Built 2022-02-05 using NMdata 0.0.11.
This vignette is still under development. Please make sure to see latest version available here.
This vignettes aims at enabling you at
Using NMdata’s data preparation tools to assist building your data set
Using mergeCheck
to automatically check merge results, ensuring rows do not get lost or duplicated
Assigning exclusion flags and obtain a table summary counting data exclusions from source data to analysis data set
Easily and consistently order data columns using NMorderColumns
Using NMcheckData
to perform a extensive data check before exporting for Nonmem
Writing the prepared data to file ensuring compatibility with NONMEM and for post-processing in R using NMwriteData
Updating multiple NONMEM control streams to read the updated data file using one simple call of the NMwriteSection
function
Only basic R knowledge should be required to follow the instructions.
Getting data ready for modeling is a crucial and often underestimated task. Mistakes during the process of combining data sets, defining time variables etc. can lead to difficulties during modeling, need for revisiting data set preparation, and in worst case wasted time working with an erroneos data set. Avoiding those mistakes by integrating checks into the data preparation process is a key element in an efficient and reliable data preparation work flow.
Furthermore, NONMEM has a number of restrictions on the format of the input data, and problems with the data set is a common reason for NONMEM not to behave as expected. When this happens, debugging can be time-consuming. NMdata
includes some simple functions to prevent these situations.
This vignette uses data.table
syntax for the little bit of data manipulation performed. However, you don’t need to use data.table at all to use these or any tool in NMdata
. The data set is a data.table
:
readRDS(file = system.file("examples/data/xgxr2.rds", package = "NMdata"))
pk <-class(pk)
#> [1] "data.table" "data.frame"
If you are not familiar with data.table
, you can still keep reading this vignette and learn what NMdata
can do. data.table
is a powerful enhancement to the data.frame
class, and the syntax is a little different from data.frame
. The few places where this affects the examples provided here, explanations will be given. You can replace all use of data.table
in this vignette with base R functions, tidyverse functions or whatever you prefer.
When stacking (rbind
) and merging, it is most often necessary to check if two or more data sets are compatible for the operation. compareCols
compares columns across two or more data sets.
To illustrate the output of compareCols
, a slightly modified version of the pk
dataset has been created. One column (CYCLE
) has been removed, and AMT
has been recoded to character. compareCols
tells us about exactly these two differences:
compareCols(pk, pk.reduced)
#> Dimensions:
#> data nrows ncols
#> 1: pk 1502 24
#> 2: pk.reduced 751 23
#>
#> Columns that differ:
#> column pk pk.reduced
#> 1: CYCLE integer <NA>
#> 2: AMT integer character
Before merging or stacking, we may want to recode AMT
in one of the datasets to get the class we need, and decide what to do about the CYCLE
column which is missing in one of the datasets (add information or fill with NA
?).
When stacking data sets we often know what columns we are looking to obtain in the final data. We may already have defined that early in our data preparation script, and compareCols
can use this to highlight these columns. cc
is a shorthand function to create character vectors withour quoting the elements.
cc(ID, TIME, CYCLE, STUDY, BW)
special.columns <-compareCols(pk, pk.reduced, cols.wanted = special.columns)
#> Dimensions:
#> data nrows ncols
#> 1: pk 1502 24
#> 2: pk.reduced 751 23
#>
#> Columns that differ:
#> column pk pk.reduced
#> 1: *ID integer integer
#> 2: *TIME numeric numeric
#> 3: *CYCLE integer <NA>
#> 4: *STUDY integer integer
#> 5: *BW <NA> <NA>
#> 6: AMT integer character
In this case, we may want to add diff.only=FALSE
to see if other columns could hold the information we are missing for BW
and CYCLE
.
The model estimation step is heavily dependent (and in NONMEM almost entirely based) on numeric data values. The source data will often contain character variables, i.e. columns with non-numeric data values.
If the column names reflect whether the values are numeric, double-checking can be avoided. renameByContents
renames columns if a function of their contents returns TRUE
.
renameByContents(data = pktmp, fun.test = NMisNumeric,
pk.renamed <-fun.rename = tolower, invert.test = TRUE)
We make use of the function NMisNumeric
which tests if NONMEM can interpret the contents as numeric. If say the subject ID is of character class, it can be valid to NONMEM. Subject ID "1039"
will be a numeric in NONMEM, "1-039"
will not. NMisNumeric
will return TRUE
if and only if all elements are either missing or interpretable as numeric. We invert the condition (invert.test=TRUE
), and the names of the columns that NONMEM cannot interpret as numeric become lowercase. We use compareCols
to illustrate that three columns were renamed:
compareCols(pktmp, pk.renamed)
#> Dimensions:
#> data nrows ncols
#> 1: pktmp 1502 23
#> 2: pk.renamed 1502 23
#>
#> Columns that differ:
#> column pktmp pk.renamed
#> 1: EVENTU character <NA>
#> 2: NAME character <NA>
#> 3: TIMEUNIT character <NA>
#> 4: eventu <NA> character
#> 5: name <NA> character
#> 6: timeunit <NA> character
We can now easily see that if we wish to include the information contained in eventu
, pktmp
, and pk.renamed
, we have to modify or translate their contents first.
Merge or join operations are a very powerful data preparion tool. But they are also a very common source of bugs. Most of us know too well how merges can leave us with unexpected rows or make rows disappear. However, most often we can impose restrictions on the merge operation that allows for automated validation of the results.
Imagine the very common example that we have a longitudinal PK data set (called pk
), and we want to add subject-level covariates from a secondary data set (dt.cov
). We want to merge by ID
, and all we can allow to happen is columns to be added to pk
from dt.cov
. If rows disappear or get repeated, or if columns get renamed, it’s unintended and should return an error. That is what mergeCheck
is for.
Often people check the dimensions of the result to make sure nothing unintended happened. The following example shows that this is not enough, and that mergeCheck
works differently. After merging the two data sets the check of the dimensions raises no alarm - the number of rows is unchanged from pk
to pk2
, and one of two columns in dt.cov
was added. dims
is just a dim
-like function that can compare multiple data sets - handy for interactive analysis.
merge(pk, dt.cov, by = "ID")
pk2 <-dims(pk, dt.cov, pk2)
#> data nrows ncols
#> 1: pk 1502 24
#> 2: dt.cov 150 2
#> 3: pk2 1502 25
What we didn’t realize is that we now have twice as many rows for subject 31.
== 31, .N]
pk[ID #> [1] 10
== 31, .N]
pk2[ID #> [1] 20
If we instead use mergeCheck
, we get an error. This is because mergeCheck
compares the actual rows going in and out of the merge and not just the dimensions.
mergeCheck(pk, dt.cov, by = "ID")
#> Rows disappeared during merge.
#> Rows duplicated during merge.
#> Overview of dimensions of input and output data:
#> data nrows ncols
#> 1: pk 1502 25
#> 2: dt.cov 150 2
#> 3: result 1502 26
#> Overview of values of by where number of rows in x changes:
#> ID N.x N.result
#> 1: 31 10 20
#> 2: 180 10 0
#> Error in mergeCheck(pk, dt.cov, by = "ID"): Merge added and/or removed rows.
Notice that mergeCheck
tells us for which values of ID
(the by
argument which can be of length >1) the input and output differ so we can quickly look into the data sets and make a decision how we want to handle this. In this case we discard the covariate value for subject 31 and use all.x=TRUE
argument to get NA
for subjects 31 and 180:
dt.cov[ID != 31]
dt.cov2 <- mergeCheck(pk, dt.cov2, by = "ID", all.x = TRUE)
pk2.check <-#> The following columns were added: COV
To ensure the consistency of rows before and after the merge, you could use merge(...,all.x=TRUE)
and then check dimensions before and after (yes, both all.x=TRUE
and the dimension check are necessary). This is not needed if you use mergeCheck
.
mergeCheck
does not try to reimplement merging. Under the hood, the merge is performed by data.table::merge.data.table
to which most arguments are passed. What mergeCheck
does is to add the checks that the results are consistent with the criteria outlined above. data.table::merge.data.table
is generally very fast, and even if there is a bit of extra calculations in mergeCheck
, it should never be slow.
In summary, mergeCheck
verifies that the rows that result from the merge are the exact same as in one of the existing datasets, only columns added from the second input dataset. You may think that this will limit your merges, and that you need merges for inner and outer joins etc. You are exactly right - mergeCheck
is not intended for those merges and does not support them. When that is said, the kind of merges that are supported by mergeCheck
are indeed very common. All merges in the NMdata
package are performed with mergeCheck
.
mergeCheck
featuresAnother problem the programmer may not realize during a merge is when column names are shared across x1
and x2
(in addition to columns that are being merged by). This will silently create column names like col.x
and col.y
in the output. mergeCheck
will by default give a warning if that happens (can be modified using the fun.commoncols
argument). Also, there is an optional argument to tell mergeCheck how many columns are expected to be added by the merge, and mergeCheck
will fail if another number of columns are added. This can be useful for programming.
The row order of the first data set is by default maintained by mergeCheck
. Apart from this, there is only one difference from the behavior of the merge.data.frame
function syntax, being that either the by
argument or by.x
and by.y
must always be supplied to mergeCheck
. Default behavior of merge.data.frame
is to merge by all common column names, but for coding transparency, this is intentionally not allowed by mergeCheck
.
There is no way around excluding some of the events in data due to various reasons. And we need to be able to answer to why we excluded each of the points, and to how many points were excluded due to which criteria. NMdata
provides two functions to handle this - flagsAssign
assigns exclusion flags to data records (rows), and flagsCount
summarizes the number of discarded rows and the reasons.
This implementation makes it easy to keep the rows flagged for exclusion in the dataset and ignore them in NONMEM. Or if you prefer, you can remove the rows after generating an overview of the exclusion counts for your report.
flagsAssign
and flagsCount
are based on sequential evaulation of exclusion criteria. This means we can summarize how many records and subjects were excluded from the analysis due to the different criteria. The information is represented in one numerical column for NONMEM, and one (value-to-value corresponding) character column for the rest of us in the resulting data.
For use in NONMEM’s IGNORE
feature, the easiest is that inclusion/exclusion is determined by a single column in data - we call that column FLAG
here, but any column name can be used. FLAG
obviously draws on information from other columns such as TIME
, DV
, and many others, depending on your dataset and your way of working.
The function that applies inclusion/excluasion rules is called flagsAssign
, and it takes a dataset and a data.frame with rules as arguments. In this simple example we only exclude data due to two different reasons - and only samples (keeping all doses in the analysis). We exclude all pre-dose samples. For post-dose samples, we exclude those below LLOQ.
fread(text = "FLAG,flag,condition
dt.flags <-10,Below LLOQ,BLQ==1
100,Negative time,TIME<0")
flagsAssign(pk, tab.flags = dt.flags, subset.data = "EVID==0")
pk <-#> Coding FLAG = 100, flag = Negative time
#> Coding FLAG = 10, flag = Below LLOQ
flagsAssign(pk, subset.data = "EVID==1", flagc.0 = "Dose") pk <-
fread
is used to create a data.table (like read.csv
to create a data.frame) for readability, one line for each row in the data.table created. flagsAssign
applies the conditions sequentially and by decreasing value of FLAG
. FLAG=0
means that the observation is included in the analysis. You can use any expression that can be evaluated within the data.frame. In this case, BLQ
has to exist in pk
.
Finally, flags are assigned to EVID==1
rows. Here, no flag table is used. This means that all EVID==1
rows will get FLAG=0
and flag="Dose"
. You can use a separate data.frame of flags for dosing records as needed.
In NONMEM, you can include IGNORE=(FLAG.NE.0)
in $DATA
or $INFILE
.
Again, the omission will be attributed to the first condition matched. Default is to apply the conditions by the order of decreasing numerical flag value. Use flags.increasing=TRUE
if you prefer the opposite. However, what cannot be modified is that 0 is the numerical value for rows that are not matched by any conditions.
What rows to omit from a data set can vary from one analysis to another. Hence, the aim with the chosen design is that the inclusion criteria can be changed and applied to overwrite an existing inclusion/exclusion selection. For another analysis we want to include the observations below LLOQ. We have two options. Either we simply change the IGNORE
statement given above to IGNORE=(FLAG.LT.10)
, or you create a different exclusion flag for that one. If you prefer to create a new set of exclusion flags, just use new names for the numerical and the character flag columns so you don’t overwrite the old ones. See help of flagsAssign
and flagsCount
for how.
An overview of the number of observations disregarded due to the different conditions is then obtained using flagsCount
. As we see from the names
call below, both discarded, cumulative discarded, and observations left after application of the respective criterion are available. Choose the ones you prefer - here we show how many observations and subjects were matched by eached criterion and how many were left after application of each criterion.
flagsCount(data = pk[EVID == 0], tab.flags = dt.flags)
tab.count <-names(tab.count)
#> [1] "flag" "N.left" "Nobs.left" "N.discard"
#> [5] "N.disc.cum" "Nobs.discard" "Nobs.disc.cum"
tab.count[, .(flag, N.discard, Nobs.discard, N.left, Nobs.left)]#> flag N.discard Nobs.discard N.left Nobs.left
#> 1: All available data NA NA 150 1352
#> 2: Negative time 0 2 150 1350
#> 3: Below LLOQ 19 595 131 755
#> 4: Analysis set NA NA 131 755
flagsCount
includes a file
argument to save the the table right away.
Once the dataset is in place, NMdata
provides a few useful functions to ensure the formatting of the written data is compatible with NONMEM. These functions include checks that NONMEM will be able to interpret the data as intended, and more features are under development in this area.
The order of columns in NONMEM is important for two reasons. One is that a character in a variable read into NONMEM will make the run fail. The other is that there are restrictions on the number of variables you can read into NONMEM, depending on the version. NMorderColumns
tries to put the used columns first, and other or maybe even unusable columns in the back of the dataset. It does so by a mix of recognition of column names and analysis of the column contents.
Columns that cannot be converted to numeric are put in the back, while column bearing standard NONMEM variable names like ID
, TIME
, EVID
etc. will be pulled up front. You can of course add column names to prioritize to front (first
) or back (last
). See ?NMorderColumns
for more options.
NMorderColumns(pk) pk <-
One trick is worth mentioning here. If you are adding variables to a data set after having started to model with NONMEM, you may not want to have to update and rerun your NONMEM models right away. NMorderColumns
has options for putting some variable last (to the right) in data. That argument is called last
. It has several other options to tweak how the columns are ordered so you can hopefully get the order you want.
Before we save the data and go to model estimation, NMdata
offers a quite extensive and automated function to check data for consistency and compatibility with NONMEM.
NMcheckData
checks all the standard NONMEM columns against the NONMEM requirements and looks for other common data issues. The list is quite long. Please see ?NMcheckData
for a list of performed checks.
We can add subject level covariates, and subject-occasion covariates to be checked for whether they are non-missing, numeric and not varying with subject or subject-occasion. We can also add other numeric variables to use in NONMEM to check for missing values.
NMcheckData(pk, covs = c("DOSE", "WEIGHTB"))
findings <-#> column check N Nid
#> EVID Subject has no obs 19 19
#> MDV Column not found 1 0
#> WEIGHTB Cov not unique within ID 1 1
#> AMT Non-positive dose amounts 1 1
#> EVID EVID not in 0:4 1 1
Let’s look at these findings:
findings#> row ID column check level ROW
#> 1 NA 31 EVID Subject has no obs ID NA
#> 2 NA 32 EVID Subject has no obs ID NA
#> 3 NA 33 EVID Subject has no obs ID NA
#> 4 NA 34 EVID Subject has no obs ID NA
#> 5 NA 36 EVID Subject has no obs ID NA
#> 6 NA 37 EVID Subject has no obs ID NA
#> 7 NA 38 EVID Subject has no obs ID NA
#> 8 NA 39 EVID Subject has no obs ID NA
#> 9 NA 42 EVID Subject has no obs ID NA
#> 10 NA 44 EVID Subject has no obs ID NA
#> 11 NA 45 EVID Subject has no obs ID NA
#> 12 NA 46 EVID Subject has no obs ID NA
#> 13 NA 49 EVID Subject has no obs ID NA
#> 14 NA 52 EVID Subject has no obs ID NA
#> 15 NA 53 EVID Subject has no obs ID NA
#> 16 NA 56 EVID Subject has no obs ID NA
#> 17 NA 57 EVID Subject has no obs ID NA
#> 18 NA 58 EVID Subject has no obs ID NA
#> 19 NA 60 EVID Subject has no obs ID NA
#> 20 NA NA MDV Column not found column NA
#> 21 NA 180 WEIGHTB Cov not unique within ID ID NA
#> 22 1403 171 AMT Non-positive dose amounts row 1403
#> 23 1480 178 EVID EVID not in 0:4 row 1480
Depending on level
we can now take a look at single rows, data from a subject or fix a column to address these. The fact that some subjects are missing observations in this case is not necessarily an error (they are in this case all BLQ), but WEIGHTB
has to be constant within subjects, and for NONMEM to even run, EVID
must be in 0:4
. So those have to be fixed. For the rest of the vighnette, assume we fixed those issues.
copy(pk.copy) pk <-
For the final step of writing the dataset, NMwriteData
is provided. Most importantly, it writes a csv file with appropriate options for NONMEM to read it as well as possible. It can also write an rds for R with equal contents (or RData if you prefer), but with the rds including all information (such as factor levels) which cannot be saved in csv. If you should use NMscanData
to read NONMEM results, this information can be used automatically. NMwriteData
also by default calls NMgenText
which provides a proposal for text to include in the $INPUT
and $DATA
sections of the NONMEM control streams. There are several arguments that will affect the proposed text for the NONMEM run, see ?NMwriteData
and especially ?NMgenText
.
Let’s include the origin script of the data as meta data. write.csv=TRUE
is default but included here because we often want to use something like write.csv=writeOutput
where writeOutput
is a switching variable we set to TRUE
or FALSE
in the initialization section of the script.
NMwriteData(pk, file = "derived/pkdata.csv", script = "DataPrepare.Rmd",
text.nm <-write.csv = TRUE, args.stamp = list(Description = "PK data for the Data Preparation vignette."))
#> Data written to file(s):
#> derived/pkdata.csv
#> derived/pkdata.rds
#> For NONMEM:
#> $INPUT ROW ID NOMTIME TIME EVID CMT AMT DV FLAG STUDY BLQ CYCLE DOSE
#> PART PROFDAY PROFTIME WEIGHTB eff0
#> $DATA derived/pkdata.csv
#> IGN=@
#> IGNORE=(FLAG.NE.0)
We are being told that two files were saved, and then we get some text to use in the NONMEM control streams. NMwriteData
detected the exclusion flag and suggests to include it in $DATA
.
Let’s take a look at what was saved:
list.files("derived")
#> [1] "pkdata.csv" "pkdata.rds" "pkdata_meta.txt"
There is a metadata file which NMreadCsv
will automatically recognize if found. The metadata becomes accessible using NMinfo
:
NMreadCsv("derived/pkdata.csv")
dat.inp <-NMinfo(dat.inp)
#> $dataCreate
#> $dataCreate$DataCreateScript
#> [1] "DataPrepare.Rmd"
#>
#> $dataCreate$CreationTime
#> [1] "2022-02-05 12:58:16"
#>
#> $dataCreate$writtenTo
#> [1] "derived/pkdata.csv"
#>
#> $dataCreate$Description
#> [1] "PK data for the Data Preparation vignette."
With the flexibility of the rds
format, we don’t need such an additional file. Only difference on the metadata for the rds file is the filename:
readRDS("derived/pkdata.rds")
dat.inp.rds <-NMinfo(dat.inp.rds)
#> $dataCreate
#> $dataCreate$DataCreateScript
#> [1] "DataPrepare.Rmd"
#>
#> $dataCreate$CreationTime
#> [1] "2022-02-05 12:58:16 EST"
#>
#> $dataCreate$writtenTo
#> [1] "derived/pkdata.rds"
#>
#> $dataCreate$Description
#> [1] "PK data for the Data Preparation vignette."
If we have to update the input data file, the NONMEM $INPUT
sections no longer match the input data. We saw in NMorderColumns
how we can use the last
argument to get columns pushed towards the back so the NONMEM runs should still work. But maybe you need the column in your nonmem runs, and so you have no way around updating the control streams. And that can be quite a lot of control streams. With NMdata
that is really easy.
NMdata
has a couple of functions to extract and write sections to NONMEM control streams called NMreadSection
and NMwriteSection
. Those functions are very flexible for updating NONMEM control streams, and we will not tgo into detail with them, but let’s stick to the example above. We can do
NMwriteSection(dir = "nonmem", file.pattern = "run1.*\\.mod",
list.sections = text.nm["INPUT"])
This updates the INPUT section (and not DATA) for all control streams in directory “nonmem” which file names start with “run1” and end in “.mod” (say “run101.mod” to “run199.mod”). If we had done simply list.sections=text.nm
instead of list.sections=text.nm["INPUT"]
, it would have replaced the $DATA
section too. However, the DATA
section rarely needs update following an pdate of the input data file, and oftentimes $DATA
can vary among control streams that use the same input data (some models may be estimated on a smaller subset of data), so be careful with that.
NMwriteSection
has the argument data.file
to further limit the scope of files to update based on what data file the control streams use. It only makes sense to use the auto-generated text for control streams that use this data set.
The text for NONMEM can be generated without saving data using NMgenText
. You can tailor the generation of the text to copy (DV=CONC)
, drop (COL=DROP)
, rename (DV
instead of CONC
) and more.
We saw how NMwriteDatat
saves metadata automatically. Even if NMwriteData
can actually be used as a simple rds writer that adds meta data the same way, we may want to save data or any R object using saveRDS
. In that case, use NMstamp
(which is also what NMwriteData
does).
NMstamp(pk, script = "vignettes/DataCreate.Rmd")
pk <-NMinfo(pk)
#> $dataCreate
#> $dataCreate$DataCreateScript
#> [1] "vignettes/DataCreate.Rmd"
#>
#> $dataCreate$CreationTime
#> [1] "2022-02-05 12:58:16 EST"
The script
argument is recognized by NMstamp
, but you can add anything to this. We want to keep descriptive note too. Another often useful piece of information is what source data files were read in order to generate the saved data. Description
and Source.Files
are only examples - any name can be used.
NMstamp(pk, script = "vignettes/DataCreate.Rmd", Description = "A PK dataset used for examples.",
pk <-Source.Files = "/path/to/adpc.sas7bdat,/path/to/adsl.sas7bdat")
NMinfo(pk)
#> $dataCreate
#> $dataCreate$DataCreateScript
#> [1] "vignettes/DataCreate.Rmd"
#>
#> $dataCreate$CreationTime
#> [1] "2022-02-05 12:58:16 EST"
#>
#> $dataCreate$Description
#> [1] "A PK dataset used for examples."
#>
#> $dataCreate$Source.Files
#> [1] "/path/to/adpc.sas7bdat,/path/to/adsl.sas7bdat"
These are very simple functions. But hopefully they will help you avoid sitting with a data set trying to guess which script generated it.
Again, when using NMwriteData
, you don’t have to call NMstamp
explicitly. Just pass the script
argument to NMwriteData
and NMstamp
will be applied automatically.