Software Documentation

GUTS: Software for the Calculation of the
Likelihood Function of the GUTS Maodel
Version 0.2.4

Carlo Albert* Soren Vogel**
21 May 2012

GUTS is a software for the fast calculation of the logarithm of the likelihood of an
empirical survival model. GUTS is available as an R-package as well as a standalone
application. GUTS is Open Source, hence, the source code is available as well and can be
distributed (and modified) freely. This document describes the software as well as its typical
usage.

Contents

Preface 2

1 Theoretical Background 2

2 The Algorithm 3

3 The C++ Class 4
3.1 Fields of the CH++ class e 4
3.2 Methods of the C++ Class e e e 5

4 Implementation in R

6
4.1 Dataset Diazinon Lo 6
4.2 Caveats of the R Implementation 7

Usage of the R Package 8
5.1 Basic Usage e 8
5.2 Using GUTS in MCMC Routines 10
5.3 Plotting the Outcomes of the MCMC Inference 11
Command Line Version 19
6.1 Command Options e 19

*EAWAG, 8600 Diibendorf, Switzerland, carlo.albert@eawag.ch
**University of Zurich, Switzerland, soeren.vogel@uzh.ch

mailto:carlo.albert@eawag.ch
mailto:soeren.vogel@uzh.ch

1 Theoretical Background

Preliminaries

This document was created using “I4TEX” and “Sweave” (package SWEAVE, Leisch, 2002) with R,
version 2.15 R Development Core Team (2012). A function is written function(), a package is written
PACKAGE, R input is marked R: input.., and R output is marked output. All R code is set in a
framed box. Note that it may be required to install the latest version of R in order to run the software
and the examples provided below (see section 5).

R: version

platform x86_64-apple-darwin9.8.0
arch x86_64

os darwin9.8.0

system x86_64, darwin9.8.0
status

major 2

minor 15.0

year 2012

month 03

day 30

svn rev 58871

language R

version.string R version 2.15.0 (2012-03-30)
nickname

1 Theoretical Background

GUTS Jager, Albert, Preuss and Ashauer (2011) is a model for survival of organisms, exposed to any
kind of quantifiable stress. The time-dependent stressor, C(t), is assumed to cause a time-dependent
damage, D(t), which is described by the linear differential equation

D(t) = k:(C(t) = D(1)), (1)

where k, is called recovery rate. The damage is the same for all individuals. However, the individuals are
assumed to have different thresholds, beyond which the damage increases their probability to die. Thus,
the model combines two sources of stochasticity: On the one hand, death is considered a stochastic
event, whose probability increases linearly with the damage, once it exceeds a certain threshold. That
is, there is stochasticity at individual level. On the other hand, this threshold is assumed to vary
stochastically over the population. Thus, there is stochasticity at population level.

The hazard, h,(t), of an individual with threshold z is determined by the formula

h.(t) = kx max(D(t) — z,0) + hp, (2)

where ky, is called killing rate and hy is the background mortality. The hazard, in turn, determines the
individual’s probability to survive until time ¢, S,(t), via the linear differential equation

S.(t) = —h,(t)S.(t). (3)

Finally, each individual is assumed to draw its z from a distribution, fg(z), on the positive real axis.
Hence, the parameter vector of the model reads as

0= (hp, kr, Ky ..), (4)

where the additional arguments are supposed to determine the distribution fp(z).

2 The Algorithm

Combining equations (2) and (3), we find that the probability for an arbitrarily chosen member of
the population to survive until time ¢ is given by the formula

So(t) = / exp (—kk /O " max(D(r) — 2, 0)dr — hbt> Jo(2)dz. (5)

Let y = (yo, 1, - - -,Yn) denote a time series of survivors, counted at times (to = 0,¢1,...,t,), and set
Yn+1 = 0. Then, the logarithm of the likelihood, f(y|@), of the model output y given the parameters
is, up to f-independent terms, given by the formula

n+1
In f(yl6) = > (yi—1 — v:) In(Sp,i—1 — Sa.i) , (6)
i=1
where we have set
Se.; =Se(ti), Sen+1=0. (7)

2 The Algorithm

The calculation of the log-likelihood requires two numerical integrations (see eq. (5)), and has, therefore,
two large numbers, N and M. The following algorithm is of the order O(N) + O(M). It is based on
the approximation

5 /exp |:_kk t; maX(O’D(T) _ Z)dT — hbti:| fo(Z)dZ
0

N
1
~ N Zexp 7kkAT Z (Dl - Zj) - hbti
j=1 D>z,

— lefhbtz‘ (6kkAT(6NZNfN) 4 e~ krAT(enten—1—zn1(fv+iv-1)) ..

4 e—kZAT(eN-‘r“'-‘r@l—Zl(fN+“'+fl))) . (8)

for an ordered sample z; < -+ < zy from fg(z), and with D; = D(7;) on a grid 7o < --+ < Tar—1.
The inner sum in the second line extends over all Dy, for which 7; < ¢;, and we have set AT =t,,/M.
Furthermore,
€; = Z Dl) (9)
Zj<Dl<Zj+1
and
fi=8{Dilz; < Di < zj41}, (10)

for 1 <j < N (Set zy41 = 00).
The corresponding algorithm for the calculation of (6) reads as follows:

1. Draw N thresholds from fp(z) and order them z; < --- < zn.
2. Refine the grid tg < --- < t,, to a fine grid 7o < -+ < Tpr—1.-
3. Set i =0.
4. Solve eq. (1), for ¢; < 7 < t;41, using equation

Dy = D(m) = D(sg)e " (=1 4 ¢y, (1 - e*krﬁﬂk))

Cri1 —C
4 Ghr k

(n — s =kt + k;le*’“"-(”*sﬂ) ., (1)
Sk+1 — Sk

for s, <7 < spy1-

3 The C++ Class

5. Update (9) and (10), for 1 < j < N. (This can be done in time O(1), for each D;.)

6. Calculate S; using the recursion:

Fy = Fia+1fj, (12)
E; = Ej1+ej, (13)
Sij = Sij+1texp(—kpAT(E; — Fjz5)) , (14)

for j =N —1,...,1 and with S; y = exp(—kx AT(En — Fnzn)) and Fy = fn, Eny = en. Then,

1
Si= e " S (15)

7. Increment ¢ and go to 4.

8. Calculate the log-likelihood function according to equation (6).

3 The C++ Class

The GUTS class allows to store the time series of exterior concentrations of the stressor, C =
(C(s0),...,C(sm)), the data, i.e., the time series of survivors, y = (y(to), ..., y(tn)), parameter values,
0 = (hy, k-, kg, . ..), of the model and the distribution, fg(z), from which the thresholds of the model are
sampled. Furthermore, it provides a method to generate a sample, to calculate damages, the survival
probabilities, and the logarithm of the likelihood (see section 2).

Below follows a brief description. Refer to the source code to check for more details.

3.1 Fields of the C+4+ class

The GUTS C++ class has no public fields. Modifications of an existing GUTS object must therefore
be made using setter methods. However, protected fields represent the attributes of an object and can
be accessed using getter methods (see section 3.2). Of particular interest are the following attributes
(due to programming conventions C++ field names may differ from the mathematical notations above):

e Title: the title of a GUTS experiment. Only relevant for batch processing using the command
line application.

C: vector of (exterior) concentrations (Cop, C1,...,Cp).

e Ct: vector of time points of concentrations (0 = sp < 51 < -++ < S)-
e y: vector of survivors (yo, Y1, - - -, Yn)-

e yt: vector of time points of survivors (0 =ty < t; < -+ <tp <).

o par: parameter vector (0 = (hy, k., kg, ...)) with the following parameters:
1. background mortality rate (hy)
2. recovery rate (k)
3. killing rate (k)

The additional arguments (par,...) determine parameters of the distribution from which
thresholds are sampled. Currently, only the lognormal distribution is implemented, and the
additional parameters are its mean and standard deviation. Note that this differs from the imple-
mentation in the R function rlnorm() where the parameters denote mean and standard deviation
of the corresponding normal distribution. If attribute dist (see below) is “empirical”, parameters
for the distribution are ignored.

3 The C++ Class

M: number of grid points on the time axis for the numerical integration (numerical exactness).
Defaults to 10000.

dist: name of the distribution to sample from (currently implemented “lognormal”; or “empir-
ical”). Defaults to “lognormal”.

N: number of threshold samples (numerical exactness). Defaults to 10000.

z: the actual sample of size N, either generated from dist with parameters from par, or provided
as an ascendingly ordered positive numeric vector.

D: vector of damages generated during the calculation of the survival probabilities.
S: vector of survival probabilities.

LL: the loglikelihood.

Note that in the source code each attribute is prefixed with an m indicating that this is a member
variable set by the corresponding method.

3.2 Methods of the C+4++ Class

The C++ Class has setter methods, getter methods, and methods to compute values and vectors in a
GUTS object.
The setter methods set up a complete GUTS experiment.

setTitle(string Title): set the title of a GUTS experiment to Title.

setConcentrations(vector<double> C, vector<double> Ct): set the vectors of concentra-
tions (C) and concentration time points (Ct). Ct must start at 0. C and Ct must have the same
length.

void setSurvivors(vector<int> y, vector<double> yt): set the vectors of survivors (y) and
survivor time points (yt). yt must start at 0. y and yt must have the same length.

setParameters (vector<double> par): set the vector of parameters. See 3.1 for details.
setTimeGridPoints(int M): set the number of grid point on the time-axis. See 3.1 for details.
setDistribution(string dist): set the distribution to dist. See 3.1 for details.
setSampleLength(int N): set the sample length to N. See 3.1 for details.

setSample (vector<double> z): do not sample, but use the provided sample z instead. Using
this method will bypass the sampling procedure. However, the vector is checked for consistency,
and a sorted copy is created and assigned to z.

Each getter method is pasted using the prefix “get” plus the variable’s name, e.g. getC for getting the
vector of concentrations. Note, that in contrast to combined setters (e.g., setConcentrations()) get-
ters are not combined, i.e., there is one getter each for access to the concentrations and the concentration
time points. Additional getters are:

getD(): returns vector<double> D, the vector of damages.
getS(): returns vector<double> S, the vector of survival probabilities
getLL(): returns double LL, the loglikelihood

getErrors: returns vector<bool> Errors, a vector of booleans indicating errors. An error at
the position exists if the element at the position is true.

4 Implementation in R

e getErrorMessages(): returns vector<string> ErrorMessages, a vector of strings expressing
what error occurred at the position.

The method showObject () prints formatted content of a GUTS object to the console output.
In addition to merely set- and get-methods, a GUTS object provides methods for calculating/com-
puting values or vectors.

e calcSample() calculates a sample from parameters and the value of the field N.

e calcSurvivalProbabilities() calculates the survival probabilities. This method is overloaded
and available in three variants:

1. without an argument: use the values present in a GUTS object for the calculation

2. with argument vector<double> St: St donate the survivor time points used for the calcu-
lation. A vector of the same length is created and filled with 0. Both vectors are supplied to
the method setSurvivors(...). Note that this will change the vector of survivors!

3. with argument int Stlength: A vector of integers starting at zero and of length Stlength is
created, as well as a corresponding vector of survivors filled with 0. Bot vectors are supplied
to the method setSurvivors(). Note that this will change the vector of survivors!

e calcLoglikelihood() calculates the loglikelihood of a properly set up GUTS object. The
method sets LL.

Two more protected methods are available in GUTS:
e doCalcSampleLognormal calculates a sample from the lognormal distribution.

e doCalcSurvivalProbabilities is the work horse for the calculation of the survival probabilities
for either of the calcSurvivalProbabilities-version.

However, these are protected methods of the class and may not be called directly.

4 Implementation in R

GUTS is exposed to R through the deployment of Repp (Eddelbuettel and Francois, 2011). GUTS is
contained in a module (modguts) and can be used in R via the S4 reference class Repp_GUTS. Except the
Title-method, all public setter and calculation methods are exposed to R and can be used on R-objects
with the appropriate signature. Except the getter of Errors and Title, all getters are exposed to R
as fields of an R-object of class Repp_GUTS. The show method (showObject) was rewritten in R to
account for special formatting capabilities of R compared to console out.
In addition to the methods of the C++ class, the in R-implementation has two S3 generics, print ()
and logLik ()
ToDo:
more to
4.1 Dataset Diazinon explain

here
The R-package also contains a small data set for use with GUTS. diazinon is a list with 13 slots:

e Description: a short line of description

e C1-C3: 3 vectors of concentrations of diazinon

e Ct1-Ct3: 3 time vectors corresponding to the concentrations vectors
e y1-y3: 3 vectors of survivors

e ytl-yt3: 3 time vectors corresponding to the survivors vectors

4 Implementation in R

R: data(diazinon)
R: diazinon

$Description
[1] "3 experiments with survivors exposed to concentrations of diazinon"

$c1
[1] 102.65 97.59 0.00 0.00 103.88 98.19 0.00 0.00 0.00 0.00

$C2
[1] 100.78 106.32 0.00 0.00 103.56 95.82 0.00 0.00 0.00

$C3
[1] 100.60 94.61 0.00 0.00 100.58 96.51 0.00 9.85

$Ct1
[1] 0.00 1.02 1.03 2.99 3.01 4.01 4.02 11.01 18.01 22.01

$Ct2
[1] 0.00 1.02 1.03 8.00 8.01 9.00 9.01 15.00 22.01

$Ct3
[1] 0.00 1.02 1.03 16.00 16.01 17.00 17.01 22.01

$y1
[1] 70 66 61 55 31 31 29 26 24 22 21 19 17 14 14 13 11 11 10 9 8 8 8

$y2
[1] 70 65 59 56 54 50 47 46 46 40 23 22 22 21 18 17 17 13 13 13 11 11 11

$y3
[1] 70 65 59 55 53 51 48 46 46 46 44 41 40 40 40 39 38 36 33 28 24 23 19

$yt1
[11 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

$yt2
[1] o 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22

$yt3
[1] 0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22

4.2 Caveats of the R Implementation

1. R objects of reference classes are references to objects!

Each R-object created with object <- GUTS$new() is a reference to a C++-object. Therefore,
copying the R-object would not result in copying the C++-object, but in duplicating the reference:

R: x <- new("Rcpp_GUTS") # a new Rcpp_GUTS object
R: x$setTimeGridPoints(M = 10000) # set some value

R: y <-x # copy x toy

R: y$setTimeGridPoints(M = 500) # set some value to y

R: x$M # access the value on x
[1] 500

Because we have copied the reference, we now have access to one and the same C+-+-object via
two R-objects. Hence, any change on one such reference will change the underlying C++-object
and will appear in all other references!

5 Usage of the R Package

5 Usage of the R Package

Using GUT'S may require the user to install the latest version of R. Refer to section “preliminaries”
(page 2) to check, which version was used for the creation of this manual. In addition to the package
GUTS, users must install the package Rcpp. For the integration of GUTS into an MCMC application,
users may be required to additionally install MHadaptive (Chivers, 2012). Professional plotting control
can be achieved using the routines in package ggplot2 (Wickham, 2009). To plot multiple figures on
one page users should install the package grid.

5.1 Basic Usage
The basic usage of GUTS is as follows:

R: library("GUTS")
R: gol <- new("Rcpp_GUTS")
R: gol

GUTS object with the following attributes:

Vector of concentrations (C, O elements)

Vector of concentration time points (Ct, O elements)
Vector of survivors (y, O elements)

Vector of survivor time points (yt, O elements)
Parameters (par, O elements)

Time grid points (M) : 10000

Distribution (dist) : lognormal

Sample length (N) : 10000

Sample vector (z, O elements)

Vector of damages (D, O elements)

Vector of survival probabilities (S, O elements)
Loglikelihood (LL) : NaN

Messages/warnings:

[1] "C not set up" "Ct not set up"
[3] "y not set up" "yt not set up"
[6] "par not set up" "z not available"

[7] "Survival probabilities not calculated" "Loglikelihood not calculated"
R: gol$LL

[1] NaN

R: logLik(gol)

'log Lik.' NA (df=NA)

In this example, a “factory-fresh” GUTS object (gol) is created. For the creation we can use the
function new("Rcpp_GUTS") or the method new (), where the method must be invoked with the creator
object GUTS. The object contains default or non-sense values, and the loglikelihood (accessed either by
the field LL or using the function logLik()) delivers NA.

Having a GUTS object, users may fill it with more sensible data. One example can be found in the
manual page of GUTS in R, and is reproduced here. We use data from the data set diazinon. The
data set is included in the package (see section 4.1).

ToDo:
more to
explain
here

5 Usage of the R Package

R: data("diazinon")

R: gol$setConcentrations(C = diazinon$Cl, Ct = diazinon$Ct1)

R: gol$setSurvivors(y = diazinon$yl, yt = diazinon$ytl)

R: gol$setParameters(par = c(0.05084761, 0.12641525, 1.61840054, 19.09911, 6.495246))
R: gol$setTimeGridPoints(M = 10000)

R: gol$setDistribution(dist = "lognormal")

R: gol$setSampleLength(N = 10000)

R: gol$calcLoglikelihood ()

R: gol$LL

[1] -183.7344

R: logLik(gol)

'log Lik.' -183.4139 (df=23)
R: gol

GUTS object with the following attributes:

Vector of concentrations (C, 10 elements):
102.65, 97.59, 0, O, 103.88, 98.19, 0, 0, 0, O
Vector of concentration time points (Ct, 10 elements):
0, 1.02, 1.03, 2.99, 3.01, 4.01, 4.02, 11.01, 18.01, 22.01
Vector of survivors (y, 23 elements):
70, 66, 61, 55, 31, 31, 29, 26, 24, 22, 21, 19, 17, 14, 14, 13, 11, 11, 10, 9, 8, 8, 8
Vector of survivor time points (yt, 23 elements):
0,1, 2, 3, 4, 5,6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
Parameters (par, 5 elements):
0.05084761, 0.12641525, 1.61840054, 19.09911, 6.495246
Time grid points (M) : 10000
Distribution (dist) : lognormal
Sample length (N) : 10000
Sample vector (z, 10000 elements):
Min=4.382654, Max=57.63886, Mean=19.03436, Sigma=6.402569
Vector of damages (D, 10000 elements):
Min=0, Max=20.45299, Mean=8.556884, Sigma=5.016242
Vector of survival probabilities (S, 23 elements):
1, 0.928576, 0.838563, 0.796447, 0.457302, 0.341034, 0.323852, 0.307796, 0.292537, 0.278034, 0.26425,
Loglikelihood (LL) : -183.4139
Messages/warnings: none

Compared to the “factory-fresh” GUTS object above, all errors disappeared, because the object
was set up properly. In addition, the invocation of the calculation of the loglikelihood (method
calcLoglikelihood()) also caused the computation of a new sample, a vector of damages, a vec-
tor of survival probabilities, and the loglikelihood. The call to the function logLik() re-computed a
sample, and hence the resulting likelihood is slightly different from the previous one. Note, that each
time the user either calls the method calcLoglikelihood() or the function logLik(), the object’s
loglikelihood is re-calculated. The recommended way of calculating and accessing the loglikelihood is:

R: gol$calcLoglikelihood() # calculate it
R: gol$LL # get it

[1] -183.3323

0.251149, 0.23869

5 Usage of the R Package

5.2 Using GUTS in MCMC Routines

As a real-world example we perform a Bayesian parameter inference (with uniform priors) using the
survival data of Gammarus pulex exposed to Diazinon Ashauer, Hintermeister, Caravatti, Kretschmann
and Escher (2010). The data is contained in the data set diazinon, which is contained in the GUTS
package. In these experiments three different exposure patterns (treatments) have been applied. Since
we want to use all the data for the parameter inference, we represent the three exposure patterns by
three instances of the GUTS class and use the sum of the three. For the computation of the MCMC
we use the package adaptMCMC by Andreas Scheidegger (mailto:andreas.scheidegger@eawag.ch).

First, we set up three different GUTS objects. Note that all data is contained in the data set
diazinon.

new objects

tmtA <- new("Rcpp_GUTS")

tmtB <- new("Rcpp_GUTS")

tmtC <- new("Rcpp_GUTS")

concentrations and concentration time points
tmtA$setConcentrations (C = diazinon$C1, Ct = diazinon$Ctl)
tmtB$setConcentrations (C = diazinon$C2, Ct = diazinon$Ct2)
tmtC$setConcentrations(C = diazinon$C3, Ct = diazinon$Ct3)
survivors and survivor time points

tmtA$setSurvivors(y = diazinon$yl, yt = diazinon$ytl)
tmtB$setSurvivors(y = diazinon$y2, yt = diazinon$yt2)
tmtC$setSurvivors(y = diazinon$y3, yt = diazinon$yt3)

distribution

tmtA$setDistribution(dist = "lognormal")
tmtB$setDistribution(dist = "lognormal")
tmtC$setDistribution(dist = "lognormal")

numercial exactness

tmtA$setTimeGridPoints (M = 10000)

tmtB$setTimeGridPoints (M = 10000)

tmtC$setTimeGridPoints (M = 10000)

tmtA$setSampleLength(N = 10000)

tmtB$setSampleLength(N = 10000)

tmtC$setSampleLength(N = 10000)

POHHTDDNDDDODDNDDYODD YD

We now define a set of starting parameters, and create a function that updates the parameters on
either of the three objects and delivers the loglikelihood:

R: par.start <- ¢(0.1, 0.3, 1, 1, 1)
R: loglikeli <- function(par) {
if (any(par < 0)) {
Parameters must not be negative
return (-Inf)
}
else {
The loglikelihood of the 3 treatments
is just the sum of the individual ones
tmtA$setParameters (par)
tmtB$setParameters (par)
tmtC$setParameters (par)
tmtA$calcLoglikelihood ()
tmtB$calcLoglikelihood ()
tmtC$calcLoglikelihood ()
out <- tmtA$LL + tmtB$LL + tmtC$LL
return(out)

10

mailto:andreas.scheidegger@eawag.ch

5 Usage of the R Package

Note that if particular error occurs (e.g., a sample mean smaller than 0), then this functions returns
NA. Next, we set the jump covariance for MCMC chain:

R: par.names <- c("h.b", "k.r", "k.k", "mean", "sd")
R: sigma <- diag(par.start/10)"2

Calculate the adaptive Markov chain using the package adaptMCMC:

R: library("adaptMCMC")

Our result can be inspected in various ways, one is to look at the structure:

R: str(res.mcmc)

List of 7

$ samples : num [1:50000, 1:5] 0.1 0.108 0.125 0.126 0.126 ...

$ log.p : num [1:50000] -7823 -6034 -5800 -4805 -4805 ...

$ cov.jump : num [1:5, 1:5] 1.84e-05 3.82e-06 1.05e-03 3.15e-04 -1.44e-03 ...
$ n.sample : num 50000

$ acceptance.rate : num 0.458

$ adaption : logi TRUE

$ sampling.parameters:List of 3

..$ sample.density:function (par)
..— attr(*, "srcref")=Class 'srcref' atomic [1:8] 1 14 18 1 14 1 1 18

e ..— attr(x, "srcfile")=Classes 'srcfilecopy', 'srcfile' <environment: 0x103705518>
..$ acc.rate : num 0.4
..$ gamma : num 0.55

5.3 Plotting the Outcomes of the MCMC Inference

Excellent plotting facilities are available through the routines in the package ggplot2 (Wickham, 2009).
ggplot2 offers great features for generating object-oriented plots. To plot the trace of the parameter
mean one may use the code below. Note that due to file size issues we reduce data to the each 50th
iteration. The result is displayed in figure 1):

R: library("ggplot2")

R: # prepare a data frame, and select select each 10th observation
R: k <- nrow(res.mcmc$samples)

R: i <- seq(1, k, 50)

R: df <- data.frame(i, res.mcmc$samples[i, 1)

R: colnames(df) <- c("iter", par.names)

R: str(df)

'data.frame': 1000 obs. of 6 variables:

$ iter: num 1 51 101 151 201 251 301 351 401 451 ...

11

5 Usage of the R Package

$ h.b : num 0.1 0.136 0.137 0.137 0.137 ...

$ k.r : num 3.00e-01 1.21e-03 1.72e-04 8.42e-05 2.34e-05 ...
$ x.k : num 1 2.15 2.15 2.15 2.15 ...

$ mean: num 1 0.961 0.961 0.961 0.961 ...

$sd :num 1 2.36 2.37 2.37 2.37 ...

R: # create the plot object

R: ggp.mean <- ggplot(df, aes(x=iter, y=mean)) +
geom_line() +
xlab('iteration') +
ylab('Value of mean')

R: ggp.mean

30-

Value of mean
S
1

10-

1 1 1 1
10000 20000 30000 40000
iteration

Figure 1: Plot of the trace of the parameter mean using package ggplot2.

In the following we create two plots using ggplot2, the trace plot of the five parameters (figure 2) and
the density plots (figure 3). Both statistics should appear on one page each, hence we create a little
helper function to set up the page (requires the package grid!). Note, that if one wants only one plot
appear on one page (pdf), this helper function and the application of multiplot () is not necessary.

R: multiplot <- function(..., plotlist = NULL, cols) {
require(grid)

12

5 Usage of the R Package

plots <- c(list(...), plotlist)
numPlots = length(plots)
plotCols = cols
plotRows = ceiling(numPlots/plotCols)
grid.newpage ()
pushViewport (viewport (layout = grid.layout(plotRows, plotCols)))
vplayout <- function(x, y) viewport(layout.pos.row = x, layout.pos.col = y)
for (i in 1:numPlots) {
curRow = ceiling(i/plotCols)
curCol = (i - 1)}JplotCols + 1
print(plots[[i]], vp = vplayout(curRow, curCol))

We new prepare the data frame holding the parameters as well as a column signing the loop in the
MCMC. ggplot2 creates objects of plots. Printing these objects result in the final plot. This differs from
the standard plot routines in R, where in most of the cases the plot function plots itself. Note that due
to plot size issues we reduce data to each 50th iteration.

R: # prepare a data frame

R: k <- nrow(res.mcmc$samples)

R: i <- seq(1, k, 50)

R: plot.data <- data.frame(i, res.mcmc$samples[i,])
R: colnames(plot.data) <- c("iter", par.names)

R: str(plot.data)

'data.frame': 1000 obs. of 6 variables:

$ iter: num 1 51 101 151 201 251 301 351 401 451 ...
$h.b :num 0.1 0.136 0.137 0.137 0.137 ...

$ k.r : num 3.00e-01 1.21e-03 1.72e-04 8.42e-05 2.34e-05 ...
$ kk : num 1 2.15 2.15 2.15 2.15 ...

$ mean: num 1 0.961 0.961 0.961 0.961 ...

$sd :num 1 2.36 2.37 2.37 2.37 ...

R: # five plots for five parameters

R: plot.h.b <- ggplot(plot.data, aes(x=iter, y=h.b)) +
geom_line() +
xlab('iter') +
ylab('Value of h.b')

R: plot.k.r <- ggplot(plot.data, aes(x=iter, y=k.r)) +
geom_line() +
xlab('iter') +
ylab('Value of k.r')

R: plot.k.k <- ggplot(plot.data, aes(x=iter, y=k.k)) +
geom_line() +
xlab('iter') +
ylab('Value of k.k')

R: plot.mean <- ggplot(plot.data, aes(x=iter, y=mean)) +
geom_line() +
xlab('iter') +
ylab('Value of mean')

R: plot.sd <- ggplot(plot.data, aes(x=iter, y=sd)) +
geom_line() +
xlab('iter') +
ylab('Value of sd')

Now we use the multiplot () function defined above, and plot each ggplot object in the appropriate
position.

13

5 Usage of the R Package

R: multiplot(plot.h.b, plot.k.r, plot.k.k, plot.mean, plot.sd, cols=2)

0.12- 0.25-
o) —
=0.10- ~0.20-
5 G
0.08- 0.15-
g E
3 . < i
5006 £0.10
0.04- 0.05-
0.02-
1 1 1 1 1 1 1 1
10000 20000 30000 40000 10000 20000 30000 40000
iter iter
60 -
50 - 307
3 g
X
= 40- 1S
5] 520~
830- 0
<
Lo0- -
> 10
10-
1 1 1 1 1 1 1 1
10000 20000 30000 40000 10000 20000 30000 40000
iter iter
15-
o
0]
-
O 10-
(]
=
<
> 5-

| | | |
10000 20000 30000 40000
iter

Figure 2: Plot of the trace of the parameters using package ggplot2.

As done for the trace plots, we proceed with the densities of the parameters. Here, each iteration is
plotted!

R: i <- length(res.mcmc$samples[, 1])

R: plot.data <- data.frame(1:i, res.mcmc$samples)
R: colnames(plot.data) <- c("iter", par.names)

R: str(plot.data)

'data.frame': 50000 obs. of 6 variables:

$ iter: int 12345678910 ...

$ h.b : num 0.1 0.108 0.125 0.126 0.126 ...
$ k.r : num 0.3 0.322 0.326 0.341 0.341

14

5 Usage of the R Package

.732 0.792 0.588 0.588 ...
1.04 1.13 1.13 ...
.95 1.065 0.932 0.932 ...

o

: # five plots for five parameters

R: plot.dens.h.b <- ggplot(plot.data) +
geom_density(aes(x = h.b)) +
xlab('h.b') +
ylab('Density')

R: plot.dens.k.r <- ggplot(plot.data) +
geom_density(aes(x = k.r)) +
xlab('k.r') +
ylab('Density"')

R: plot.dens.k.k <- ggplot(plot.data) +
geom_density(aes(x = k.k)) +
xlab('k.k') +
ylab('Density"')

R: plot.dens.mean <- ggplot(plot.data) +
geom_density(aes(x = mean)) +
xlab('mean') +
ylab('Density')

R: plot.dens.sd <- ggplot(plot.data) +

geom_density(aes(x = sd)) +

xlab('sd') +

ylab('Density')

R: multiplot(plot.dens.h.b, plot.dens.k.r, plot.dens.k.k, plot.dens.mean, plot.dens.sd, cols=2)

Next, we address the best fit.

The result of the MCMC was saved in object res.mcmc. This object is a list with various attributes.
Two attributes are of particular interest here: The vector of loglikelihoods saved during the MCMC
(log.p), and the “vector” of parameters (saved as a matrix samples). Each of these two objects has a
length equal to the iterations’ number (here: n = 50,000). The “maximum probable parameters” can
be found at the position of the maximum loglikelihood:

R: best.fit.pos <- which.max(res.mcmc$log.p)
R: best.fit.pars <- res.mcmc$samples[best.fit.pos,]

We set the parameters of each of the three experimental GUTS objects the the parameters of the
best fit, and calculate the survival probabilities accordingly:

tmtA$setParameters (best.fit.pars)
tmtB$setParameters (best.fit.pars)
tmtC$setParameters (best.fit.pars)
tmtA$calcSurvivalProbabilities ()
tmtB$calcSurvivalProbabilities ()
tmtC$calcSurvivalProbabilities ()

DWW D D

Now, we create three plots, one for each experiment. In each plot, we want to display the measured
number of deaths (y) compared to the predicted number of deaths (S x maz(y)).

15

5 Usage of the R Package

50- 8-
340— 26~
230- 2
o) D4 -
BO20- a
10- 29
0- A 0-
I I I I I I I I I
0.02 004 0.06 0.08 010 012 0.1 0.2 0.3
h.b k.r
0.06 -
0.20-
0.05-
.‘?0.15— .‘?0.04_
2 2
3] i ©0.03-
go.10 2
0.02-
0.05-
0.01-
0.00- 0.00 -
1 1 1 1 1 1
20 40 60 10 20 30 40
k.k mean
0.15-
20.10-
‘B
c
[}]
o
0.05-
0.00-
I I I
5 10 15
sd

Figure 3: Plot of the density of the parameters using package ggplot2.

Figure 4 shows the results for the three experiments.

: # prepare data frames
: plot.data.A <- data.frame(
"var" = rep(c("measured", "predicted"), each=length(tmtA$y)),
"yt rep (tmtA$yt, 2),
"y" = c(-diff (tmtA$y), tmtA$y[length(tmtA$y)],
c(~diff (tmtA$S), tmtA$S[length(tmtA$S)]) * max(tmtA$y))

)
: plot.data.B <- data.frame("var" = rep(c("measured", "predicted"), each=length(tmtB$y)),
"yt" = rep(tmtB$yt, 2),
"y" = c(-diff (tmtB$y), tmtB$y[length(tmtB$y)],
c(-diff (tmtB$S), tmtB$S[length(tmtB$S)]) * max(tmtB$y)))
: plot.data.C <- data.frame("var" = rep(c("measured", "predicted"), each=length(tmtC$y)),
"yt" = rep(tmtC$yt, 2),
"y" = c(-diff (tmtC8y), tmtC$y[length(tmtCPy)],
c(-diff (tmtC$S), tmtC$S[length(tmtC$S)]) * max(tmtC$y)))
: # generate 3 plots using ggplot
: plot.bf.A <- ggplot(plot.data.A, aes(x=yt, y=y, group=var, shape=var, colour=var)) +

16

5 Usage of the R Package

geom_point () +
xlab('survivor time points in experiment A') +
ylab('deaths')
R: plot.bf.B <- ggplot(plot.data.B, aes(x=yt, y=y, group=var, shape=var, colour=var)) +
geom_point () +
xlab('survivor time points in experiment B') +
ylab('deaths')
R: plot.bf.C <- ggplot(plot.data.C, aes(x=yt, y=y, group=var, shape=var, colour=var)) +
geom_point () +
xlab('survivor time points in experiment C') +
ylab('deaths')

We use the function multiplot () from above to merge all plots.

R: multiplot(plot.bf.A, plot.bf.B, plot.bf.C, cols=1)

17

15-

15-

5 Usage of the R Package

A
var
N - measured
N 4 predicted
AAK'AAXXAAA;AAAAAA
1 1 1 1
5 10 15 20
survivor time pomts n experlment A
A
var
. « measured
A 4 predicted
LIV T, .
o .A‘AAAAAAAAAA
1 1 1 1
5 . . lQ . 15_ 20
survivor time points in experiment B
A
var
+ measured
A predicted
A
; A A A . -A . .
o o .A‘AAAAAAAA.A A
1 1 1 1
5 10 15 20

survivor time points in experiment C

Figure 4: Plot of the best fit using package ggplot2.

18

6 Command Line Version

6 Command Line Version

6.1 Command Options

e —C: a vector of doubles holding the concentrations.

e -Ct: a vector of doubles holding the concentration time points. The units provided here must
also be used with survivor time points (see below).

e -y: a vector of integers holding the number of survivors.

e —yt: a vector of doubles of survivor time points. The units provided here must also be used with
concentration time points.

e —par: a vector of doubles holding the parameters.
e -M: an integer holding the number of time grid points on the time axis.

e —dist: a string holding the name of the distribution to sample from. Can be either “lognormal”
or “empirical”. Ignored if options -z or --z-file are used.

e -z: a vector of doubles holding the actual sample.
e -zFile: a character string. The string is the name of the file with doubles of values of the sample.
e -title: a single line character string holding the title of the experiment.

e -verbose: be verbose. Set to 0 = quiet or 1 = verbose, where 1 means to display intermediate
information while running.

e -help: display basic usage of the command.

References

Ashauer, R., Hintermeister, A., Caravatti, I., Kretschmann, A. & Escher, B. I. (2010). Toxicokinetic and
toxicodynamic modeling explains carry-over toxicity from exposure to diazinon by slow organism
recovery. Environmental Science & Technology, 44(10), 3963-3971.

Chivers, C. (2012). MHadaptive: general Markov Chain Monte Carlo for Bayesian inference using
adaptive Metropolis-Hastings sampling. R package version 1.1-8. Retrieved May 14, 2012, from
http://CRAN.R-project.org/package=MHadaptive

Eddelbuettel, D. & Francois, R. (2011, April 13). Rcpp: seamless R and C++ integration. Journal of
Statistical Software, 40(8), 1-18. Retrieved March 21, 2011, from http://www.jstatsoft.org/v40/
i08

Jager, T., Albert, C., Preuss, T. G. & Ashauer, R. (2011). General unified theory of survival — a
toxicokinetic toxicodynamic framework for ecotoxicology. Environmental Science & Technology,
45(7), 2529-2540. doi:10.1021/es103092a

Leisch, F. (2002). Sweave: dynamic generation of statistical reports using literate data analysis. In
W. Hardle & B. Ronz (Eds.), Compstat 2002—proceedings in computational statistics (575-580).
Heidelberg: Physica Verlag.

R Development Core Team. (2012, April). R: a language and environment for statistical computing. R
Foundation for Statistical Computing. Vienna, Austria. Retrieved April 19, 2012, from R Found-
ation for Statistical Computing: http://www.R-project.org

Wickham, H. (2009). ggplot2: elegant graphics for data analysis. New York: Springer.

19

ToDo

ToDo

http://CRAN.R-project.org/package=MHadaptive
http://www.jstatsoft.org/v40/i08
http://www.jstatsoft.org/v40/i08
http://dx.doi.org/10.1021/es103092a
http://www.R-project.org

	Preface
	Theoretical Background
	The Algorithm
	The C++ Class
	Fields of the C++ class
	Methods of the C++ Class

	Implementation in R
	Dataset Diazinon
	Caveats of the R Implementation

	Usage of the R Package
	Basic Usage
	Using GUTS in MCMC Routines
	Plotting the Outcomes of the MCMC Inference

	Command Line Version
	Command Options

