. These requirements are formalized via a set
of interfaces which must be implemented by the "DList" class:

Display Since elements of the list are not directly available the print and
summary methods should provide other useful information about the dis-
tributed list (like the number of list elements).

Length The length() function must return the number of list elements.

Names Named list must be supported.

4

Subset The [[operator must be implemented so that individual elements of
the distributed list can be retrieved.

MapReduce Map and Reduce operations as well as variants of lapply (which
are conceptually similar to Map) can be used to express most of the com-
putation on "DList" objects.

> dl

A DList with 2 elements

> summary(dl)

Length Class Mode

letters 26 -none- character

numbers 10 -none- numeric

> names(dl2)

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N"

[15] "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

> length(dl3)

[1] 2

> dl3[[1]]

[1] "/home/theussl/lib/R/2.14/DSL/examples/file01"

MapReduce is discussed in more detail in the next section.

2.2 Methods on Distributed Lists

The MapReduce programming model as defined by Dean and Ghemawat (2004)
is as follows. The computation takes a set of input key/value pairs, and pro-
duces a set of output key/value pairs. The user expresses the computation as
two functions: Map and Reduce. The Map function takes an input pair and
produces a set of intermediate key/value pairs. The Reduce function accepts
an intermediate key and a set of values for that key (possibly grouped by the
MapReduce library). It merges these values together to form a possibly smaller
set of values. Typically, just zero or one output value is produced per reduce
invocation. Furthermore, data is usually stored on a (distributed) file system
which is recognized by the MapReduce library. This allows such a framework
to handle lists of values (here objects of class "DList") that are too large to fit
in main memory (i.e., RAM).

5

DGather: this collective operation is similar to an MPI GATHER (http://
www.mpi-forum.org/docs/mpi22-report/node95.htm#Node95). How-
ever, instead of collecting results from processes running in parallel,
DGather() collects the contents of chunks holding the elements of a
"DList". By default a named list of length the number of chunks is to
be returned. Its elements are character vectors of values from key/value
pairs stored in chunks read line by line from the corresponding chunk.
Alternatively, DGather() can be used to retrieve the keys only.

DLapply: is an (l)apply-type function which is used to iteratively apply a func-
tion to a set of input values. In case of DLapply() input values are el-
ements of "DList" objects (i.e., the value of a key/value pair). A dis-
tributed list of the same length is to be returned.

DMap: is similar to DLapply() above but always takes both the key and the value
from a key/value pair as input. Thus, keys can also be modified. Indeed,
the returned object can differ in length from the original as opposed to
when using DLapply.

DReduce: this collective operation takes a set of (intermediate) key/value pairs
and combines values with the same associated key using a given directive
(the reduce function). By default values are concatinated using the c()

operator.

> dl <- DList(line1 = "This is the first line.",

+ line2 = "Now, the second line.")

> res <- DLapply(dl, function(x) unlist(strsplit(x, " ")))

> as.list(res)

$line1

[1] "This" "is" "the" "first" "line."

$line2

[1] "Now," "the" "second" "line."

> foo <- function(keypair)

+ list(key = paste("next_", keypair$key, sep = ""), value =

+ gsub("first", "mapped", keypair$value))

> dlm <- DMap(x = dl, MAP = foo)

> ## retrieve keys

> unlist(DGather(dlm, keys = TRUE, names = FALSE))

[1] "next_line1" "next_line2"

> ## retrieve values

> as.list(dlm)

6

$line1

[1] "This is the mapped line."

$line2

[1] "Now, the second line."

Further methods on "DList" objects are prefixed with DL_. Currently, only
methods for interacting with the underlying "DStorage" are available.

DL_storage: accesses the storage of "DList" objects. Returns objects of class
"DStorage".

DL_storage<-: replaces the storage in "DList" objects. Data is automatically
transferred to the new storage.

> l <- list(line1 = "This is the first line.",

+ line2 = "Now, the second line.")

> dl <- as.DList(l)

> DL_storage(dl)

DStorage.

- Type: LFS

- Base directory on storage: /tmp/Rtmp5vb4Th

- Current chunk size [bytes]: 10485760

> ds <- DStorage("HDFS", tempdir())

> DL_storage(dl) <- ds

> as.list(dl)

$line1

[1] "This is the first line."

$line2

[1] "Now, the second line."

3 Examples

3.1 Word Count

This examples demonstrates how Dmap() and DReduce() can be used to count
words based on text files located somewhere on a given file system. The following
two files contained in the example directory of the package will be used.

> ## simple wordcount based on two files:

> dir(system.file("examples", package = "DSL"))

[1] "file01" "file02"

7

We use a temporary directory as the base directory of a new "DStorage" object.
By setting the maximum chunk size to 1 Byte we force the name of each file
being placed in a separate chunk. Then we store the absolute path to the text
files as elements of a "DList" object.

> ## first force 1 chunk per file (set max chunk size to 1 byte):

> ds <- DStorage("LFS", tempdir(), chunksize = 1L)

> ## make "DList", i.e., read file contents and store in chunks

> dl <- as.DList(system.file("examples", package = "DSL"),

+ DStorage = ds)

Data is read into chunks (one per original file) by using a simple call of DMap()
on the distributed list.

> ## read files

> dl <- DMap(dl, function(keypair){

+ list(key = keypair$key,

+ value = tryCatch(readLines(keypair$value),

+ error = function(x) NA))

+ })

The contents of the files is split into words using the following call.

> ## split into terms

> splitwords <- function(keypair){

+ keys <- unlist(strsplit(keypair$value, " "))

+ mapply(function(key, value) list(key = key, value = value),

+ keys, rep(1L, length(keys)),

+ SIMPLIFY = FALSE, USE.NAMES = FALSE)

+ }

> res <- DMap(dl, splitwords)

> as.list(res)

$Hello

[1] 1

$World

[1] 1

$Bye

[1] 1

$World

[1] 1

$Hello

[1] 1

8

$DSL

[1] 1

$Bye

[1] 1

$DSL

[1] 1

Eventually, collected intermediate results are summed.

> ## now aggregate by term

> res <- DReduce(res, sum)

> as.list(res)

$Hello

[1] 2

$World

[1] 2

$DSL

[1] 2

$Bye

[1] 2

3.2 Temperature

TODO: Example from Hadoop book. around 30 GB of raw data.

4 Conclusion and Outlook

Package DSL was designed to allow for handling of large data sets not fitting into
main memory. The main data structure is the class "DList" which is a list-type
object storing its elements on a virtual storage of class "DStorage". The package
currently provides basic data structures for creating and handling "DList" and
"DStorage" objects, and facilities for computing on these, including map and
reduction methods based on the MapReduce paradigm.

Possible future extensions include:

� "DStorage" interface to NoSQL database systems,

� better integration of the parallel package. Currently only the multicore
version of lapply is used for "LFS" type "DStorage".

9

Acknowledgments

We are grateful to Christian Buchta for providing efficient C code for collecting
partial results in DReduce().

References

D. Borthakur. HDFS architecture. Document on Hadoop Wiki, 2010. URL http:

//hadoop.apache.org/common/docs/r0.20.2/hdfs_design.html.

J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters.
In Proceedings of the Sixth Symposium on Operating System Design and Implemen-
tation, pages 137–150, 2004. URL http://labs.google.com/papers/mapreduce.

html.

R. Lämmel. Google’s MapReduce programming model—revisited. Science of Com-
puter Programming, 68(3):208–237, 2007.

R Development Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2011. URL http://www.

R-project.org. ISBN 3-900051-07-0.

S. Theußl and I. Feinerer. hive: Hadoop InteractiVE, 2011. URL http://CRAN.

R-project.org/package=hive. R package version 0.1-13.

10

