
Using MODISTools (0.93.3)

Sean Tuck

2013-07-25

Contents

1 Introduction 1

2 Format the data 1

3 Download the data 2
3.1 Specifying a subset request . 2
3.2 MODISSubsets . 3
3.3 MODISTransects . 4

4 Process the data 4
4.1 MODISSummaries . 4
4.2 ExtractTile . 5
4.3 LandCover . 6

1 Introduction

The MODISTools R package is a set of tools for downloading and working with NASA’s MODIS
remotely-sensed data. The package retrieves data from the LP DAAC data archive, via their SOAP
web service. Functions download data as a batch process, and save subsets in text files that can be
returned to at a later date. Additional functions can provide summaries of this data and prepare the
data to a format ready for application in R; if you have other data that you wish to relate MODIS data
to, downloaded data can be appended to your original dataset. Other ancillary functions can help to get
input arguments into the correct format.

This vignette provides a worked example for using MODISTools. A dataset of time-series – lat-long
coordinates with start and end dates – to collect MODIS data for, will be used to show a complete
workflow for how someone might use MODISTools. We will prepare input information for a subset
request, download subsets of Enhanced Vegetation Index (EVI) and land cover data for the specified
locations, and process these data to analyse land processes at these locations. Note that you will need an
internet connection to run this worked example yourself, and that it will download files to your computer.

2 Format the data

We have some coordinates that we would like to extract MODIS data for. But the coordinates are not
in the correct format. We need to make sure the coordinates we input for our subset request are in the
WGS-1984 coordinate system, and are in decimal degrees format.

1

> data(ConvertExample)

> ConvertExample

lat long

1 51d24.106'N 0d38.018'W
2 51d24.922'N 0d38.772'W
3 51d24.106'N 0d38.664'W
4 51d24.772'N 0d38.043'W
5 51d24m51.106sN 0d38m56.018sW

6 51d24m37.922sN 0d38m31.772sW

7 51d24m42.106sN 0d38m17.664sW

8 51d24m47.772sN 0d38m42.043sW

These coordinates are WGS-1984 coordinates, but they are not in decimal degrees. We can use
ConvertToDD to fix this.

> modis.subset <-

ConvertToDD(XY = ConvertExample, LatColName = "lat", LongColName = "long")

> modis.subset <- data.frame(lat = modis.subset[,1], long = modis.subset[,2])

> modis.subset

lat long

1 51.40177 -0.6336333

2 51.41537 -0.6462000

3 51.40177 -0.6444000

4 51.41287 -0.6340500

5 51.41420 -0.6488939

6 51.41053 -0.6421589

7 51.41170 -0.6382400

8 51.41327 -0.6450119

What we also need to retrieve a time-series of MODIS data for these locations are dates. End dates for
the time-series, and preferably start dates too. If we don’t have start dates we can ask for a set number
of years for each location instead. Let’s retrieve data between 2003 and 2006. The dates can be specified
as years or in POSIXlt date-time class (see ?POSIXlt). In this case we can just use years.

> modis.subset$start.date <- rep(2003, nrow(modis.subset))

> modis.subset$end.date <- rep(2006, nrow(modis.subset))

That’s all we need! Let’s download our EVI data first.

3 Download the data

3.1 Specifying a subset request

The shortname code for the EVI product is “MOD13Q1”. We can check the codes for all the products
available using GetProducts, and we can find the shortname codes for all data bands within each product
using GetBands.

> GetProducts()

2

[1] "MCD12Q1" "MCD12Q2" "MCD43A1" "MCD43A2" "MCD43A4" "MOD09A1"

[7] "MOD11A2" "MOD13Q1" "MOD15A2" "MOD15A2GFS" "MOD16A2" "MOD17A2_51"

[13] "MOD17A3" "MYD09A1" "MYD11A2" "MYD13Q1" "MYD15A2"

> GetBands(Product = "MOD13Q1")

[1] "250m_16_days_blue_reflectance" "250m_16_days_MIR_reflectance"

[3] "250m_16_days_NIR_reflectance" "250m_16_days_pixel_reliability"

[5] "250m_16_days_red_reflectance" "250m_16_days_relative_azimuth_angle"

[7] "250m_16_days_sun_zenith_angle" "250m_16_days_view_zenith_angle"

[9] "250m_16_days_VI_Quality" "250m_16_days_NDVI"

[11] "250m_16_days_EVI" "250m_16_days_composite_day_of_the_year"

We will download EVI data at 250m pixel resolution, which is available at 16-day intervals. The shortname
code for this data band is 250m 16 days EVI. We will collect quality control data for these pixels too,
which is available from the 250m 16 days pixel reliability band (and 250m 16 days VI Quality too).

We can check that the time-series of MODIS data we want is available for this data product by
retrieving the dates for all available time-steps.

> dates <-

GetDates(Product = "MOD13Q1", Lat = modis.subset$lat[1], Long = modis.subset$long[1])

> min(dates)

[1] "A2000049"

> max(dates)

[1] "A2013177"

The time-period available for the Vegetation Indices product covers 2003-2006 (the maximum shown is
at the time this vignette was built), so we can proceed. When we download we also need to decide how
large we want the tiles of data for each location to be. We specify this by entering the distance (km)
above and below in each direction away from the central pixel, where the input coordinate is located, and
then doing the same for left and right. The input must be whole km (integers) for each direction. As
an example, if we specify Size=c(1,1) for this EVI data at 250m pixel resolution, it will retrieve a 9x9
pixel tile for each location, centred on the input coordinate. The tiles this size will be downloaded at the
locations for each time-step that falls between the start and end dates. Size=c(0,0) would specify only
the central pixel. The maximum size tile surrounding a location is Size=c(100,100).

3.2 MODISSubsets

The download will write the MODIS data to ASCII files for each location subset specified. We can specify
the directory that we would like to save downloaded files in, using the SaveDir argument below. In the
code below, downloaded files will be written to your working directory; if you would prefer the files to be
written elsewhere change SaveDir. But we will access these files later, so remember to request the files
from the same directory.

> MODISSubsets(LoadDat = modis.subset, Product = "MOD13Q1",

Bands = c("250m_16_days_EVI", "250m_16_days_pixel_reliability"),

Size = c(1,1))

3

Each ASCII file is a different subset location. In each ASCII file, each row is a different time-step in the
time-series. If multiple data bands have been downloaded for this subset, they will all be contained in
the same ASCII file for that subset.

Here is an example of the strings of data that are downloaded for pixels at each time-step and data
band:

> subset.string <- read.csv(paste(list.files(pattern=".asc")[1],

header=FALSE, as.is=TRUE))

> subset.string[1,]

V1 V2 V3

1 MOD13Q1.A2004001.h17v03.005.2007234110215.250m_16_days_EVI MOD13Q1 A2004001

V4 V5 V6 V7 V8 V9 V10 V11

1 Lat51.41327Lon-0.645011944444444Samp9Line9 2.007234e+12 2627 2627 4135 4119 4123 2986

V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27 V28

1 3124 2449 2449 2639 2258 2258 2356 2356 2986 2986 2336 2700 2639 2248 2248 2131 2463

V29 V30 V31 V32 V33 V34 V35 V36 V37 V38 V39 V40 V41 V42 V43 V44 V45

1 2463 2834 2834 2700 2824 2492 2139 2131 2310 2310 2300 2834 2522 2498 2492 2139 2139

V46 V47 V48 V49 V50 V51 V52 V53 V54 V55 V56 V57 V58 V59 V60 V61 V62

1 2092 2318 2300 2323 2323 2498 2498 2146 2172 2092 2318 2318 2437 2323 2723 2523 2523

V63 V64 V65 V66 V67 V68 V69 V70 V71 V72 V73 V74 V75 V76 V77 V78 V79

1 2172 2172 2317 2317 2437 2634 2444 1988 2523 2207 2378 2378 2292 2292 2820 2589 1988

V80 V81 V82 V83 V84 V85 V86

1 1962 1962 2237 2378 2378 2381 2727

A download log file will also be written, displaying all the unique subsets found in the dataset, and
confirmation of download success for each.

3.3 MODISTransects

Alternatively, we may want transects of MODIS data. This is easily done by specifying start and end
points for transects and calling MODISTransects. Our data here does not have coordinates that specify
transect end points yet, so we need to calculate them using EndCoordinates.

> names(modis.subset) <- c("start.lat", "start.long", "start.date", "end.date")

> EndCoordinates(LoadDat = modis.subset, Distance = 1000, Angle = 60,

AngleUnits = "degrees")

> modis.transect <- read.csv(list.files(pattern = "Transect Coordinates"))

> MODISTransects(LoadData = modis.transect, Product = "MOD13Q1",

Bands = c("250m_16_days_EVI", "250m_16_days_pixel_reliability"),

Size = c(0,0), StartDate = TRUE)

4 Process the data

4.1 MODISSummaries

Now we have downloaded the EVI data, we can find average each pixel over time, to produce one tile
of mean EVI pixels at each subset location. We can use MODISSummaries for this. The function will
also take this processed data and append it to your original files containing all the subset information

4

(modis.subset). This will write two files to the specified directory. We downloaded quality control data
for each pixel alongside our EVI data, so MODISSummaries can also check for poor quality and missing
data. These data will be removed and replaced with NAs. The threshold for defining what is good and
poor quality is set by the user: the scores for highest quality is 0, and the score for lowest quality is 3 or
5, depending on the data band. To see how quality control information is defined for each data type, go
to the MODIS Products Table. We need to specify the range of valid data for EVI, the value that
denotes missing data, and the scale factor that is applied to the data, which are all available from the
same web page.

> MODISSummaries(LoadDat = modis.subset, Product = "MOD13Q1", Band = "250m_16_days_EVI",

ValidRange = c(-2000,10000), NoDataFill = -3000, ScaleFactor = 0.0001,

QualityScreen = TRUE, QualityBand = "250m_16_days_pixel_reliability",

QualityThreshold = 0)

If you want to screen data for quality without all the other things that MODISSummaries does, you can
call the more general QualityCheck, which is an internal function for MODISSummaries.

4.2 ExtractTile

Also, if large subset tiles are downloaded for each location, there may be times when we want to extract
a smaller tile from within this subset, rather than downloading again to retrieve the nested data we want.
This can be done using ExtractTile. We will use the file just written from our call to MODISSummaries,
retrieve the smaller subset we want, and arrange them into tiles to compare before and after.

> TileExample <- read.csv(list.files(pattern = "MODIS Data"))

> TileExample <- TileExample[,which(grepl("band.pixels", names(TileExample)))]

Pixels in a tile are on the same row. See that using ExtractTile takes away some of the columns.

> dim(TileExample)

[1] 8 81

> dim(ExtractTile(Data = TileExample, Rows = c(9,2), Cols = c(9,2), Grid = FALSE))

[1] 8 25

> head(ExtractTile(Data = TileExample, Rows = c(9,2), Cols = c(9,2), Grid = FALSE),

n = 2)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0.3507588 0.3778630 0.401367 0.3664756 0.3114811 0.3660027 0.4076705 0.3843886

[2,] 0.3654468 0.3644941 0.382880 0.3970886 0.4155620 0.4385893 0.3623270 0.3677757

[,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16]

[1,] 0.3671898 0.3770149 0.3846099 0.4011764 0.3454266 0.3313671 0.3954960 0.3863663

[2,] 0.3840878 0.3954889 0.3991618 0.3288403 0.3849842 0.3895216 0.3875111 0.3976902

[,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24]

[1,] 0.4266230 0.3572599 0.3609461 0.4206966 0.4583811 0.4923791 0.4212212 0.4200632

[2,] 0.3680142 0.3887727 0.4036611 0.3817324 0.4083904 0.4237785 0.4024520 0.3819636

[,25]

[1,] 0.4498460

[2,] 0.3837451

5

https://lpdaac.usgs.gov/products/modis_products_table

We can look at the first subset and arrange the pixels into a tile to visually show what ExtractTile has
done.

> matrix(TileExample[1,], nrow = 9, ncol = 9, byrow = TRUE)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0.4035009 0.368406 0.3369911 0.3706116 0.405156 0.4077885 0.380869 0.3764521

[2,] 0.3779488 0.3695678 0.329654 0.3499113 0.3987212 0.394887 0.4079352 0.4933911

[3,] 0.3573749 0.3605016 0.3507588 0.3660027 0.3846099 0.3863663 0.4583811 0.5585599

[4,] 0.3533674 0.3489834 0.377863 0.4076705 0.4011764 0.426623 0.4923791 0.5042675

[5,] 0.3471202 0.3467685 0.401367 0.3843886 0.3454266 0.3572599 0.4212212 0.4439073

[6,] 0.3445654 0.32862 0.3664756 0.3671898 0.3313671 0.3609461 0.4200632 0.4045281

[7,] 0.3914093 0.322921 0.3114811 0.3770149 0.395496 0.4206966 0.449846 0.4017315

[8,] 0.4221513 0.367898 0.3645603 0.4070896 0.3875095 0.3733892 0.3743215 0.3597581

[9,] 0.3705793 0.3538647 0.3312581 0.3011145 0.2922328 0.2747998 0.2930625 0.3217153

[,9]

[1,] 0.3499755

[2,] 0.4769236

[3,] 0.4956572

[4,] 0.4170771

[5,] 0.4335761

[6,] 0.3833537

[7,] 0.371729

[8,] 0.3566241

[9,] 0.3520446

> ExtractTile(Data = TileExample, Rows = c(9,2), Cols = c(9,2), Grid = TRUE)[, ,1]

[,1] [,2] [,3] [,4] [,5]

[1,] 0.3507588 0.3660027 0.3846099 0.3863663 0.4583811

[2,] 0.3778630 0.4076705 0.4011764 0.4266230 0.4923791

[3,] 0.4013670 0.3843886 0.3454266 0.3572599 0.4212212

[4,] 0.3664756 0.3671898 0.3313671 0.3609461 0.4200632

[5,] 0.3114811 0.3770149 0.3954960 0.4206966 0.4498460

Arrangement of the pixels into tiles this way can be optionally set with a call to ExtractTile. The order
for the strings of pixel data in the downloaded ASCII files is by row, so matrix(..., byrow=TRUE) can
arrange the pixels correctly (see above).

4.3 LandCover

Let’s do the same as above but download data on land cover classes for the same subsets.

> MODISSubsets(LoadDat = modis.subset, Product = "MCD12Q1", Bands = "Land_Cover_Type_1",

Size = c(1,1))

We can use LandCover to retrieve some summaries of land cover in each tile. This will tell us the most
common land cover type, the total number of distinct land cover types, and Simpson’s D and evenness
measures to express landscape diversity and heterogeneity in these tiles. Let’s retrieve these summaries
from the land cover subset files we just downloaded.

6

> LandCover(Band = "Land_Cover_Type_1")

> land.summary <- read.csv(list.files(pattern = "MODIS Land Cover Summary"))

> head(land.summary)

lat long date modis.band most.common richness

1 51.40177 -0.6336333 2004-01-01 Land_Cover_Type_1 Deciduous Needleleaf forest 3

2 51.40177 -0.6336333 2005-01-01 Land_Cover_Type_1 Evergreen Needleleaf forest 3

3 51.40177 -0.6336333 2006-01-01 Land_Cover_Type_1 Deciduous Needleleaf forest 3

4 51.40177 -0.6444000 2004-01-01 Land_Cover_Type_1 Evergreen Broadleaf forest 3

5 51.40177 -0.6444000 2005-01-01 Land_Cover_Type_1 Deciduous Needleleaf forest 4

6 51.40177 -0.6444000 2006-01-01 Land_Cover_Type_1 Deciduous Needleleaf forest 4

simpsons.d simpsons.evenness no.data.fill

1 2.880184 0.9600614 0% (0/25)

2 2.880184 0.9600614 0% (0/25)

3 2.880184 0.9600614 0% (0/25)

4 2.729258 0.9097525 0% (0/25)

5 2.777778 0.6944444 0% (0/25)

6 2.659574 0.6648936 0% (0/25)

7

	Introduction
	Format the data
	Download the data
	Specifying a subset request
	MODISSubsets
	MODISTransects

	Process the data
	MODISSummaries
	ExtractTile
	LandCover

