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Abstract

Data depth concept offers a variety of powerful and user friendly tools for robust explo-
ration and inference for multivariate socio-economic phenomena. The offered techniques
may be successfully used in cases of lack of our knowledge on parametric models generating
data due to their nonparametric nature. This paper presents the R package DepthProc,
which is available under GPL-2 licence on CRAN and R-forge servers for Windows, Linux
and OS X platform. The package consist of among others successful implementations of
several data depth techniques involving multivariate quantile-quantile plots, multivariate
scatter estimators, multivariate Wilcoxon tests, robust regressions. In order to show the
package capabilities, real dataset concerning United Nations Fourth Millennium Goal is
used.
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1. Introduction

The modern Economics crucially depend on advances in applications of multivariate statistics.
We mean here for example theory and practice of the portfolio optimisation, a practice of
credit scoring, evaluation of results of government aid programs, creation of a taxation system
or assessment of attractiveness of candidates on a labour market.

Unfortunately, in the Economics we very often cannot use powerful tools of the classical
multivariate statistics basing on the mean vector, the covariance matrix and the normality
assumptions. In a great part, the economic phenomena departure from normality. Usually
our knowledge of the economic laws is not sufficient for a parametric modelling. Moreover,
the today Economics significantly differs from a tomorrow Economics due to technological
development and/or an appearance of new social phenomena. Additionally the data sets
under our consideration consist of outliers and or inliers of various kind and/or we have to
cope with a missing data phenomenon.

Robust statistics aims at identifying a tendency represented by an influential majority of data
and detecting observations departing from that tendency (see Maronna, Martin, and Yohai
(2006)). Nonparametric and robust statistical procedures are especially useful in the Eco-
nomics where an activity of influential majority of agents determines behaviour of a market,
closeness to a crash etc. From a conceptual point of view, robust statistics is closely tied
with well known economic ideas like Pareto’s effectiveness or Nash equilibrium (see Mizera
(2002)).
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The main aim of this paper is to present an R package (R Core Team (2013)) DepthProc

consisting of successful implementations of a selection of multivariate nonparametric and
robust procedures belonging to so called Data Depth Concept (DDC), which are especially
useful in exploration of socio-economic phenomena. The package is available under GPL-2
license on CRAN and R-forge servers.
The rest of the paper is organized as follows: in Section 2, basic notions related to the data
depth concept are briefly described. In Section 3, the procedures offered by the package are
briefly presented. In Section 4, an illustrative example is presented. The paper ends with
some conclusions and references. All data sets and examples considered within the paper are
available after installing the package.

In this paper we use the following notation and definitions borrowed from Dyckerhoff (2004).

Sd−1 is the (d − 1) dimensional unit sphere in R
d , Sd−1 =

{

x ∈ R
d : ‖x‖ = 1

}

. Bd denotes

Borel σ algebra in R
d. The transpose of a vector x ∈ R

d is written by x⊤ . For a random
variable X we write QX for the usual (lower) quantile function, QX : (0, 1) → R , QX(p) =
min{x ∈ R

d : P (X ≤ x) ≥ p} , and Q̄X for the upper quantile function Q̄X : (0, 1) → R,
Q̄X(p) = max{x ∈ R

d : P (X ≥ x) ≥ p}. A sample consisting of n observations is denoted
by Xn = {x1, ..., xn} , F denotes a probability distribution in R

d , and Fn its empirical
counterpart.

2. Data depth concept

Data depth concept was originally introduced as a way to generalize the concepts of median
and quantiles to the multivariate framework. A detailed presentation of the concept can be
found in Liu, Parelius, and Singh (1999), Zuo and Serfling (2000), Serfling (2003), Serfling and
Wang (2006), and Mosler (2013). Nowadays the DDC offers a variety of powerful techniques
for exploration and inference on economic phenomena involving robust clustering and clas-
sification, robust quality control and streaming data analysis, robust multivariate location,
scale, symmetry tests. Theoretical aspects of the concept could be found for example in Kong
and Zuo (2010) and in references therein, recent developments of the computational aspects
presents for example Shao and Zuo (2012). Our package DepthProc uses so called location
depths and their derivatives, i.e., regression depth and Student depth. The DepthProc imple-
ments also recently developed concept of local depth presented in Paindavaine and Van Bever
(2012) and Paindavaine and Van Bever (2013). A developer version of the package, which is
available on R-forge servers, additionally consists of fast algorithms for calculating selected
depths for functional data and weighted by the local depth nonparametric estimators of a
predictive distribution.

2.1. Basic definitions

Following Dyckerhoff (2004) we consider the depth of a point w.r.t. a probability distribution.
Let P0 be the set of all probability measures on (Rd, Bd) and P a subset P0. A depth assigns
to each probability measure F ∈ P a real function D(·, F ) : Rd → R+ , the so-called depth
function w.r.t. F .

The set of all points that have depth at least α is called α− trimmed region. The α−
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trimmed region w.r.t. F is denoted by Dα(F ), i.e.,

Dα(F ) =
{

z ∈ R
d : D(z, F ) ≥ α

}

. (1)

In a context of applications, the probability measure is the distribution F X of a d-variate
random vector X. In this case we write shortly D(z, X) instead of D(z, F X) and Dα(X)
instead of Dα(F X). The data depth is then defined on the set X of all random vectors X for
which F X is in P .
Formal definitions of the depth functions can be found in Liu et al. (1999), Zuo and Serfling
(2000), Mosler (2013). There is an agreement in the literature, that every concept of depth
should satisfy some reasonable properties:

T1 Affine invariance: For every regular d × d matrix A and b ∈ R
d it holds D(z, X) =

D(az + b, AX + b) .

T2 Vanishing at infinity: For each sequence {xn}n∈N
with lim

n→∞
‖xn‖ = ∞ holds

lim
n→∞

D(xn, X) = 0.

T3 Upper semicontinuity: For each α > 0 the set Dα(X) is closed.

T4 Monotone on rays: For each x0 of maximal depth and each r ∈ Sd−1 , the function
R+ → R , λ 7→ D(x0 + λr, X) is monotone decreasing.

T4∗ Quasiconcavity: For every α ≥ 0 holds: If z1, z2 are two points with a depth of at least
α , then every point on the line segment joining z1 and z2 has depth of at least α , too.

DEFINITION (Dyckerhoff (2004)): A mapping D , that assigns to each random vector X
in a certain set X of random vectors a function D(·, F ) : R

d → R+ and that satisfies the
properties T1, T2, T3 and T4 is called depth. A depth that satisfies T4∗ is called convex
depth

Properties T1 to T4 are formulated in terms of the depth itself. It is very useful to notice
however, that these properties can also be formulated in terms of the trimmed regions (what
is useful for approximate depth calculation):

Z1: Affine equivariance: For every regular d×d matrix A and b ∈ R
d it holds Dα(AX +b) =

ADα(X) + b .

Z2: Boundedness: For every α > 0 the α− trimmed region Dα(X) is bounded.

Z3: Closedness: For every α > 0 the α− trimmed region Dα(X) is closed.

Z4: Starshapedness: If x0 is contained in all nonempty trimmed regions, then the trimmed
regions Dα(X) , α ≥ 0 , are starshaped w.r.t. x0 .

Z4∗: Convexity: For every α > 0 the α− trimmed region Dα(X)is convex.

Z5: Intersection property: For every α > 0 holds Dα(X) =
⋂

β:β<α Dβ(X) .
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The simplest example of the depth is the Euclidean depth defined as (see 11)

DEUK(y, Xn) =
1

1 + ‖y − x̄‖2 , (2)

where x̄ denotes the mean vector calculated from a sample Xn.

As a next example let us take the Mahalanobis depth (see Fig. 3)

DMAH(y, Xn) =
1

1 + (y − x̄)⊤S−1(y − x̄)
, (3)

where S denotes the sample covariance matrix Xn.

A symmetric projection depth D (x, X) of a point x ∈ R
d, d ≥ 1 is defined as

D (x, X)P RO =



1 + sup‖u‖=1

∣

∣

∣u⊤x − Med
(

u⊤X
)∣

∣

∣

MAD (u⊤X)





−1

, (4)

where Med denotes the univariate median, MAD (Z) = Med (|Z − Med (Z)|). Its sample
version denoted by D (x, Xn) or D (x, Xn) is obtained by replacing F by its empirical coun-
terpart Fn calculated from the sample Xn (see Fig. 1). This depth is affine invariant and
D(x, Fn) converges uniformly and strongly to D(x, F ). The affine invariance ensures that our
proposed inference methods are coordinate-free, and the convergence of D(x, Xn) to D(x, X)
allows us to approximate D(x, F ) by D(x, Xn) when F is unknown. Induced by this depth,
multivariate location and scatter estimators have high breakdown points and bounded Ham-
pel’s influence function (for further details see Zuo (2003)).

Next, very important depth is the weighted Lp depth. The weighted Lp depth D(x, F ) of
a point x ∈ R

d, d ≥ 1 generated by d dimensional random vector X with distribution F , is
defined as (see Fig. 4)

D(x, F ) =
1

1 + Ew(‖x − X‖p)
, (5)

where w is a suitable weight function on [0, ∞) , and ‖·‖p stands for the Lp norm (when p = 2
we have usual Euclidean norm). We assume that w is non-decreasing and continuous on [0, ∞)
with w(∞−) = ∞, and for a, b ∈ R

d satisfying w(‖a + b‖) ≤ w(‖a‖) + w(‖b‖). Examples
of the weight functions are: w(x) = a + bx , a, b > 0 or w(x) = xα. The empirical version
of the weighted Lp depth is obtained by replacing distribution F of X in Ew(‖x − X‖p) =
∫

w(‖x − t‖p)dF (t) by its empirical counterpart. The weighted Lp depth from sample Xn =
{x1, ..., xn} is computed as follows:

D(x, Xn) =
1

1 + 1
n

n
∑

i=1
w
(

‖x − Xi‖p

)

, (6)

The weighted Lp depth function in a point, has the low breakdown point (BP) and unbounded
influence function IF (see Maronna et al. (2006) for the BP and IF definitions). On the other
hand, the weighted Lp depth induced medians (multivariate location estimator) are globally
robust with the highest BP for any reasonable estimator. The weighted Lp medians are also
locally robust with bounded influence functions for suitable weight functions. Unlike other
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Figure 1: Projection depth. Figure 2: Tukey depth.

Figure 3: Mahalanobis depth. Figure 4: L2 depth.

existing depth functions and multivariate medians, the weighted Lp depth and medians are
computationally feasible for on-line applications and easy to calculate in high dimensions.
The price for this advantage is the lack of affine invariance and equivariance of the weighted
Lp depth and medians, respectively. Theoretical properties of this depth can be found in Zuo
(2004).

Next, very important depth is the halfspace depth (Tukey depth, see Fig. 2)

D(x, F ) = inf
H

{

P (H) : x ∈ H ⊂ R
d, X is closed subspace

}

(7)

A very useful for the economic applications example of depth, originating from the halfspace
depth, is regression depth introduced in Rousseeuw and Hubert (2004) and intensively
studied in Van Aelst and Rousseeuw (2000) and in Mizera (2002).

Let Zn = {(x1, y1), ..., (xn, yn)} ⊂ R
d denotes a sample considered from a following semipara-
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Figure 5: Deepest regression. Figure 6: Depth trimmed regression.

metric model:
yl = a0 + a1x1l + ... + a(d−1)lx(d−1)l + εl, l = 1, ..., n, (8)

we calculate a depth of a fit α = (a0, ..., ad−1) as

RD(α, Zn) = min
u 6=0

♯

{

l :
rl(α)

u⊤xl

< 0, l = 1, ..., n

}

, (9)

where r(·) denotes the regression residual, α = (a0, ..., ad−1), u⊤xl 6= 0.

The deepest regression estimator DR(α, Zn) is defined as

DR(α, Zn) = arg max
α 6=0

RD(α, Zn) (10)

Fig. 5 presents a comparison of least squares and DR estimators of simple regression. The
regression depth has its local version thanks to its relation to the halfspace depth (see Pain-
davaine and Van Bever (2013)). The local version of this depth may be easily calculated
within DepthProc package. Next depth, which is implemented within the package, is the
Student depth originating from Mizera (2002) and which was proposed in Mizera and Müller
(2004). It is pointed out in Mizera (2002) that general halfspace depth can be defined as a
measure of data-analytic admissibility of a fit. Depth of the fit θ is defined as proportion
of the observations whose omission causes θ to become a nonfit, a fit that can be uniformly
dominated by another one.

For a sample Xn = {x1, ..., xn} we consider a criterial function Fi, given a fit represented by
α , the criterial function evaluates the lack of fit of α to the particular observation xi . It
means α∗ fitting xi better than α, if Fi(α

∗) < Fi(α) .

In Mizera (2002) more operational version – the tangent depth of a fit α is defined

d(α) = inf
u

6= 0
{

♯n : u⊤∇αFi(α) ≥ 0
}

, (11)

where ♯ stands for the relative proportion in the index set - its cardinality divided by n .
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Figure 7: Sample student depth contour
plot, data from N(0,1).

Figure 8: Sample student depth contour
plot, data from t(1).

In Mizera and Müller (2004) authors suggest assuming the location-scale model for the data
and taking log-likelihood in a role of the criterial function. They suggest taking the criterial
function

Fi(µ, σ) = − log f

(

yi − µ

σ

)

+ log σ (12)

Substituting into (12) into (11) we obtain a family of location-scale depths.

The Student depth of (µ, σ) ∈ R× [0, ∞) is obtained substituting into the above expression
the density of the t distribution with v degrees of freedom

d(µ, σ) = inf
u 6=0

{

♯i : (u1, u2)

(

τi
v

v+1(τ2
i − 1)

)

≥ 0

}

, (13)

where by the multiplication we mean the dot product,τi is a shorthand for (yi − µ)/σ, and
we can absorb the constant v/(v + 1) into the u term (see Fig. 7 - 8)

The Student Median (SM) is the maximum depth estimator induced by the Student depth.
It is very interesting joint estimator of location and scale in a context of robust time series
analysis. It is robust but not very robust – its BP is about 33% and hence is robust to
a moderate fraction of outliers but is sensitive to a regime change of a time series at the
same time. It is worth noticing, that by its definition, the SM is not affected by temporal
dependence of the observations.

2.2. Local depth

In an opposition to the density function, the depth function has a global nature i.e., e.g., that it
expresses a centrality of a point w.r.t. a whole sample. This property is an advantage of depth
for some applications but may be treated as its disadvantage in the context od classification of
objects or for k-nearest neighbour rule applications. Depth based classifier or depth based k-
nearest density estimators need local version of depths. A successful concept of local depth
was proposed in Paindavaine and Van Bever (2012). For defining a neighbourhood of a
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Figure 9: Local L2 depth, locality = 60%. Figure 10: Local L2 depth, locality =
20%.

point, authors proposed using idea of symmetrisation of a distribution (a sample) with
respect to a point in which depth is calculated. In their approach instead of a distribution
P X , a distribution Px = 1/2P X + 1/2P 2x−X is used.

For any β ∈ (0, 1], let us introduce the smallest depth region with probability bigger or equal
to β,

Rβ(F ) =
⋂

α∈A(β)

Dα(F ), (14)

where A(β) = {α ≥ 0 : P [Dα(F )] ≥ β}. Then for a locality parameter β ∈ (0, 1] we can take
a neighbourhood of a point x as Rβ(Px) (see Fig. 9 - 10).

Formally, let D(·, P ) be a depth function. Then the local depth with the locality parameter
β ∈ (0, 1] and w.r.t. a point x is defined as

LDβ(z, P ) : z → D(z, P β
x ), (15)

where P β
x (·) = P

(

·|Rβ
x(P )

)

is cond. distr. of P conditioned on Rβ
x(P ).

For β = 1 the local depth reduces to its global counterpart (no localization). In a sample case
Xn = {x1, ..., xn}, in a first step we calculate depth of a point y by adding to the original
observations x1, ..., xn their reflections 2y−x1, ..., 2y−xn w.r.t. y – let us denote this combined
sample Xy

n and then calculating usual depth. Then we order observations from the original
sample w.r.t. D(·, Xy

n) the sample depth calculated from the combined sample: D(x(1), Xy
n) ≥

... ≥ D(x(n), Xy
n). We choose the locality parameter β ∈ (0, 1] determining a size of depth

based neighbourhood of the point x. Then we determine nβ(Xy
n) = max {l = ⌈nβ⌉ , ..., n} :

D(x(l), Xy
n) = D(x(⌈nβ⌉), Xy

n)} . Finally we calculate LDβ(y, Xn) = D(y, Xy,β
n ) , where Xy,β

n

denotes subsample x(1), ..., x(nβ) of Xy
n. Further theoretical properties involving its weak

continuity and almost sure consistency can be found in Paindavaine and Van Bever (2012)
and Paindavaine and Van Bever (2013).
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2.3. Approximate depth calculation

A direct calculation of many statistical depth functions is a very challenging computational
issue. On the other hand a computational tractability of depths and induced by them proce-
dures is especially important for online economy involving monitoring high frequency financial
data, social networks or for shopping center management (see Kosiorowski (2014)).

Within the DepthProc package we use approximate algorithm proposed in Dyckerhoff (2004)
to calculation of a certain class of location depth functions (depths possessing so called strong
projection property), we base also on a algorithm proposed by Rousseeuw i Hubert (1998)
for deepest regression calculation and direct algorithm lsdepth for Student depth calculation
proposed in Müller (2003). For calculation of the local depths we use direct method described
in Paindavaine and Van Bever (2012). Below we briefly present main ideas of the Dyckerhoff
algorithm.

DEFINITION (Dyckerhoff (2004)): Let D be a depth on X . D satisfies the (weak) projection
property, if for each point y ∈ R

d and each random vector X ∈ X it holds:

D(y, X) = inf
{

D(p⊤y, p⊤X) : p ∈ Sd−1
}

.

THEOREM 1 (Dyckerhoff (2004)): For each X ∈ X let (Zα(X))α≥0 be a family of subsets

of Rd that satisfy the properties Z1 to Z5. Further let Z0(X) = R
d for every X ∈ X . If D

is defined by D(z, X) = sup {α : Zα(X)} , then D is a depth on X and the sets Zα(X) are
trimmed regions of D.

THEOREM 2 (Dyckerhoff (2004)): Let D1 be a univariate depth. If D is defined by D(z, X) =
inf

p∈Sd−1

D1(p⊤z, p⊤X) , then D is a multivariate convex depth that satisfies the weak projection

property.

Theorem 2 shows how multivariate depths can be obtained from univariate depths via the
projection property. In theorem 1 a depth was defined by the family of its trimmed regions.
By combining these two results one arrives at a construction method of multivariate depths
from univariate trimmed regions. For practical applications of the above approach it is of prior
importance to replace sup and inf by means of max and min, i.e., approximate multivariate
depth by means of a finite number of projections. Theoretical background of the issue can be
found in Cuesta-Albertos and Nito-Reyes (2008) and references therein.

In the DepthProc in order to decrease the computational burden related to sample depth
calculation we use proposition 11 from Dyckerhoff (2004). We use 1000 random projections
from the uniform distribution on a sphere. We use following families of one-dimensional
central regions:

1. For Tukey depth

Zα(X) =
[

QX(α), Q̄X(α)
]

,

2. For zonoid depth (see also Mosler (2013), Lange, Mosler, and Mozharovskyi (2014))

Zα(X) =

[

1
α

α
∫

0
QX(p)dp, 1

α

α
∫

0
Q̄X(p)dp,

]

,

3. For a symmetric projection depth (see Zuo (2003))
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Dα(X) = [medX − c(α)MADX , medX + c(α)MADX ] , where c(α) = (1 − α)/α.

2.4. Existing software for depth calculation

Currently there are four packages CRAN available which are directly dedicated for depth
calculation: depth Genest, Masse, and Plante (2012), depthTools Lopez-Pintado and Tor-
rente (2013), localdepth Agostinelli and Romanazzi (2013) and ddalpha Lange et al. (2014).
Additionally, two packages fda.usc Febrero-Bande and de la Fuente (2012) and fda Ramsay,
Hooker, and Graves (2009), consist of tools related to depths for functional data.

The depth package allows for exact and approximate calculation of Tukey, Liu and Oja
depths. It also provides tools for visualisation contour plots and perspective plots of depth
functions, and function for depth median calculation. Note, that commands depthContour

and depthPersp which are available within the DepthProc were patterned on these depth

commands.

The depthTools is focused on the Modified Band Depth (MBD) for functional data Lopez-
Pintado and Romo (2009). It provides scale curve, rank test based on MBD and two methods
of supervised classification techniques, the DS and TAD methods.

The localdepth package enables us for calculation of local version of "simplicial", "ellipsoid",
"halfspace" (Tukey’s depth), "mahalanobis" and "hyperspheresimplicial" depth functions. The
localdepth also has a function for depth-vs-depth plot, which differs from the function which
is available within the DepthProc. In the localdepth, the DDPlot is a plot of normalized
localdepth versus normalized depth.We should note also that version of the local depth which
is available within the localdepth differs from a more general version proposed in Paindavaine
and Van Bever (2013), which is available within the DepthProc.

The ddalpha package concentrates around a new method for classification basing on the DD-
plot prepared using the random Tukey depth and zonoid depth.

3. Package description and illustrative examples

Our package comprises among other of the commands listed in a Table 1. The depthDensity

and depthMBD commands, dedicated correspondingly to nonparametric weighted by local
depth conditional probability density estimator and for fast calculation of the modified band
depth for functional data, are under development. These commands indicate a direction of a
further development of the package however.

3.1. Available depths functions

A basic command for depth calculation is

depth(u, X, method = c("Projection", "Tukey","Mahalanobis","Euclidean","LP",

"local"), p=2, beta=0.5,...)

Arguments

u: Numerical vector or matrix, which depth is to be calculated. A dimension has to be the
same as that of the observations.
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Command Short description

asymmetryCurve multivariate asymmetry functional

binningDepth2d depth based simple binning of 2D data

CovLP Lp depth weighted location and scatter estimator

ddmvnorm multivariate quantile-quantile normality plot

deepReg2d deepest regression estimator for simple regression

depth depth calculation

depthContour depth contour plot

depthDensity depth weighted density estimator

depthMBD fast modified band depth calculation

depthmedian multivariate median calculation

depthPersp depth perspective plot

depthLocal local depth calculation

lsdSampleMaxDepth Student median calculation

medianDepthConfinterval bootstrap region for a multivariate median

mWilcoxonTest multivariate Wilcoxon test for location and/or scale differences

ScaleCurve multivariate scatter functional

trimmReg2d projection depth trimmed regression 2D

Table 1: Main commands available within the DepthProc.

X: The data as a matrix, a data frame or a list. If it is a matrix or data frame, then each row
is treated as one multivariate observation. If it is a list, all components must be numerical
vectors of equal length (coordinates of the observations).
method: Character string determining the depth function. The method can be "Projection"
(the default), "Mahalanobis", "Euclidean", "Tukey", "LP" or "Local".
p: Lp depth parameter.
beta: locality parameter.

3.2. Maximal depth estimators

The DepthProc enables for calculating multivariate medians induced by depth functions.

depthMedian(x, ...)

Arguments:

x: The data as a k × 2 matrix or data frame.
method: Character string determining the depth function. The method can be "Projection"
(the default), "Mahalanobis", "Euclidean", "Tukey", "LP" or "Local".
p: Lp depth parameter.

3.3. DepthContour

Basic statistical plots offered by DepthProc are the contour plot and the perspective
plot (see Fig. 11 – 12).
depthContour(x, n = 50, pmean = TRUE, mcol = "blue", pdmedian = TRUE,
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Figure 11: Sample contour plot. Figure 12: Sample perspective plot.

mecol = "brown", legend = TRUE, points = TRUE, xlab=" ", ylab=" ", main=" ",

method = c("Projection", "Tukey","Mahalanobis","Euclidean","LP","local"), p=2,

beta=0.5 )

Arguments

x: The data as a k × 2 matrix or data frame.

3d Plot – by default, plot from lattice is drawn. You can use plot_method="rgl", but currently
rgl is not on "depends" - list. Note - rgl can cause some problems with installation on clusters
without OpenGL.

depthPersp(x, plot_method = "lattice", xlim = extendrange(x[, 1], f = 0.1),

ylim = extendrange(x[, 2], f = 0.1), n = 50, xlab = "x", ylab = "y", plot_title

= NULL, ...)

Arguments

x: The data as a k × 2 matrix or data frame.

3.4. DD-plots

For two probability distributions F and G, both in R
d, we can define depth vs. depth plot

being very useful generalization of the one dimensional quantile-quantile plot:

DD(F, G) =
{

(D(z, F ), D(z, G)) , z ∈ R
d
}

(16)

Its sample counterpart calculated for two samples Xn = {X1, ..., Xn} from F , and Y m =
{Y1, ..., Ym} from G is defined as

DD(Fn, Gm) = {(D(z, Fn), D(z, Gm)) , z ∈ {Xn ∪ Y m}} (17)
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Figure 13: DD-plot, location differences. Figure 14: DD-plot, scatter differences.

A detailed presentation of the DD-plot can be found in Liu et al. (1999). Fig. 13 presents
DD-plot with a heart-shaped pattern in case of differences in location between two samples,
whereas Fig. 14 presents a moon-shaped pattern in case of scale differences between samples.
Applications of DD-plot and theoretical properties of statistical procedures using this plot
can be found in Li and Liu (2004), Liu and Singh (1995), Jurečkova and Kalina (2012), Zuo
and He (2006), Kosiorowski and Zawadzki (2014). In Lange et al. (2014) an application of
the DD-plot for classification can be found.
Within the DepthProc we can use DD-plot in a following way:

ddPlot(x, y, scale = FALSE, location = FALSE, name_x = "X",

name_y = "Y", title = "Depth vs. depth plot", ...)

Arguments

x: The first or only data sample for ddPlot.
y: The second data sample. x and y must be of the same dimension.
scale : If TRUE samples are centered using multivariate medians.

and

ddMvnorm(x, size = nrow(x), robust = FALSE, alpha = 0.05, title = "ddMvnorm", ...)

Arguments

x: The data sample for DD plot.
size: Size of theoretical set.
robust: Logical. Default FALSE. If TRUE, robust measures are used to specify the param-
eters of theoretical distribution.
alpha:cutoff point for robust measure of covariance.
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3.5. Multivariate Wilcoxon test

Having two samples Xn and Ym using any depth function, we can compute depth values in
a combined sample Zn+m = Xn ∪ Ym, assuming the empirical distribution calculated basing
on all observations, or only on observations belonging to one of the samples Xn or Ym.

For example if we observe X ′
ls depths are more likely to cluster tightly around the center of

the combined sample, while Y ′
l s depths are more likely to scatter outlying positions, then we

conclude Ym was drawn from a distribution with larger scale.

Properties of the DD plot based statistics in the i.i.d setting were studied in Li and Liu
(2004). Authors proposed several DD-plot based statistics and presented bootstrap arguments
for their consistency and good effectiveness in comparison to Hotelling T 2 and multivariate
analogues of Ansari-Bradley and Tukey-Siegel statistics. Asymptotic distributions of depth
based multivariate Wilcoxon rank-sum test statistic under the null and general alternative
hypotheses were obtained in Zuo and He (2006). Several properties of the depth based rang
test involving its unbiasedness was critically discussed in Jurečkova and Kalina (2012).

Basing on DD-plot object, which is available within the DepthProc it is possible to calculate
several multivariate generalizations of one-dimensional rank and order statistics. These gen-
eralizations cover well known Wilcoxon rang-sum statistic.

The depth based multivariate Wilcoxon rang sum test is especially useful for the multivariate
scale changes detection and was introduced among other in Liu and Singh (1995)

For the samples Xm = {X1, ..., Xm} , Yn = {Y1, ..., Yn}, and a combined sample Z =
Xn ∪ Ym the Wilcoxon statistic is defined as

S =
m
∑

i=1

Ri, (18)

where Ri denotes the rang of the i-th observation, i = 1, ..., m in the combined sample
R(xl) = # {zj ∈ Z : D(zj , Z) ≤ D(xl, Z)} , l = 1, ..., m.

The distribution of S is symmetric about E(S) = 1/2m(m+n+1), its variance is D2(S) =
1/12 mn(m + n + 1). For theoretical properties statistic see Li and Liu (2004) and Zuo and
He (2006).
Using DD-plot object it is easy to calculate other multivariate test statistics involving for
example Haga or Kamat tests and apply them for robust monitoring of multivariate time
series (see Kosiorowski and Zawadzki (2014)).

mWilcoxonTest(x, y, alternative = "two.sided")

Arguments

x,y: data matrices or data frames of the same dimension
alternative:
Character string determining the alternative, as in one-dimensional Wilcoxon test
method: Character string determining the depth function. method can be "Projection" (the
default), "Mahalanobis", "Euclidean", "Tukey", "LP" or "Local".
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EXAMPLE

> require(MASS)

> x = mvrnorm(100, c(0,0), diag(2))

> y = mvrnorm(100, c(0,0), diag(2)*1.4)

> mWilcoxonTest(x,y)

Multivariate Wilcoxon test for equality of dispersion

data: dep_x and dep_y

W = 6034, p-value = 0.01156

alternative hypothesis: true dispersion ratio is not equal to 1

3.6. Scale and asymmetry curves

For sample depth function D(x, Zn), x ∈ R
d, d ≥ 2, Zn = {z1, ..., zn} ⊂ R

d, Dα(Zn) denoting
α− central region, we can define the scale curve (see Fig. 15)

SC(α) = (α, vol(Dα(Zn)) ⊂ R
2, for α ∈ [0, 1], (19)

and the asymmetry curve (see Fig. 16)

AC(α) =
(

α,
∥

∥

∥c−1({z̄ − med|Dα(Zn)})
∥

∥

∥

)

⊂ R
2, for α ∈ [0, 1] (20)

being nonparametric scale and asymmetry functional correspondingly, where c−denotes con-
stant, z̄−denotes mean vector, denotes multivariate median induced by depth function and
vol− denotes a volume. Further information on the scale curve and the asymmetry curve can
be found in Liu et al. (1999), Serfling and Wang (2006), Serfling (2003), Serfling (2006).

scaleCurve(x, y = NULL, alpha = seq(0, 1, 0.01), method = "Projection",

name = "X", name_y = "Y", title = "Scale Curve", ...)

Arguments
x: a matrix consisting data.
y: additional data matrix.
alpha: a vector of central regions indices.
method: character string which determines the depth function used, method can be "Pro-
jection" (the default), "Mahalanobis", "Euclidean", "Tukey" or "LP".

asymmetryCurve(x, y = NULL, alpha = seq(0, 1, 0.01), method = "Projection",

movingmedian = FALSE, name = "X", name_y = "Y", ...) Arguments

movingmedian: Logical. For default FALSE only one depth median is used to compute
asymmetry norm. If TRUE – for every central area, a new depth median will be used - this
approach needs much more computation time.

EXAMPLE

> x = mvrnorm(1000, c(0,0),diag(2))

> s1 = scaleCurve(x,name = "Curve 1")
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Figure 15: Scale curves. Figure 16: Asymmetry curves.

> s2 = scaleCurve(x*2,x*3,name = "Curve 2", name_y = "Curve 3")

> w = getPlot(s1 %+% s2)+ggtitle("Plot")

> w + theme(text = element_text(size = 25))

> xx = mvrnorm(1000, c(0,0),diag(2))

> yy = mvrnorm(1000, c(0,0),diag(2))

> p = asymmetryCurve(xx,yy)

> getPlot(p)+ggtitle("Plot")

> xx = mvrnorm(1000, c(0,0),diag(2))

> yy = mvrnorm(1000, c(0,0),diag(2))

> p = asymmetryCurve(xx,yy)

> getPlot(p)+ggtitle("Plot")

3.7. Simple robust regressions

Within the package two simple (two dimensional) robust regressions are available: the deep-
est regression and projection depth trimmed regression – see Fig. 17.

deepReg2d(x, y)

trimProjReg2d(x, y, alpha = 0.1)

Arguments

x,y: data vectors alpha: trimming parameter

EXAMPLE

> plot(starsCYG,cex=1.4)

> deepreg = deepReg2d(starsCYG$log.Te, starsCYG$log.light)

> trimreg = trimProjReg2d(starsCYG$log.Te, starsCYG$log.light)
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Figure 17: Simple regressions.
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> least.sq = lm(starsCYG$log.Te~starsCYG$log.light)

> abline(deepreg, lwd = 3, col = "red")

> abline(trimreg, lwd = 3, col = "brown")

> abline(least.sq, lwd = 3, col = "blue")

coefficients:

deepreg@coef

-7.903043 2.913043

trimreg@coef

-7.403531 2.802837

3.8. Weighted estimators of location and scatter

Using depth function one can define a depth-weighted multivariate location and scatter esti-
mators possessing high breakdown points and which for several depths are computationally
tractable (see Zuo and Cui (2005)). In case of location, the estimator is defined as

L(F ) =

∫

xw1(D(x, F ))dF (x)/w1(D(x, F ))dF (x), (21)

Subsequently, a depth-weighted scatter estimator is defined as

S(F ) =

∫

(x − L(F ))(x − L(F ))⊤w2(D(x, F ))dF (x)
∫

w2(D(x, F ))dF (x)
, (22)

where w2(·) is a suitable weight function that can be different from w1(·).

The DepthProc package offers these estimators in case of computationally feasible weighted Lp

depth. Note thatL(·) and S(·) include multivariate versions of trimmed means and covariance
matrices. Sample counterparts of (20) and (21) take the forms

TW D(Xn) =
n
∑

i=1

w(di)Xi/
n
∑

i=1

w(di), (23)

DIS(Xn) =

n
∑

i=1
w(di) (Xi − TW D(Xn)) (Xi − TW D(Xn))T

n
∑

i=1
w(di)

, (24)

where di are sample depth weights, w1(x) = w2(x) = a · x + b, a, b ∈ R.

Computational complexity of the scatter estimator crucially depend on the complexity of the
depth used. For the weighted Lp depth we have O(d2n+n2d) complexity and good perspective
for its distributed calculation Zuo (2004).

CovLP(x, pdim = 1, la = 1, lb = 1)

EXAMPLE
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> require(MASS)

> Sigma1 <- matrix(c(10,3,3,2),2,2)

> X1 = mvrnorm(n= 8500, mu= c(0,0),Sigma1)

> Sigma2 <- matrix(c(10,0,0,2),2,2)

> X2 = mvrnorm(n= 1500, mu= c(-10,6),Sigma2)

> BALLOT<-rbind(X1,X2)

> train <- sample(1:10000, 500)

> data<-BALLOT[train,]

> cov_x = CovLP(data,1,1,1)

> cov_x

Call:

-> Method: Depth Weighted Estimator

Robust Estimate of Location:

[1] -1.6980 0.8844

Robust Estimate of Covariance:

[,1] [,2]

[1,] 15.249 -2.352

[2,] -2.352 4.863

3.9. Student and L
p binning

Let us recall, that binning is a popular method allowing for faster computation by reducing the
continuous sample space to a discrete grid (see Hall and Wand (1996)). It is useful for example
in case predictive distribution estimation by means of kernel methods. To bin a window of n
points Wi,n = {Xi−n+1, ..., Xi} to a grid X ′

1, ..., X ′
m we simply assign each sample point Xi to

the nearest grid point X ′
j . When binning is completed, each grid point X ′

j has an associated
number ci, which is the sum of all the points that have been assigned to X ′

j . This procedure

replaces the data Wi,n = {Xi−n+1, ..., Xi} with the smaller set W ′
j,m =

{

X ′
j−m+1, ..., X ′

j

}

.

Although simple binning can speed up the computation, it is criticized for a lack of a precise
approximate control over the accuracy of the approximation. Robust binning however stresses
properties of the majority of the data and decreases the computational complexity of the DSA
at the same time.

For a 1D window Wi,n, let Zi,n−k denote a 2D window created basing on Wi,n and consisted
of n − k pairs of observations and the k lagged observations Zi,n−k={(Xi−n−k, Xi−n+1)},
1 ≤ i ≤ n − k . Robust 2D binning of the Zi,n−p is a very useful technique in a context of
robust estimation of the predictive distribution of a time series (see Kosiorowski (2013)) or
robust monitoring of a data stream (see Kosiorowski and Zawadzki (2014)).

Assume we analyze a data stream {Xt} using a moving window of a fixed length n, i.e., Wi,n

and the derivative window Zi,n−1. In a first step we calculate the weighted sample Lp depth
for Wi,n. Next we choose equally spaced grid of points l1, ..., lm in this way that [l1, lm]×[l1, lm]
covers fraction of the β central points of Zi,n−1 w.r.t. the calculated Lp depth, i.e., it covers
Rβ(Zi,n−1) for certain prefixed threshold β ∈ (0, 1). For both Xt and Xt−1 we perform a
simple binning using following bins: (−∞, l1), (l1, l2),..., (lm, ∞).

For robust binning we reject "border" classes and further use only midpoints and binned
frequencies for classes (l1, l2), (l2, l3),..., (lm−1, lm).
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Figure 18: The first step in Lp depth bin-
ning.

Figure 19: The second step in Lp depth bin-
ning.

Figures 18 – 19 present the idea of the simple Lp binning in case of data generated from
a mixture of two two-dimensional normal distributions. The midpoints are represented by
triangles.

EXAMPLE 1

> require(MASS)

> Sigma1 = matrix(c(10,3,3,2),2,2)

> X1 = mvrnorm(n= 8500, mu= c(0,0),Sigma1)

> Sigma2 = matrix(c(10,0,0,2),2,2)

> X2 = mvrnorm(n= 1500, mu= c(-10,6),Sigma2)

> BALLOT = rbind(X1,X2)

> train = sample(1:10000, 500)

> data =BALLOT[train,]

> plot(data)

> b1=binningDepth2D(data, remove_borders = FALSE, nbins = 12, k = 1 )

> b2=binningDepth2D(data, nbins = 12, k = 1,remove_borders = TRUE )

> plot(b1)

> plot(b2)

EXAMPLE 2

> data(under5.mort)

> data(maesles.imm)

> data2011=cbind(under5.mort[,22],maesles.imm[,22])

> plot(binningDepth2D(data2011, nbins = 8, k = 0.5, remove_borders = TRUE ))
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4. The package architecture

4.1. Nomenclature conventions

There is no agreed naming convention within R project. In our package we use following
coding style:

• Class names start with an uppercase letter (e.g. DepthCurve).

• For methods and functions we use lower camel case convention (e.g. depthTukey)

• All functions related to location-scale depth starts with ’lsd’ prefix (e.g. lsdSampleDepth-

Contours).

• Sometimes we depart from these rules whenever to preserve compatibility, with other
packages (e.g. CovLP - it is a function from DepthProc that follows rrcov naming
convention).

4.2. Dependencies

Algorithms for depth functions were written in C++, and they are completely independent
from R. For matrix operations we use Armadillo Linear Algebra Library Sanderson (2010),
and OpenMP library Board (2013) for parallel computing.

The communication between R and C++ is performed by RcppArmadillo package Eddelbuet-
tel and Sanderson (2014).

For plotting we use base R graphic (contours plots), lattice package Sarkar (2008) (perspective
plot), and ggplot2 Wickham (2009) (other plots). We also uses functions from rrcov Todorov
and Filzmoser (2009), np Hayfield and Racine (2008), geometry Barber, Habel, Grasman,
Gramacy, Stahel, and Sterratt (2014) packages.

4.3. Parallel computing

By default DepthProc uses multi-threading and tries to utilize all available processors. User
can control this behaviour with threads parameter:

EXAMPLE: Tested on: Intel(R) Core(TM) i5-2500K CPU @ 3.30GHz

> x = matrix(rnorm(200000), ncol = 5)

> system.time(depth(x))

user system elapsed

1.484 0.060 0.420

EXAMPLE: only one thread (approximately 3 times slower):

> system.time(depth(x, threads = 1))
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Figure 20: Object structure for classes related to depth functions.

user system elapsed

1.368 0.000 1.371

EXAMPLE: any value <1 means "use all possible cores"

> system.time(depth(x, threads = -10))

user system elapsed

1.472 0.076 0.416

4.4. Classes

Below we describe only Depth, DepthCurve, and DDPlot classes in details, because only them
have non standard behaviour. Other classes are very simple.

CovDepthWeighted is a class for CovLP function. It inherits behaviour from CovRobust class
from rrcov package. Description of this class can be found in Todorov and Filzmoser (2009).

4.5. UML diagrams and classes

In this paper we exploit UML class diagrams to describe a behaviour of main DepthProc

structures. The UML abbreviation stands for Unified Modelling Language, a system of nota-
tion for describing object oriented programs.

In the UML, class is denoted by a box with three compartments which contain the name,
the attributes (slots) and operations (methods) of the class. Each attribute is followed by its
type, and each method by its return value. Inheritance relation between classes are depicted
by arrowhead pointing to the base class.

4.6. Depth class
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Fig. 20 shows an object structure for classes related to depth functions. Each depth class
inherits Depth and standard Numeric. Through inheritance after Numeric these classes are
treated as a standard vector, and one can use them with all functions that are appropriate
for vectors (e.g. max, min). Depth class is mainly used in internal package operations, but it
can be used for extracting depth median without recomputing depth values. This mechanism
is show in following example:

EXAMPLE: function for numeric vector

> x = matrix(rnorm(1e5), ncol = 2)

> dep = depth(x)

> max(dep)

[1] 0.9860889

EXAMPLE: function for raw matrix - all depths must be recomputed:

> system.time(dx <- depthMedian(x))

user system elapsed

1.609 0.072 0.451

EXAMPLE: function for Depth class - result is immediate

> system.time(dm <- depthMedian(dep))

user system elapsed

0.000 0.000 0.001

In order to check the equality

> all.equal(dm, dx)

[1] TRUE

4.7. DepthCurve and DDplot classes

The DepthCurve is a main class for storing results from scaleCurve and the asymmetryCurve

functions, and describing their behaviour - see Fig. 20. The DDPlot stores results from ddPlot

and ddMvrnorm functions.

Both classes DepthCurve and DDPlot can be converted into ggplot object for further appear-
ance modifications via getPlot() function.

EXAMPLE:
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> x = matrix(rnorm(1e2), ncol = 2)

> y = matrix(rnorm(1e2), ncol = 2)

> ddplot = ddPlot(x,y)

> p = getPlot(ddplot)

In order to modify a title

> p + ggtitle("X vs Y")

> scplot = scaleCurve(x,y)

> p = getPlot(scplot)

In order to change a color palette:

> p + scale_color_brewer(palette = "Set1")

Fig. 21 shows class structure for DepthCurve. Class ScaleCurveList is a container for
storing multiple curves for charting them on one plot. It inherits behaviour from standard R

list, but it can be also converted into ggplot object with getPlot method.

We introduced % + % operator for combining DepthCurves into DepthCurveList. This op-
erator is presented in following example:

EXAMPLE

> data(under5.mort)

> data(maesles.imm)

> data2011=cbind(under5.mort[,"2011"],maesles.imm[,"2011"])

> data2000=cbind(under5.mort[,"2000"],maesles.imm[,"2000"])

> data1995=cbind(under5.mort[,"1995"],maesles.imm[,"1995"])

> sc2011 = scaleCurve(data2011, name = "2011")

> sc2000 = scaleCurve(data2000, name = "2000")

In order to create ScalueCurveList

> sclist = sc2000 %+% sc2011

> sclist

In order to add another Curve

> sc1995 = scaleCurve(data1995, name = "1995")

> sclist %+% sc1995

EXAMPLE
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Figure 21: Class structure for DepthCurve.

> n = 200

> mat_list = replicate(n,matrix(rnorm(200),ncol = 2),simplify = FALSE)

> scurves = lapply(mat_list, scaleCurve)

> scurves = Reduce("%+%",scurves)

> p = getPlot(scurves)

> p + theme(legend.position="none") +

> scale_color_manual(values = rep("black",n))

5. Empirical example

For illustrating usefulness of the DepthProc package in a socio-economic researches, let us
consider an issue of a nonparametric evaluation of the Fourth Millennium Development Goal
of The United Nations (4MG). Main aim of the goal was reducing by two–thirds, between
1990 – 2015, the under five months child mortality. Using selected multivariate techniques
which are available within our DepthProc package we answer a question, if during the
period 1990 – 2015 differences between developed and developing countries really
decreased..

In the study we jointly considered following variables:

• Children under 5 months mortality rate per 1,000 live births (Y1)

• Infant mortality rate (0–1 year) per 1,000 live births (Y2)

• Children 1 year old immunized against measles, percentage (Y3)

Data sets were obtained from http://mdgs.un.org/unsd/mdg/Data.aspx and are available
within the package. Fig. 22 shows weighted L2 depth contour with locality parameter β = 0.5
for countries in 1990 considered w.r.t. variables Y1 and Y3 whereas Fig. 5 presents the same
issue but in 2011. Fig. 24 shows weighted L2 depth contour with locality parameter β = 0.5
for countries in 1990 considered w.r.t. variables Y2 and Y3 whereas Fig. 5 presents the same

http://mdgs.un.org/unsd/mdg/Data.aspx
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Figure 22: 1990: L2 depth contour plot Y1

vs. Y3

Figure 23: 2011: L2 depth contour plot Y1

vs. Y3

Figure 24: 1990: L2 depth contour plot Y2

vs. Y3

Figure 25: 2011: L2 depth contour plot Y2

vs. Y3
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Figure 26: DD plot for inspecting location
differences.

Figure 27: DD plot for inspecting scale
differences.

issue but in 2011. Although we can notice a socio-economic development between 1990 and
2011 – the clusters of developed and developing countries are still evident in 2011 as they were
in 1990. For assessing changes in location of the centers and scatters of the data between 1990
and 2011 we calculated L2 medians and L2 weighted covariance matrices for (Y1, Y2, Y3)
which are presented below

MED(1990): (73.7; 55.2; 78.0)

MED(1995): (59.7; 45.7; 76.0)

MED(2000): (53.7; 42.0; 85.0)

MED(2005): (40.2; 32.6; 86.0)

MED(2010): (33.6; 27.8; 89.0)

COVL2(1990) =







2420.8 1453.9 −396.3
1453.9 903.4 −238.6
−396.3 −238.6 228.3







COVL2(2010) =







738.5 493.9 −158.5
493.9 337.7 −104.9

−158.5 −104.9 121.2







Fig. 26 presents DD-plot for inspecting location changes between 1990 and 2011 for countries
considered w.r.t. variables Y1, Y2, Y3 and Fig. 27 presents DD-plot for inspecting scale changes
for the same data. We performed multivariate Wilcoxon test (using L2 depth) for scale change
detection for (Y1, Y2, Y3) in 1990 and in 2011 induced by projection depth and obtained:
W=21150 and p-value=0.0046. We can conclude therefore that both the scale and the location
changed.

Fig. 28 presents scale curves for the countries considered in the period 1990–2011 jointly
w.r.t. all variables whereas Fig. 29 presents Student depth contour plots for variable Y1 in
1990–2011. The results of the analysis lead us to following conclusions:

1. There are big chances for obtaining the 4MG. In the 2010 year, the decrease in the
under five months child mortality was about 40% with robust estimates used.

2. For the considered variables, both multivariate as well as univariate, scatters decreased
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Figure 28: Scale curves for (Y1, Y2, Y3) 1990–2011.

Figure 29: Student depth con-
tour plots - Y1 in 1990–2011

in 1990–2011.

3. The dispersion between countries considered jointly with respect to variables (Y1, Y2, Y3)
significantly decreased in 1990–2011. The clusters of rich and poor countries are still
easily distinguishable however.

4. A comparison of Student depth medians of Children under 5 months mortality rate
per 1,000 live births in 1990–2011 indicates significant one-dimensional tendency for
obtaining the 4MG.

5. Calculated simple deepest regressions for the variables and additional socio-economic
variables show clear relations between the 4MG Indicators and with other economic
variables representing economic devolvement (e.g., GDP per Capita).

6. The data depth concept offers a complex family of powerful and user-friendly tools for
nonparametric and robust analysis of socio-economic multivariate data.

Further considerations related to the issue can be found in Kosiorowska, Kosiorowski, and
Zawadzki (2014).

6. Summary

This paper presents R package DepthProc which offers a selection of multivariate statistical
methods originating from the DDC.
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Theory of the DDC is still developing by many authors. Recent findings presented in the DDC
literature involve among other depths on infinite dimensional spaces, very fast algorithms for
approximate depth calculation, new classification rules and new depths on functional spaces.
The DepthProc package consists of a selection of very powerful but simple and user friendly
tools dedicated for a robust economic analysis.

Our plans for a future development of the package concentrate around the concepts of local
depth and and depth for functional data. We are going to incorporate these ideas into the
Theory of Economics.
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