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Introduction

These are (incomplete) course notes about generalised linear mixed models
(GLMM). Special emphasis is placed on understanding the underlying struc-
ture of a GLMM in order to show that slight modifications of this structure can
produce a wide range of models. These include familiar models like regression
and ANOVA, but also models with intimidating names: animal models, thresh-
old models, meta-analysis, MANCOVA and random regression ... The primary
aim of the course is to show that these models are only daunting by name.
The secondary aim is to show how these models can be fitted in a Bayesian
framework using Markov chain Monte Carlo (MCMC) methods in the R pack-
age MCMCglmm. For those not comfortable using Bayesian methods, many of the
models outlined in the course notes can be fitted in asreml or lmer with little
extra work. If you do use MCMCglmm, please, cite Hadfield (2010).
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Chapter 1

Bayesian Statistics &
Markov chain Monte Carlo

There are fundamental differences between classical and Bayesian approaches,
but for those of us interested in applied statistics the hope is that these differ-
ences do not translate into practical differences, and this is often the case. My
advice would be if you can fit the same model using different packages and/or
methods do so, and if they give very different answers worry. In some cases
differences will exist, and it is important to know why, and which method is
more appropriate for the data in hand.

In the context of a generalised linear mixed model (GLMM), here are what I
see as the pro’s and cons of using (restricted) maximum likelihood (REML) ver-
sus Bayesian Markov chain Monte Carlo (MCMC) Bayesian methods. REML is
fast and easy to use, whereas MCMC can be slow and technically more challeng-
ing. Particularly challenging is the specification of a sensible prior, something
which is a non-issue in a REML analysis. However, analytical results for non-
Gaussian GLMM are generally not available, and REML based procedures use
approximate likelihood methods that may not work well. MCMC is also an
approximation but the accuracy of the approximation increases the longer the
analysis is run for, being exact at the limit. In addition REML uses large-
sample theory to derive approximate confidence intervals that may have very
poor coverage, especially for variance components. Again, MCMC measures of
confidence are exact, up to Monte Carlo error, and provide an easy and intuitive
way of obtaining measures of confidence on derived statistics such as ratios of
variances, correlations and predictions.

To illustrate the differences between the approaches lets imagine we’ve ob-
served several random deviates (y) from a standard normal (i.e. p = 0 and
02 = 1). The likelihood is the probability of the data given the parameters:

Pr(ylp, o)

5
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This is a conditional distribution, where the conditioning is on the model
parameters which are taken as fixed and known. In a way this is quite odd
because we’ve already observed the data, and we don’t know what the parameter
values are. In a Bayesian analysis we evaluate the conditional probability of the
model parameters given the observed data:

Pr(u,o’ly)

which seems more reasonable, until we realise that this probability is pro-
portional to

Pr(y|p, o®)Pr(p, o®)

where the first term is the likelihood, and the second term represents our
prior belief in the values that the model parameters could take. Because the
choice of prior is rarely justified by an objective quantification of the state of
knowledge it has come under criticism, and indeed we will see later that the
choice of prior can make a difference.

1.1 Likelihood

We can generate 5 observations from this distribution using rnorm:

> Ndata <- data.frame(y = rnorm(5, mean = 0, sd = sqrt(1)))
> Ndata$y

[1] 0.01464054 0.87328871 -1.02794620 0.68566463 0.44943698

We can plot the probability density function for the standard normal using
dnorm and we can then place the 5 data on it:

> possible.y<-seq(-3,3,0.1) # possible values of y

> Probability<-dnorm(possible.y, mean=0, sd=sqrt(1)) # density of possible values
> plot(Probability~possible.y, type="1")

> Probability.y<-dnorm(Ndata$y, mean=0, sd=sqrt(1)) # density of actual values

> points(Probability.y Ndata$y)

The likelihood of these data, conditioning on y = 0 and ¢? = 1, is propor-
tional to the product of the densities (read off the y axis on Figure 1.1):

> prod(dnorm(Ndata$y, mean = 0, sd = sqrt(1)))
[1] 0.002907336

Of course we don’t know the true mean and variance and so we may want
to ask how probable the data would be if, say, i = 0, and 02 = 0.5:

> prod(dnorm(Ndata$y, mean = 0, sd = sqrt(0.5)))
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Figure 1.1: Probability density function for the unit normal with the data points
overlaid.

[1] 0.004731679

It would seem that the data are more likely under this set of parameters
than the true parameters, which we must expect some of the time just from
random sampling. To get some idea as to why this might be the case we can
overlay the two densities (Figure 1.2), and we can see that although some data
points (e.g. 0.873) are more likely with the true parameters, in aggregate the
new parameters produce a higher likelihood.

The likelihood of the data can be calculated on a grid of possible parameter
values to produce a likelihood surface, as in Figure 1.3. The densities on the
contours have been scaled so they are relative to the density of the parameter
values that have the highest density (the maximum likelihood estimate of the two
parameters). Two things are apparent. First, although the surface is symmetric
about the line p = [ (where " stands for maximum likelihood estimate) the
surface is far from symmetric about the line 02 = 2. Second, there are a large
range of parameter values for which the data are only 10 times less likely than
if the data were generated under the maximum likelihood estimates.
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Figure 1.2: Two probability density functions for normal distributions with
means of zero, and a variance of one (black line) and a variance of 0.5 (red line).
The data points are overlaid.

1.1.1 Maximum Likelihood (ML)

The ML estimator is the combination of z and ¢? that make the data most
likely. Although we could evaluate the density on a grid of parameter values
(as we did to produce Figure 1.3) in order to locate the maximum, for such a
simple problem the ML estimator can be derived analytically. However, so we
don’t have to meet some nasty maths later, I'll introduce and use one of R’s
generic optimising routines that can be used to maximise the likelihood function
(in practice, the log-likelihood is maximised to avoid numerical problems):

> loglik <- function(par, y) {

+ sum(dnorm(y, par[1], sqrt(par[2]), log = TRUE))

+ }

> MLest <- optim(c(mean = 0, var = 1), fn = loglik, y = Ndata$y,
+ control = list(fnscale = -1, reltol = 1le-16))$par

The first call to optim are starting values for the optimisation algorithm, and
the second argument (fn) is the function to be maximised. By default optim
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Figure 1.3: Likelihood surface for the likelihood Pr(y]|u,o?). The likelihood has
been normalised so that the maximum likelihood has a value of one.

will try to minimise the function hence multiplying by -1 (fnscale = -1). The
algorithm has successfully found the mode:
> MLest

mean var
0.1990169 0.4587223

Alternatively we could also fit the model using glm:

> mla.1l <- glm(y ~ 1, data = Ndata)
> summary(mla.1)

Call:
glm(formula = y ~ 1, data = Ndata)

Deviance Residuals:
1 2 3 4 5
-0.1844 0.6743 -1.2270 0.4867 0.2504
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Coefficients:
Estimate Std. Error t value Pr(>|tl|)
(Intercept) 0.1990 0.3386 0.588 0.588

(Dispersion parameter for gaussian family taken to be 0.573403)

Null deviance: 2.2936 on 4 degrees of freedom
Residual deviance: 2.2936 on 4 degrees of freedom
AIC: 14.293

Number of Fisher Scoring iterations: 2

Here we see that although the estimate of the mean (intercept) is the same,
the estimate of the variance (the dispersion parameter: 0.573) is higher when
fitting the model using glm. In fact the ML estimate is a factor of " smaller.

> MLest["var"] * (5/4)

var
0.5734029

1.1.2 Restricted Maximum Likelihood (REML)

To see why this happens, imagine if we had only observed the first two values of y
(Figure 1.4). The variance is defined as the average squared distance between a
random variable and the true mean. However, the ML estimator of the variance
is the average squared distance between a random variable and the ML estimate
of the mean. Since the ML estimator of the mean is the average of the two
numbers (the dashed line) then the average squared distance will always be
smaller than if the true mean was used, unless the ML estimate of the mean
and the true mean coincide. This is why we divide by n — 1 when estimating
the variance from the sum of squares, and is the motivation behind REML.
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Figure 1.4: Probability density function for the unit normal with 2 realisations
overlaid. The solid vertical line is the true mean, whereas the vertical dashed line
is the mean of the two realisations (the ML estimator of the mean). The variance
is the expected squared distance between the true mean and the realisations.
The ML estimator of the variance is the average squared distance between the
ML mean and the realisations (horizontal dashed lines), which is always smaller
than the average squared distance between the true mean and the realisations
(horizontal solid lines)

1.2 Prior Distribution

MCMCglmm uses an inverse Wishart prior for the (co)variances and a normal prior
for the fixed effects. In versions > 1.13 parameter expanded models can be used
which enable prior specifications from the the scaled non-central F-distribution
(Gelman, 2006). Here, we will focus on specifying a prior for a single fixed ef-
fect (p) and a single variance component using the inverse-Wishart to highlight
some of the issues. I strongly recommend reading the section 8.0.7 on parameter
expanded priors as these can be less informative than the inverse-Wishart under
many situations.
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For a single variance component the inverse Wishart takes two scalar param-
eters, V and nu. The distribution tends to a point mass on V as the degree of
belief parameter, nu goes to infinity. The distribution tends to be right skewed
when nu is not very large, with a mode of Xurig but a mean of Xulig (which is
not defined for nu < 2).!

As before, we can evaluate and plot density functions in order to visualise
what the distribution looks like. Figure 1.5 plots the probability density func-
tions holding V equal to one but with nu varying.

T V=1

0.4

0.3

0.2

0.1

0.0

Index

Figure 1.5: Probability density function for a univariate inverse Wishart with
the variance at the limit set to 1 (V=1) and varying degree of belief parameter
(nu). With V=1 these distributions are equivalent to inverse gamma distributions
with shape and scale parameters set to nu/2.

A probability distribution must integrate to one because a variable must

IThe inverse gamma is a special case of the inverse Wishart, although it is parametrised

scale _ nu —
shape (or shape = 5 and scale =

using shape and scale, where nu = 2 * shape and V =

y) MCMCpack provides a density function (dinvgamma) for the inverse gamma distribution.
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have some value. It therefore seems reasonable that when specifying a prior,
care must be taken that this condition is met. In the example here where V
is a single variance this condition is met if V>0 and nu>0. If this condition is
not met then the prior is said to be improper, and in WinBUGS (and possibly
other software) improper priors cannot be specified. Although great care has to
be taken when using improper priors, MCMCglmm does allow them as they have
some useful properties, and some common improper priors are discussed in sec-
tion 1.5. However, for now we will use the prior specification V=1 and nu=0.002
which is frequently used for variance components. For the mean we will use a
diffuse normal prior centred around zero but with very large variance (10%). If
the variance is finite then the prior is always proper.

As before we can write a function for calculating the (log) prior probability:

> logprior <- function(par, priorR, priorB) {

+ dnorm(par[1], mean = priorB$mu, sd = sqrt(priorB$V), log = TRUE) +
+ log(dinvgamma (par[2], shape = priorR$nu/2, scale = (priorR$nu *
+ priorR$V)/2))

+}

where priorR is a list with elements V and nu specifying the prior for the
variance, and priorB is a list with elements mu and V specifying the prior for
the mean. MCMCglmm takes these prior specifications as a list:

> prior <- list(R = 1list(V = 1, nu = 0.002), B = list(mu = 0, V = 1e+08))

1.3 Posterior Distribution

To obtain a posterior density we need to multiply the likelihood by the prior
probability for that set of parameters. We can write a function for doing this:

> loglikprior <- function(par, y, priorR, priorB) {
+ loglik(par, y) + logprior(par, priorR, priorB)
+ }

and we can overlay the posterior densities on the likelihood surface we cal-
culated before (Figure 1.3).

The prior has some influence on the posterior mode of the variance, and we
can use an optimisation algorithm again to locate the mode:

> Best <- optim(c(mean = 0, var = 1), fn = loglikprior, y = Ndata$y,

+ priorR = prior$R, priorB = prior$B, control = list(fnscale = -1,
+ reltol = 1le-16))$par
> Best

mean var

0.1990169 0.3278509
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Figure 1.6: Likelihood surface for the likelihood Pr(y|u,o?) in black, and the
posterior distribution Pr(ju,o?|y) in red. The likelihood has been normalised so
that the maximum likelihood has a value of one, and the posterior distribution
has been normalised so that the posterior mode has a value of one. The prior
distributions Pr(u) ~ N(0,10%) and Pr(c?) ~ IW(V = 1,nu = 0.002) were
used.

The posterior mode for the mean is identical to the ML estimate, but the
posterior mode for the variance is even less than the ML estimate which is known
to be downwardly biased. The reason that the ML estimate is downwardly
biased is because it did no take into account the uncertainty in the mean. In a
Bayesian analysis we can do this by evaluating the marginal distribution of o2
and averaging over the uncertainty in the mean.

1.3.1 Marginal Posterior Distribution

The marginal distribution is often of primary interest in statistical inference,
because it represents our knowledge about a parameter given the data:

Pr(o®ly) /PT(M,GQIy)du
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after averaging over any nuisance parameters, such as the mean in this case.

Obtaining the marginal distribution analytically is usually impossible, and
this is where MCMC approaches prove useful. We can fit this model in MCMCglmm
pretty much in the same way as we did using glm:

> mla.2 <- MCMCglmm(y ~ 1, data = Ndata, prior = prior, thin = 1,
+ verbose = FALSE)

The Markov chain is drawing random (but often correlated) samples from
the joint posterior distribution (depicted by the red contours in Figure 1.6). The
element of the output called Sol contains the distribution for the mean, and the
element called VCV contains the distribution for the variance. We can produce
a scatter plot:

> points(cbind(mla.2$Sol, mla.28VCV))

and we see that MCMCglmm is sampling the same distribution as the pos-
terior distribution calculated on a grid of possible parameter values (Figure 1.8).

A very nice property of MCMC is that we can normalise the density so that
it integrates to 1 (a true probability) rather than normalising it with respect to
some other aspect of the distribution, such as the density at the ML estimator
or the joint posterior mode as in Figures 1.3 and 1.6. To make this clearer,
imagine we wanted to know how much more probable the unit normal (i.e. with
p = 0 and 0% = 1) was than a normal distribution with the posterior modal
parameters. We can calculate this by taking the ratio of the posterior densities
at these two points:

> exp(loglikprior(Best, Ndata$y, prior$R, prior$B) - loglikprior(c(0,
+ 1), Ndata$y, prior$R, prior$B))

[1] 5.207646

Now, if we wanted to know the probability that the parameters lay in the
region of parameter space we were plotting, i.e. lay in the square u = (—2,2)
and o2 = (0, 5) then this would be more difficult. We would have to evaluate the
density at a much larger range of parameter values than we had done, ensuring
that we had covered all regions with positive probability. Because MCMC has
sampled the distribution randomly, this probability will be equal to the expected
probability that we have drawn an MCMC sample from the region. We can
obtain an estimate of this by seeing what proportion of our actual samples lie
in this square:

> prop.table(table(mla.2$Sol > -2 & mla.2$Sol < 2 & mla.2$VCV <
+ 5))
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Figure 1.7: The posterior distribution Pr(u,o?|y). The black dots are samples
from the posterior using MCMC, and the red contours are calculated by eval-
uating the posterior density on a grid of parameter values. The contours are
normalised so that the posterior mode has a value of one.

FALSE TRUE
0.0239 0.9761

There is Monte Carlo error in the answer (0.976) but if we collect a large
number of samples then this can be minimised.

Using a similar logic we can obtain the marginal distribution of the variance
by simply evaluating the draws in VCV ignoring (averaging over) the draws in
Sol:

> hist(mla.2$VCV[which(mla.2$VCV < 5)])
> abline(v = Best["var"], col = "red")

In this example (see Figure 1.8) the marginal mode and the joint mode are
very similar, although this is not necessarily the case and can depend both on
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Figure 1.8: Histogram of samples from the marginal distribution of the variance
Pr(o?|y) using MCMC. The vertical line is the joint posterior mode, which
differs slightly from the marginal posterior mode (the peak of the marginal
distribution).

the data and the prior. Section 1.5 introduces improper priors that are non-
informative with regard to the marginal distribution of a variance.

1.4 MCMC

In order to be confident that MCMCglmm has successfully sampled the poste-
rior distribution it will be necessary to have a basic understanding of MCMC
methods. MCMC methods are often used when the joint posterior distribution
cannot be derived analytically, which is nearly always the case. MCMC relies
on the fact that although we cannot derive the complete posterior, we can cal-
culate the height of the posterior distribution at a particular set of parameter
values, as we did to obtain the contour plot in Figure 1.6. However, rather than
going systematically through every likely combination of y and ¢ and calculate
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the height of the distribution at regular distances, MCMC moves stochastically
through parameter space, hence the name ‘Monte Carlo’.

1.4.1 Starting values

First we need to initialise the chain and specify a set of parameter values from
which the chain can start moving through parameter space. Ideally we would like
to pick a region of high probability, as we do not want to waste time wandering
through regions of low probability: we are not so interested in determining the
height of the distribution far outside of Figure 1.6 as it is virtually flat and close
to zero (or at least we hope so!). Although starting configurations can be set
by the user using the start argument, in general the heuristic techniques used
by MCMCglmm seem to work quite well. We will denote the parameter values of
the starting configuration (time ¢t = 0) as py—o and 02,—o. There are several
ways in which we can get the chain to move in parameter space, and MCMCglmm
uses a combination of Gibbs sampling, slice sampling and Metropolis-Hastings
updates. To illustrate, it will be easier to turn the contour plot of the posterior
distribution into a perspective plot (Figure 1.9).

1.4.2 Metrpolis-Hastings updates

After initialising the chain we need to decide where to go next, and this decision
is based on two rules. First we have to generate a candidate destination, and
then we need to decide whether to go there or stay where we are. There are many
ways in which we could generate candidate parameter values, and MCMCglmm uses
a well tested and simple method. A random set of coordinates are picked from a
multivariate normal distribution that is entered on the initial coordinates p:—g
and 02_,. We will denote this new set of parameter values as fi,e, and o2,,.
The question then remains whether to move to this new set of parameter values
or remain at our current parameter values now designated as old po;q = pt—o
and ng q= o2_,. If the posterior probability for the new set of parameter values
is greater, then the chain moves to this new set of parameters and the chain
has successfully completed an iteration: (y4—1 = pinew and o2, = 02,,). If
the new set of parameter values has a lower posterior probability then the chain
may move there, but not all the time. The probability that the chain moves
to low lying areas, is determined by the relative difference between the old and
new posterior probabilities. If the posterior probability for e, and o2, is
5 times less than the posterior probability for u.q and Ugld, then the chain
would move to the new set of parameter values 1 in 5 times. If the move is
successful then we set ji4—1 = finew and o7, = o2, as before, and if the move
is unsuccessful then the chain stays where it is (pi—1 = pog and o2y = 02,).
Using these rules we can record where the chain has travelled and generate an
approximation of the posterior distribution. Basically, a histogram of Figure 1.9.
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Figure 1.9: The posterior distribution Pr(u,c?|y). This perspective plot is
equivalent to the contour plot in Figure 1.6

1.4.3 Gibbs Sampling

Gibbs sampling is a special case of Metropolis-Hastings updating, and MCMCglmm
uses Gibbs sampling to update most parameters. In the Metropolis-Hastings
example above, the Markov Chain was allowed to move in both directions of
parameter space simultaneously. An equally valid approach would have been
to set up two Metropolis-Hastings schemes where the chain was first allowed to
move along the y axis, and then along the o2 axis. In Figure 1.10 I have cut the
posterior distribution of Figure 1.9 in half, and the edge of the surface facing
left is the conditional distribution of ;1 given that 0% = 1:

Pr(plo® =1,y). (1.1)

In some cases, the equation that describes this conditional distribution can
be derived despite the equation for the complete joint distribution of Figure
1.9 remaining unknown. When the conditional distribution of p is known we
can use Gibbs sampling. Lets say the chain at a particular iteration is located
at 02 = 1. If we updated p using a Metropolis-Hastings algorithm we would
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Figure 1.10: The posterior distribution Pr(u,o?|y), but only for values of o2
between 1 and 5, rather than 0 to 5 (Figure 1.9). The edge of the surface facing
left is the conditional distribution of the mean when o2 =1 (Pr(uly,o? = 1)).
This conditional distribution follows a normal distribution.

generate a candidate value and evaluate its relative probability compared to the
old value. This procedure would take place in the slice of posterior facing left
in Figure 1.10. However, because we know the actual equation for this slice we
can just generate a new value of u directly. This is Gibbs sampling. The slice of
the posterior that we can see in Figure 1.10 actually has a normal distribution.
Because of the weak prior this normal distribution has a mean close to the mean
of y and a variance close to %2 = % Gibbs sampling can be much more efficient
than Metropolis-Hastings updates, especially when high dimensional conditional
distributions are known, as is typical in GLMMs. A technical description of the
sampling schemes used by MCMCglmm is given in appendix 7.2, but is perhaps
not important to know.
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1.4.4 Slice Sampling

If the distribution can be factored such that one factor is a distribution from
which truncated random variables can be drawn, then the slice sampling meth-
ods of Damien et al. (1999) can be used. The latent variables in univariate
binary models can be updated in this way if s1lice=TRUE is specified in the call
to MCMCglmm. In these models, slice sampling is only marginally more efficient
than adaptive Metropolis-Hastings updates when the residual variance is fixed.
However, for parameter expanded binary models where the residual variance is
not fixed, the slice sampler can be much more efficient.

1.4.5 MCMC Diagnostics

When fitting a model using MCMCglmm the parameter values through which the
Markov chain has travelled are stored and returned. The length of the chain (the
number of iterations) can be specified using the nitt argument? (the default is
13,000), and should be long enough so that the posterior approximation is valid.
If we had known the joint posterior distribution in Figure 1.9 we could have set
up a Markov chain that sampled directly from the posterior. If this had been
the case, each successive value in the Markov chain would be independent of
the previous value after conditioning on the data, y, and a thousand iterations
of the chain would have produced a histogram that resembled Figure 1.9 very
closely. However, generally we do not know the joint posterior distribution of
the parameters, and for this reason the parameter values of the Markov chain
at successive iterations are usually not independent and care needs to be taken
regarding the validity of the approximation. MCMCglmm returns the Markov chain
as mcmc objects, which can be analysed using the coda package. The function
autocorr estimates the level of non-independence between successive samples
in the chain:

> autocorr(mla.2$Sol)

, » (Intercept)

(Intercept)
Lag O 1.000000000
Lag 1 0.0237156850
Lag 5 0.007823033
Lag 10 -0.011490974
Lag 50 0.008903345

> autocorr(mla.2$VCV)

, , units

units

2The double t is because I cannot spell.
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Lag O 1.000000000
Lag 1  0.228517764
Lag 5 -0.007597471
Lag 10 -0.004843682
Lag 50 0.006178729

The correlation between successive samples is low for the mean (0.024) but
a bit high for the variance (0.229). When auto-correlation is high the chain
needs to be run for longer, and this can lead to storage problems for high di-
mensional problems. The argument thin can be passed to MCMCglmm specifying
the intervals at which the Markov chain is stored. In model mla.2 we specified
thin=1 meaning we stored every iteration (the default is thin=10). I usually
aim to store 1,000-2,000 iterations and have the autocorrelation between suc-
cessive stored iterations less than 0.1.

The approximation obtained from the Markov chain is conditional on the
set of parameter values that were used to initialise the chain. In many cases
the first iterations show a strong dependence on the starting parametrisation,
but as the chain progresses this dependence may be lost. As the dependence
on the starting parametrisation diminishes the chain is said to converge and the
argument burnin can be passed to MCMCped specifying the number of iterations
which must pass before samples are stored. The default burn-in period is 3,000
iterations. Assessing convergence of the chain is notoriously difficult, but visual
inspection and diagnostic tools such as gelman.diag often suffice.

> plot(mla.2$Sol)

On the left of Figure 1.11 is a time series of the parameter as the MCMC
iterates, and on the right is a posterior density estimate of the parameter (a
smoothed histogram of the output). If the model has converged there should be
no trend in the time series. The equivalent plot for the variance is a little hard
to see on the original scale, but on the log scale the chain looks good (Figure
1.12):

> plot(log(mia.2$VCV))

1.5 Improper Priors

When improper priors are used their are two potential problems that may be
encountered. The first is that if the data do not contain enough information
the posterior distribution itself may be improper, and any results obtained from
MCMCglmm will be meaningless. In addition, with proper priors there is a zero
probability of a variance component being exactly zero but this is not necessarily
the case with improper priors. This can produce numerical problems (trying to
divide through by zero) and can also result in a reducible chain. A reducible
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Figure 1.11: Summary plot of the Markov Chain for the intercept. The left plot
is a trace of the sampled posterior, and can be thought of as a time series. The
right plot is a density estimate, and can be thought of a smoothed histogram
approximating the posterior.

chain is one which gets ‘stuck’ at some parameter value and cannot escape. This
is usually obvious from the mcme plots but MCMCglmm will often terminate before
the analysis has finished with an error message of the form:

ill-conditioned G/R structure: use proper priors ...

However, improper priors do have some useful properties.

1.5.1 Flat Improper Prior

The simplest improper prior is one that is proportional to some constant for
all possible parameter values. This is known as a flat prior and the posterior
density in such cases is equal to the likelihood:

Pr(p,0”ly) o< Pr(y|u, o?)
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Figure 1.12: Summary plot of the Markov Chain for the logged variance. The
logged variance was plotted rather than the variance because it was easier to
visualise. The left plot is a trace of the sampled posterior, and can be thought
of as a time series. The right plot is a density estimate, and can be thought of
a smoothed histogram approximating the posterior.

It is known that although such a prior is non-informative for the mean it
is informative for the variance. We can specify a flat prior on the variance
component by having nu=0 (the value of V is irrelevant) and the default prior
for the mean is so diffuse as to be essentially flat across the range (—10°,10°).

> prior.mla.3 <- list(R = list(V =1, nu = 0))
> mla.3 <- MCMCglmm(y ~ 1, data = Ndata, thin = 1, prior = prior.mla.3,
+ verbose = FALSE)

We can overlay the joint posterior distribution on the likelihood surface
(1.13) and see that the two things are in close agreement, up to Monte Carlo
error.
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Figure 1.13: Likelihood surface for the likelihood Pr(y|u,o?) in black, and an
MCMC approximation for the posterior distribution Pr(u,o?|y) in red. The
likelihood has been normalised so that the maximum likelihood has a value
of one, and the posterior distribution has been normalised so that the poste-
rior mode has a value of one. Flat priors were used (Pr(u) ~ N(0,10%) and
Pr(o?) ~ IW(V = 0,nu = 0)) and so the posterior distribution is equivalent to
the likelihood.

1.5.2 Non-Informative Improper Prior

Although inverse-Wishart distributions with negative degree of belief parame-
ters are not defined, the resulting posterior distribution can be defined if there is
sufficient replication. Specifying V=0 and n=-1 is equivalent to a uniform prior
for the standard deviation on the the interval (0, 00], and specifying V=0 and
n=-2 is non-informative for a variance component.

> prior.mla.4 <- list(R = 1list(V = le-16, nu = -2))
> mla.4 <- MCMCglmm(y ~ 1, data = Ndata, thin = 1, prior = prior.mla.4,
+ verbose = FALSE)

The joint posterior mode does not coincide with either the ML or REML
estimator (Figure 1.14).



CHAPTER 1. BAYESIAN STATISTICS & MCMC 26

Figure 1.14: Likelihood surface for the likelihood Pr(y|u,o?) in black, and an
MCMC approximation for the posterior distribution Pr(u,o?|y) in red. The
likelihood has been normalised so that the maximum likelihood has a value of
one, and the posterior distribution has been normalised so that the posterior
mode has a value of one. A non-informative prior was used (Pr(u) ~ N(0,10%)
and Pr(o?) ~ IW(V = 0,nu = —2))

but the marginal distribution of the variance component is equivalent to the
REML estimator (See Figure 1.15):
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Figure 1.15: An MCMC approximation for the marginal posterior distribution of
the variance Pr(o?|y). A non-informative prior specification was used (Pr(u) ~
N(0,108) and Pr(o?) ~ IW (V= 0,nu = —2)) and the REML estimator of the
variance (red line) coincides with the marginal posterior mode.



Chapter 2

Generalised Linear Mixed
Models (GLMM)

2.1 Linear Model (LM)

A linear model is one in which unknown parameters are multiplied by observed
variables and then added together to give a prediction for the response variable.
As an example, lets take the results from a Swedish experiment from the sixties:

> data(Traffic, package = "MASS")
> Traffic$year <- as.factor(Traffic$year)
> Traffic[c(1, 2, 184), ]

year day limit vy
1 1961 1 no 9
2 1961 2 no 11
184 1962 92 yes 9

The experiment involved enforcing speed limits on Swedish roads on some
days, but on other days letting everyone drive as fast as they liked. The response
variable (y) was how many of their citizens were injured in road accidents! The
experiment was conducted in 1961 and 1962 for 92 days in each year. As a first
attempt we could specify the linear model:

y ~ limit + year + day

but what does this mean?

2.1.1 Linear Predictors

The model formula defines a set of simultaneous (linear) equations

28
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Elyl1]l] =01+ f2(limit[1]=="yes") + [3(year[1]1=="1962") 4 (4day[1]
Efyl[2]] =01+ f2(1limit[2]=="yes") + [3(year[2]=="1962") + (4day [2]

Ely [.184]] = .ﬂl + B2(limit [184]=="yes") + (3(year [184]1=="1962") + (,day[184]

where the §’s are the unknown coefficients to be estimated, and the variables
in this font are observed predictors. Continuous predictors such as day re-
main unchanged, but categorical predictors are expanded into a series of binary
variables of the form ‘do the data come from 1961, yes or no?’, ‘do the data
come from 1962, yes or no?’, and so on for as many years for which there are
data.

It is cumbersome to write out the equation for each data point in this way,
and a more compact way of representing the system of equations is

Elyl = X8 (2.1)

where X is called a design matrix and contains the predictor information,
and B = [0y B2 B3 B4] is the vector of parameters.

> X <- model.matrix(y ~ limit + year + day, data = Traffic)
> X[c(1, 2, 184), ]

(Intercept) limityes year1962 day

1 1 0 0 1
1 0 o 2
184 1 1 1 92

The binary predictors do the data come from 1961, yes or no? and there
was no speed limit, yes or no? do not appear. These are the first factor levels
of year and limit respectively, and are absorbed into the global intercept (51)
which is fitted by default in R. Hence the expected number of injuries for the
four combinations (on day zero) are ; for 1961 with no speed limit, 8; + (5 for
1961 with a speed limit, 81 + (35 for 1962 with no speed limit and 3y + B2 + (3
for 1962 with a speed limit.

The simultaneous equations defined by Equation (2.1) cannot be solved di-
rectly because we do not know the expected value of y. We only know the
observed value, which we assume is distributed around the expected value with
some error. In a normal linear model we assume that these errors are normally
distributed so that the data are also normally distributed (after taking into
account the predictor variables):

y ~ N(XB,0°T) (2.2)
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I is an identity matrix. It has ones along the diagonal, and zeros in the
off-diagonals. The zero off-diagonals imply that the residuals are uncorrelated,
and the ones along the diagonal imply that they have the same variance o2. We
could use glm to estimate 3 and 02 assuming that y is normally distributed:

> m2a.1 <- glm(y ~ limit + year + day, data = Traffic)

but the injuries are count data and the residuals show the typical right skew:

Histogram of m2a.1$resid
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Figure 2.1: Histogram of residuals from model m2a.1 which assumed they fol-
lowed a Gaussian distribution.

Its not extreme, and the conclusions probably won’t change, but we could
assume that the data follow some other distribution.

2.2 Generalised Linear Model (GLM)

Generalised linear models extend the linear model to non-Gaussian data. They
are essentially the same as the linear model described above, except they differ in
two aspects. First, it is not necessarily the mean response that is predicted, but
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some function of the mean response. This function is called the link function.
For example, with a log link we are trying to predict the logged expectation:

log(Ely]) = X8 (2.3)
or alternatively

Ely] = exp(X83) (2.4)
where exp is the inverse of the log link function. The second difference is
that many distributions are single parameter distributions for which a variance
does not need to be estimated, because it can be inferred from the mean. For
example, we could assume that the number of injuries are Poisson distributed,
in which case we also make the assumption that the variance is equal to the
expected value. There are many different types of distribution and link functions
and those supported by MCMCglmm can be found in Table 7.1. For now we will
concentrate on a Poisson GLM with log link (the default link function for the
Poisson distribution):

> m2a.2 <- glm(y ~ limit + year + day, family = poisson, data = Traffic)
> summary (m2a.2)

Call:
glm(formula = y ~ limit + year + day, family = poisson, data = Traffic)

Deviance Residuals:
Min 1Q Median 3Q Max
-4.1774 -1.4067 -0.4040 0.9725 4.9920

Coefficients:
Estimate Std. Error z value Pr(>|zl)
(Intercept) 3.0467406 0.0372985 81.685 < 2e-16 *x**

limityes -0.1749337 0.0355784 -4.917 8.79e-07 ***
year1962 -0.0605503 0.0334364 -1.811 0.0702 .

day 0.0024164 0.0005964  4.052 5.09e-05 ***

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 625.25 on 183 degrees of freedom
Residual deviance: 569.25 on 180 degrees of freedom
AIC: 1467.2

Number of Fisher Scoring iterations: 4

The results look fairly straightforward, having a speed limit reduces the
number of injuries significantly, there are fewer injuries in 1962 (although sig-
nificance is marginal) and there is a significant increase in the number of injuries
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over the year. Are these big effects or small effects? The coeflicients are on the
log scale so to get back to the data scale we need to exponentiate. The exponent
of the intercept is the predicted number of injuries on day zero in 1961 without
a speed limit:

> exp(m2a.2$coef["(Intercept)"])

(Intercept)
21.04663

To get the prediction for the same day with a speed limit we need to add
the limityes coefficient

> exp(m2a.2$coef["(Intercept)"] + m2a.2$coef["limityes"])

(Intercept)
17.66892

With a speed limit there are expected to be 0.840 times less injuries than if
there were no speed limits. This value can be more directly obtained:

> exp(m2a.2%coef["limityes"])

limityes
0.8395127

and holds true for any given day in either year. For example, without a
speed limit on the final day of the year (92) in 1961 we expect 24.742 injuries:

> exp(m2a.2$coef ["(Intercept)"] + m2a.2$coef["year1962"] + 92 *
+ m2a.2$coef ["day"])

(Intercept)
24.74191

and 20.771 injuries if a speed limit had been in place:

> exp(m2a.2%coef["(Intercept)"] + m2a.2%coef["limityes"] + m2a.2%coef["year1962"] +
+ 92 * m2a.2$coef["day"])

(Intercept)
20.77115

The proportional change is identical because the model is linear on the log
scale.
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2.3 Over-dispersion

Most count data do not conform to a Poisson distribution because the variance
in the response exceeds the expectation. This is known as over-dispersion and it
is easy to see how it arises, and why it is so common. In the summary to m2a.2
note that the ratio of the residual deviance to the residual degrees of freedom
is 3.162 which means, roughly speaking, there is 3.2 times as much variation in
the residuals than what we expect.

If the predictor data had not been available to us then the only model we
could have fitted was one with just an intercept:

> m2a.3 <- glm(y ~ 1, data = Traffic, family = "poisson")
> summary (m2a.3)

Call:
glm(formula = y ~ 1, family = "poisson", data = Traffic)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.6546 -1.4932 -0.3378 0.9284 5.0601

Coefficients:
Estimate Std. Error z value Pr(>|zl|)
(Intercept) 3.07033 0.01588 193.3 <2e-16 **x

Signif. codes: O '**xx' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 625.25 on 183 degrees of freedom
Residual deviance: 625.25 on 183 degrees of freedom
AIC: 1517.2

Number of Fisher Scoring iterations: 4

for which the residual variance exceeds that expected by a factor of 3.5.
Of course, the variability in the residuals must go up if there are factors that
influence the number of injuries, but which we hadn’t measured. Its likely that
in most studies there are things that influence the response that haven’t been
measured, and even if each thing has small effects individually, in aggregate
they can cause substantial over-dispersion.

2.3.1 Multiplicative Over-dispersion

There are two ways of dealing with over-dispersion. With glm the distribution
name can be prefixed with quasi and a dispersion parameter estimated:
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> m2a.4 <- glm(y ~ limit + year + day, family = quasipoisson, data = Traffic)
> summary(m2a.4)

Call:
glm(formula = y ~ limit + year + day, family = quasipoisson,
data = Traffic)

Deviance Residuals:
Min 1Q Median 3Q Max
-4.1774 -1.4067 -0.4040 0.9725 4.9920

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 3.046741 0.067843 44.909 < 2e-16 *x*x*
limityes -0.174934  0.064714 -2.703 0.00753 **
year1962 -0.060550 0.060818 -0.996 0.32078
day 0.002416 0.001085 2.227 0.02716 *
Signif. codes: O '**x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasipoisson family ta