
Renvlp: An R Package for Efficient Estimation in

Multivariate Analysis Using Envelope Models

Minji Lee
University of Florida

Zhihua Su
University of Florida

Abstract

The envelope models can achieve substantial efficiency gains in multivariate analy-
sis. The only software the implements envelope models so far is the matlab toolbox envlp
(Cook, Su, and Yang 2015b). Estimation in envlp requires optimization over a Grassmann
manifold, which is slow in sizable problems. This article introduces the R package Renvlp
which uses a non-Grassmann algorithm for envelope estimation. This algorithm is much
faster and more accurate than the estimation algorithms that involve manifold optimiza-
tion. Besides the envelope models in the matlab toolbox envlp, Renvlp also implements the
latest developments in envelope methodology. The models supported by Renvlp include
response envelope model, partial envelopes model, predictor envelope model, simultane-
ous envelope model, heteroscedastic envelope model, groupwise envelope model, scaled
response envelope model, scaled predictor envelope, envelope model in logistic regression,
envelope model in poisson regression, weighted response envelope estimation, weighted
partial envelope estimation, and weighted predictor envelope estimation. For each model,
Renvlp provides model fitting and inference functions for bootstrapping, cross validation,
prediction and hypothesis testing. Examples are provided for illustration.

Keywords: dimension reduction, envelope model, multivariate linear regression, generalized
linear models, R.

1. Introduction

The envelope model proposed by Cook, Li, and Chiaromonte (2010) has the potential to
gain efficiency in estimation and improve prediction in multivariate analysis. Efficiency gains
are achieved by identifying the immaterial information and accounting for it in subsequent
analysis. In particular, massive gains can be obtained when the immaterial information is
substantially more variable than the material information. After the development in Cook
et al. (2010), many advances have been taken place in this area (Su and Cook 2011, 2013;
Cook, Helland, and Su 2013; Cook and Su 2013; Cook and Zhang 2015a,b; Cook, Forzani,
and Zhang 2015a; Li, Yang, Nobel, and Shen 2016; Su, Zhu, Chen, and Yang 2016; Khare,
Pal, and Su 2017; Li and Zhang 2017; Zhang and Li 2017; Park, Su, and Zhu 2017).

The only software that implements the envelope models is the envlp toolbox developed in
matlab (Cook et al. 2015b). envlp is well-suited for moderate problem, but it can be quite slow
in sizable problems. This is because the estimation algorithm in envlp involves optimization
over Grassmann manifolds, which is challenging in high dimensional problems.

The goal of this article is to introduce the R (R Core Team 2017) package Renvlp that imple-
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ments thirteen different envelope models including some latest developments in the area, using
an algorithm (Cook, Forzani, and Su 2016) which avoids manifold optimization in envelope
estimation. Compared with matlab toolbox envlp, we make the following several improve-
ments. First, Renvlp is more comprehensive and contains many recently developed envelope
models. Not only it implements the response envelope model (Cook et al. 2010), partial enve-
lope model (Su and Cook 2011), predictor envelope model (Cook et al. 2013), heteroscedastic
envelope model (Su and Cook 2013), and scaled response envelope model (Cook and Su 2013)
which are in envlp, but also it incorporates the latest developments including the scaled pre-
dictor envelope model (Cook and Su 2016), simultaneous envelope model (Cook and Zhang
2015b), envelope model in logistic regression, envelope model in poisson regression(Cook and
Zhang 2015a), groupwise envelope model (Park et al. 2017), and weighted envelope model
(Eck and Cook 2017). Second, Renvlp adopts the non-Grassmann algorithm (Cook et al.
2016) for envelope estimation. As a result, Renvlp is much faster than envlp and is capable
to handle larger datasets. Furthermore, the non-Grassmann manifold algorithm (Cook et al.
2016) is developed only for one type of objective function, in order to make this algorithm
available in broader context, we extend the applicability of the algorithm such that it can be
used for general envelope estimation. At last, the R implementation of envelope estimation is
more accessible to the statistical community than the matlab implementation.

The remainder of this paper is organized as follows. We provide a brief overview of envelope
models supported by Renvlp in Section 2. In Section 3, we introduce the estimation algorithm
and investigate its performance with numerical experiments. Section 4 contains a detailed
description of the structure of Renvlp. Section 5 illustrates the use of the package with an
example. Section 6 concludes with a short discussion.

The following notations will be used in our discussion: We use P(·) to denote a projection
operator onto the subspace indicated by its arguments and Q(·) = I−P(·). If A is a matrix,
span(A) indicates the subspace spanned by the column vectors of A. The symbol ‖·‖ denotes
the spectral norm of a matrix, and A ∼ B means that A and B have the same distribution.

2. Envelope Models

2.1. Response envelope model

The response envelope model aims to reduce the standard error of the estimated regression
coefficients in the context of multivariate linear regression. It is first introduced in Cook et al.
(2010) under the model

Y = µ + βX + ε (1)

where Y ∈ Rr is the response vector, X ∈ Rp is the non-stochastic predictor vector, and the
error vector ε has mean 0 and covariance matrix Σ. We assume that Σ > 0. The intercept
µ ∈ Rr and the regression coefficient matrix β ∈ Rr×p are unknown parameters.

The response envelope model achieves the efficiency gains by identifying part of the response
variables that are invariant to the changes in X. More specifically, let S denote a subspace
of Rr. We assume that Y can be decomposed into a material part PSY and an immaterial
part QSY such that (i) QSY|X ∼ QSY and (ii) COV(QSY,PSY|X) = 0. Conditions (i)
and (ii) indicate that QSY does not carry any information about β directly or indirectly
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through its conditional covariance with PSY. Under model (1), (i) and (ii) are equivalent to
(i)′ span(β) ⊆ S and (ii)′ Σ = PSΣPS + QSΣQS , where PSΣPS = VAR(PSY) represents
the variation of the material part PSY and QSΣQS = VAR(QSY) represents the variation
of the immaterial part QSY. The Σ-envelope of β is defined as the intersection of all S ⊆ Rr

that satisfies (i) and (ii), and is denoted by EΣ(β), or E for short. The dimension of the
envelope subspace EΣ(β) is denoted by u, and 0 ≤ u ≤ r.
Let Γ ∈ Rr×u be an orthonormal basis of EΣ(β), and let Γ0 ∈ Rr×(r−u) be a completion of Γ
such that (Γ,Γ0) ∈ Rr×r is an orthogonal matrix. Under the envelope parameterization, (1)
can be written as

Y = µ + ΓηX + ε, Σ = ΓΩΓ> + Γ0Ω0Γ
>
0 , (2)

where β = Γη. The matrix η ∈ Ru×p carries the coordinates of β with respect to the basis Γ,
and Ω ∈ Ru×u and Ω0 ∈ R(r−u)×(r−u) carry the coordinates of Σ with respect to Γ and Γ0.
We call model (2) the response envelope model, and (1) the standard model. The number of
parameters under the standard model is pr+ r(r+1)/2, and the number of parameters under
the envelope model is pu + r(r + 1)/2. When u = r, EΣ(β) = Rr and the envelope model
degenerates to the standard model.

The estimation of parameters will be discussed in more details in Section 3. Cook et al. (2010)
has shown that the response envelope estimator of β is always as efficient as or more efficient
than the standard estimator of β asymptotically. Substantial efficiency gains can be achieved
when the variation of the immaterial part is large relative to the variation of the material
part, i.e. ‖Γ0Ω0Γ

>
0 ‖ � ‖ΓΩΓ>‖.

2.2. Partial envelope model

The partial envelope model (Su and Cook 2011) focuses on the efficient estimation of the co-
efficients of main interest in the multivariate linear regression (1). For example, in a clinical
study, the predictor of interest is the presence or absent of the drug under study, while demo-
graphical characteristics of the patients are also measured as covariates to reduce variability.
We then partition X into X1 ∈ Rp1 and X2 ∈ Rp2 (p1 + p2 = p), where X1 contains the
predictors of main interest and X2 contains other predictors. We can partition the columns
of β accordingly into β1 and β2. Then (1) can be written as

Y = µ + β1X1 + β2X2 + ε, (3)

where β1 ∈ Rr×p1 contains the coefficients of main interest, and β2 ∈ Rr×p2 contains the
coefficients for X2.

Now instead of imposing an envelope structure to β and Σ as in (2), we consider imposing
the envelope structure on β1 and leaving β2 unconstrained. More specifically, we consider
EΣ(β1), the Σ-envelope of β1, and call it the partial envelope of β1. If EΣ(β1) appears in
subscripts, we denote it by E1. Let u1 be the dimension of the partial envelope EΣ(β1). Since
EΣ(β1) ⊆ EΣ(β), we have u1 ≤ u. The response Y can be decomposed into the immaterial
part QE1Y and the material part PE1Y, depending on whether they carry information on
β1. The material and immaterial parts satisfy (i) QE1Y | (X1,X2) ∼ QE1Y | X2 and (ii)
COV(QE1Y,PE1Y | X) = 0. Together, (i) and (ii) indicate that the immaterial part QE1Y
carries no information on β1 directly or indirectly. Under the context of (1), conditions (i) and
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(ii) are equivalent to span(β1) ⊆ EΣ(β1) and Σ = PE1ΣPE1 +QE1ΣQE1 . Since the immaterial
variation with respect to β1 is larger than or at least equal to the immaterial information
with respect to β: VAR(QE1Y) = QE1ΣQE1 ≥ QEΣQE = VAR(QEY), we usually achieve
more efficiency gains in estimating β1 using partial envelope than using response envelope.

Let Γ ∈ Rr×u1 be an orthonormal basis of EΣ(β1), and Γ0 ∈ Rr×(r−u1) be its completion.
The coordinate version of the partial envelope model is

Y = µ + ΓηX1 + β2X2 + ε, Σ = ΓΩΓ> + Γ0Ω0Γ
>
0 , (4)

where β1 = Γη. The matrix η ∈ Ru1×p1 carries the coordinates of β1 with respect to Γ.
The matrices Ω ∈ Ru1×u1 and Ω0 ∈ R(r−u1)×(r−u1) are positive definite, and they carry the
coordinates of Σ with respect to Γ and Γ0. We call (4) the partial envelope model. When
u1 = 0, we have β1 = 0 and the partial envelope model reduces to the multivariate linear
regression with Y being the responses and X2 being the predictors. When u1 = r, the partial
envelope model degenerates to the standard model (1) with Y being the responses and both
X1 and X2 being the predictors.

2.3. Heteroscedastic envelope model

The heteroscedastic envelope model (Su and Cook 2013) is derived to incorporate heteroscedas-
tic error structure in the context of estimating multivariate means for different groups.

The standard model for multivariate mean estimation for p groups can be written as

Y(i)j = µ + β(i) + ε(i)j , i = 1, · · · , p, j = 1, · · · , n(i), (5)

where the subscript (i) indicates the ith group, Y(i)j ∈ Rr is the jth observation vector
in the ith group, µ ∈ Rr is the grand mean over all the observations, β(i) ∈ Rr is the
difference between the mean of the ith group and the grand mean, and the error vector ε(i)j
has mean 0 and covariance Σ(i). The ith group has n(i) observations and we assume that∑p

i=1 n(i)β(i) = 0. If Σ(1) = · · · = Σ(p), (5) reduces to (1) with X being p group indicators.

Let B = (β(1), · · · ,β(p)) ∈ Rr×p and M be a collection of covariance matrices, i.e. M =
{Σ(i) : i = 1, · · · , p}. We define the heteroscedastic envelope, denoted by EM(B) or E , to
be the smallest subspace that contains each β(i) and decomposes every matrix in M, i.e.,
β(i) ∈ EM(B) and Σ(i) = PEΣ(i)PE + QEΣ(i)QE for i = 1, . . . , p. Let Γ ∈ Rr×u be an

orthonormal basis of EM(B), where u is the dimension of EM(B), and let Γ0 ∈ Rr×(r−u) be
its completion. Under this parametrization, (5) can be written as

Y(i)j = µ + Γη(i) + ε(i)j , Σ(i) = ΓΩ1(i)Γ
> + Γ0Ω0Γ

>
0 , (6)

where β(i) = Γη(i), η(i) ∈ Ru contains the coordinates of β(i) with respect to the basis Γ,

Ω1(i) ∈ Ru×u and Ω0 ∈ R(r−u)×(r−u) are both positive definite, and
∑p

i=1 n(i)η(i) = 0. We
call (6) the heteroscedastic envelope model. When u = r, the heteroscedastic envelope model
degenerates to model (5).

2.4. Groupwise envelope model

The groupwise envelope model (Park et al. 2017) is designed to accommodate both distinct
regression coefficients and distinct error structures for different groups in the context of (1).
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Suppose that each group has different regression coefficients and error covariance matrix, the
multivariate linear regression model can be formulated as

Y(i)j = µ(i) + β(i)X(i)j + ε(i)j , i = 1, · · · , I, j = 1, · · · , n(i), (7)

where subscripts (i) indicate the ith group, Y(i)j ∈ Rr is the jth response vector in the ith
group, µ(i) ∈ Rr is the intercept of the ith group, X(i)j ∈ Rp is the jth covariate vector
in the ith group, β(i) ∈ Rr×p is the regression coefficient matrix for the ith group, and the
error vector ε(i)j has mean 0 and covariance matrix Σ(i). The sample size of the ith group

is denoted as n(i) and the total sample size is n =
∑I

i=1 n(i). While (5) aims at estimating
the mean for different groups and does not involve any predictors, (7) studies the relationship
between the response vector and the predictors in different groups.

Let B = (β(1), · · · ,β(I)) ∈ Rr×pI and M be a collection of covariance matrices, i.e. M =
{Σ(i) : i = 1, · · · , p}. The groupwise envelope, denoted by EM(B) or E , is the smallest
subspace that contains each span(β(i)) and decomposes every matrix inM, i.e., span(β(i)) ⊆
EM(B) and Σ(i) = PEΣ(i)PE + QEΣ(i)QE , for i = 1, . . . , I. The dimension of EM(B) is u

(0 ≤ u ≤ r). Take Γ ∈ Rr×u to be an orthonormal basis of EM(B), and choose Γ0 ∈ Rr×(r−u)

such that (Γ,Γ0) is an orthogonal matrix. Then (7) can be written as

Y(i)j = µ(i) + Γη(i)X(i)j + ε(i)j , Σ(i) = ΓΩ(i)Γ
> + Γ0Ω0Γ

>
0 , (8)

where β(i) = Γη(i), η(i) ∈ Ru×p carries the coordinates of β(i) with respect to Γ, and both

Ω(l) ∈ Ru×u and Ω0 ∈ R(r−u)×(r−u) are positive definite. We call (8) the groupwise envelope
model. When I = 1, the groupwise envelope model reduces to the response envelope model
(2). By accounting for the common characteristics in the response vector across groups and
connecting the material information from all groups via EM(B), the groupwise envelope model
achieves more efficiency gains than fitting a separate response envelope model for each group.

2.5. Scaled response envelope model

The scaled response envelope model (Cook and Su 2013) is a scale-invariant version of the
response envelope model. Similar to principal component analysis or partial least squares, the
response envelope model is not scale invariant. The scaled response envelope model considers
the scaling in the model building and is invariant under rescaling of the responses. Moreover,
it has the potential to provide efficiency gains when the response envelope model degenerates
to the standard model.

Let 1, λ2, . . . , λr be the scaling parameters with λi > 0 for i = 2, . . . , r, and let Λ be a
diagonal matrix Λ = diag{1, λ2, . . . , λr} ∈ Rr×r. The first scaling parameter is set to 1 for
identifiability. Given Λ, we assume that the scaled response YN = Λ−1Y and the predictors X
follows the response envelope model. More specifically, the scaled regression coefficients Λ−1β
and error covariance matrix Λ−1ΣΛ−1 follow the following two conditions: (a) span(Λ−1β) ⊆
EΛ−1ΣΛ−1(Λ−1β), and (b) Λ−1ΣΛ−1 = PEΛ

−1ΣΛ−1PE+QEΛ
−1ΣΛ−1QE , where E is short

for EΛ−1ΣΛ−1(Λ−1β) when it appears in subscripts. These two conditions are exactly the
same as conditions (i) and (ii) in response envelope (Section 2.1) after scaling. Let u be the
dimension of EΛ−1ΣΛ−1(Λ−1β), Γ ∈ Rr×u be an orthonormal basis of EΛ−1ΣΛ−1(Λ−1β), and
Γ0 ∈ Rr×(r−u) be a completion of Γ. Under this parameterization, (1) can be written as

Y = µ + ΛΓηX + ε, Σ = ΛΓΩΓ>Λ + ΛΓ0Ω0Γ
>
0 Λ, (9)
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where β = ΛΓη, η ∈ Ru×p, both Ω ∈ Ru×u and Ω0 ∈ R(r−u)×(r−u) are positive definite. We
call (9) the scaled response envelope model. When u ≥ r − (r − 1)/p, the scaled response
envelope model degenerates to the standard model (1). Note that when u 6= r, the scaled
envelope model is not nested within the standard model. Therefore the likelihood ratio testing
(LRT) is not suitable for selecting the dimension u.

2.6. Predictor envelope model

The predictor envelope model (Cook et al. 2013) is derived for dimension reduction of the
predictors in the context of (1). It offers efficiency gains in the estimation of the regression
coefficients, and also has a better prediction performance than the standard model. Further-
more, it has a close connection to partial least squares. To describe the predictor envelope
model, we reformulate the linear regression model (1) to be consistent with the convention
used in (Cook et al. 2013)

Y = µ + β>(X− µX) + ε, (10)

where Y ∈ Rr is the response vector, and X ∈ Rp is the stochastic predictor vector with
mean µX and covariance ΣX. The error vector ε has mean 0 and covariance matrix ΣY|X.
The regression coefficients are contained in β ∈ Rp×r, and µ ∈ Rr is the intercept. Here Y
can be univariate response or multivariate response vector.

Let S denote a subspace of Rp. We decompose X into a material part PSX and an immaterial
part QSX such that the following two conditions are satisfied (i) COV(Y,QSX|PSX) = 0
and (ii) COV(PSX,QSX) = 0. These two conditions imply that QSX does not affect the
distribution of Y directly or through the association with PSX. Conditions (i) and (ii) are
equivalent to (i)′ span(β) ⊆ S and (ii)′ ΣX = PSΣXPS+QSΣXQS . And the intersection of
all S that satisfies (i)′ and (ii)′ is the ΣX-envelope of β, denoted by EΣX

(β) or E . Its dimension
is denoted by u. Let Γ ∈ Rp×u be an orthonormal basis of EΣX

(β), and Γ0 ∈ Rp×(p−u) be its
completion. Under conditions (i)′ and (ii)′, (10) can be formulated as

Y = µ + η>Ω−1Γ>(X− µX) + ε, ΣX = ΓΩΓ> + Γ0Ω0Γ
>
0 , (11)

where β = ΓΩ−1η, η ∈ Ru×r, and Ω−1η carries the coordinates of β with respect to Γ. The
matrices Ω ∈ Ru×u and Ω0 ∈ R(p−u)×(p−u) are positive definite. We call (11) the predictor
envelope model. When u = p, the predictor envelope model reduces to the linear regression
model (10). When u = 0, β = 0 and the covariance between X and Y is zero. Cook et al.
(2013) shows that the predictor envelope model is at least as efficient as (10) asymptotically.
Substantial efficiency gains can be achieved if ‖Ω‖ > ‖Ω0‖.
A connection between partial least squares and the predictor envelope model is also estab-
lished: In population, partial least squares and the predictor envelope model are estimating
the same reduction PEX, but they use different sample algorithms. A popular sample algo-
rithm for partial least squares is SIMPLS algorithm (de Jong 1993), which is a moment-based
iterative algorithm; while the predictor envelope model optimizes an objective function based
on normal likelihood. Both the SIMPLS estimator and predictor envelope estimator are√
n-consistent. But the predictor envelope estimator usually has a better performance in

prediction than the SIMPLS estimator (Cook et al. 2013).

2.7. Simultaneous envelope model
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The simultaneous envelope model (Cook and Zhang 2015b) achieves efficiency gains by per-
forming dimension reduction for both predictors and responses.

Under model (10), we assume that r > 1. Let d ≤ min(r, p) denote the rank of β. We consider
the following two envelopes:

1. Predictor envelope EΣX
(β) with dimension dX , where d ≤ dX ≤ p.

2. Response envelope EΣY|X(β>) with dimension dY , where d ≤ dY ≤ r.

By imposing the predictor envelope and the response envelope simultaneously, we expect to
obtain more efficiency gains in the estimation of β than using either the predictor envelope
or response envelope alone.

Let Φ ∈ Rp×dX be an orthonormal basis of EΣX
(β), Γ ∈ Rr×dY be an orthonormal basis of

EΣY|X(β>), and Φ0 ∈ Rp×(p−dX) and Γ0 ∈ Rr×(r−dY ) be completions of Φ and Γ respectively.
Under this parameterization, (10) can be written as

Y = µ + Γη>Φ>(X− µX) + ε,
ΣX = Φ∆Φ> + Φ0∆0Φ

>
0 ,

ΣY|X = ΓΩΓ> + Γ0Ω0Γ
>
0 ,

(12)

where β = ΦηΓ>, η ∈ RdX×dY , the matrices ∆ ∈ RdX×dX , ∆0 ∈ R(p−dX)×(p−dX),
Ω ∈ RdY ×dY , and Ω0 ∈ R(r−dY )×(r−dY ) are positive definite. We call (12) the simultane-
ous envelope model. When dX = p, the simultaneous envelope model reduces to the response
envelope model (2). When dY = r, it reduces to the predictor envelope model (11). It
degenerates to the linear regression model (10) when dX = p and dY = r.

2.8. Scaled predictor envelope model

Like the scaled response envelope model, the scaled predictor envelope model (Cook and Su
2016) gives a scaled-invariant version of the predictor envelope model.

The scaled predictor envelope model allows different predictors to share the same scaling
parameters. Without loss of generality, suppose that the first p1 predictors have scaling pa-
rameters 1, the next p2 predictors have scaling parameters λ1, ..., and the last pq predictors
have scaling parameters λq−1, where

∑q
i=1 pi = p. Then we construct Λ ∈ Rp×p to be a diag-

onal matrix with repeated diagonal elements 1, · · · , 1, λ1, · · · , λ1, · · · , λq−1, · · · , λq−1, where
λ1, · · · , λq−1 are q − 1 positive numbers. Given Λ, Y and the scaled predictor XN = Λ−1X
follows the predictor envelope model (11). Equivalently, β and ΣX satisfy (i) span(Λβ) ⊆
EΛ−1ΣXΛ−1(Λβ) and (ii) Λ−1ΣXΛ−1 = PEΛ

−1ΣXΛ−1PE + QEΛ
−1ΣXΛ−1QE , where E is

short for EΛ−1ΣXΛ−1(Λβ) when it appears in subscripts.

Suppose that the dimension of EΛ−1ΣXΛ−1(Λβ) is u. Let Γ ∈ Rp×u be an orthonormal basis

of EΛ−1ΣXΛ−1(Λβ), and Γ0 ∈ Rp×(p−u) be its completion. Then (i) implies that there exists
a matrix η ∈ Ru×r such that Λβ = Γη, and Λ−1ΣXΛ−1 can be written as Λ−1ΣXΛ−1 =
ΓΩΓ>+Γ0Ω0Γ

>
0 , where Ω ∈ Ru×u and Ω0 ∈ R(p−u)×(p−u) are both positive definite matrices.

Using this parameterization, (10) is written as

Y = µ + η>Γ>Λ−1(X− µX) + ε, ΣX = ΛΓΩΓ>Λ + ΛΓ0Ω0Γ
>
0 Λ (13)
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where β = Λ−1Γη. We call (13) the scaled predictor envelope model. When u ≥ p−(q−1)/r,
(13) reduces to the standard linear regression (10). The scaled predictor envelope model is
not nested within (10) if u 6= p, hence LRT cannot be applied for dimension selection.

2.9. Envelope model in generalized linear models

The envelope model can also be applied to generalized linear models (GLM) to achieve effi-
cient estimation (Cook and Zhang 2015a). Let Y be a random variable that belongs to an
exponential family. For simplicity, we restrict attention to the natural exponential family,
which only has the natural parameter. Let f denote the probability mass function or den-
sity function of Y : f(y|θ) = exp{yθ − b(θ) + c(y)}, where θ is the natural parameter. We
assume that X ∈ Rp follows a multivariate normal distribution N(µX,ΣX). The canonical
link function is θ(µ,β) = µ + β>X, where θ(µ,β) is a smooth and monotonic function of
E(Y |X, θ).
The conditional log likelihood is denoted by C(θ) := log f(y|θ) = yθ − b(θ) + c(y), where θ =
µ+β>X. For instance, C(θ) = yθ−exp(θ) in Poisson regression and C(θ) = yθ−log(1+exp(θ))
in logistic regression. The standard estimator of β can be obtained by Fisher scoring.

To construct the envelope model under GLM, Cook and Zhang (2015a) considers the ΣX-
envelope of β, denoted by EΣX

(β). Let u denote its dimension, Γ ∈ Rp×u be an orthonormal
basis for EΣX

(β), and Γ0 ∈ Rp×(p−u) be its completion. Then β and ΣX have the structure
β = Γη, where η ∈ Ru contains the coordinates of β with respect to Γ; and ΣX = ΓΩΓ> +
Γ0Ω0Γ

>
0 , where Ω ∈ Ru×u and Ω0 ∈ R(p−u)×(p−u) are positive definite matrices. Under the

envelope parameterization, GLM can be written as

log f(y|θ) = yθ − b(θ) + c(y), θ = µ+ η>Γ>X, ΣX = ΓΩΓ> + Γ0Ω0Γ
>
0 . (14)

When u = p, (14) reduces to the standard GLM. Cook and Zhang (2015a) shows that the
envelope estimator is asymptotically at least as efficient as the standard GLM estimator.
The objective function of envelope estimation in this context is more complicated than other
envelope models. We will discuss the estimation in more details in Section 3.

2.10. Weighted envelope estimation

With all the preceding envelope models, the dimension of the envelope subspace u must be
decided before applying the envelope model to the data. The selection of u can be tricky
sometimes, and it brings an extra source of variation of the envelope estimator. The weighted
envelope estimation (Eck and Cook 2017) considers a weighted estimator of β from all envelope
models with u = 1, . . . , r. It is derived under the context of the response envelope model (2),
but the same idea can be applied to all the envelope models. Specifically, the weighted
envelope estimator is defined as

β̂w =
r∑

j=1

wjβ̂j , (15)

where the weights wj are positive numbers for j = 1, · · · , r, and
∑r

j=1wj = 1. We can com-
pute wj based on the Bayesian Information Criterion (BIC). The BIC value for the envelope

model with u = j is bj = −2l(β̂j) + k(j) log(n), where l(·) is the log likelihood function, k(j)
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is the number of parameters in the envelope model with dimension j and n is the sample size.
Then the weight for the envelope model with u = j is

wj =
exp(−bj)∑r
k=1 exp(−bk)

.

Eck and Cook (2017) shows that the weighted envelope estimator (15) is a
√
n-consistent

estimator of β. The variation of the weighted envelope estimator is evaluated by residual
bootstrap. We have implemented the weighted envelopes estimator for the response envelope
model, partial envelope model as well as predictor envelope model in Renvlp. The users do
not need to pick u before using these estimators.

3. Algorithm

3.1. Algorithm for the estimation of the envelope subspace

In this subsection, we discuss the algorithm to estimate the envelope subspace implemented
in Renvlp. In all envelope models, if the envelope subspace is known, the envelope estimator
is easy to obtain by applying the standard method on the reduced response vector or / and
reduced predictor vector. Let Γ ∈ Ra×b (a > b) be an orthonormal basis of the envelope
subspace E . The optimization of the envelope subspace takes three forms:

Ê = arg min
span(Γ)∈G(a×b)

log |Γ>MΓ|+ log |Γ>(M + U)−1Γ|, (16)

Ê = arg min
span(Γ)∈G(a×b)

log |Γ>V−1Γ|+
p∑

i=1

n(i)

n
log |Γ>M(i)Γ|, (17)

Ê = arg min
span(Γ)∈G(a×b)

−Cn(α,ΓηΓ) +
n

2
{log |Γ>SXΓ|+ log |Γ>S−1X Γ|+ log |SX|}, (18)

where G(a× b) denotes an a by b Grassmann manifold, M, M + U, M(i) (i = 1, . . . , p) and V
are positive definite matrices, SX denotes the sample covariance matrix of X and it is positive
definite when n > p, Xi is the i-th sample of X, and Cn(µ,ΓηΓ) =

∑n
i=1 C(µ + η>Γ Γ>Xi) is

the conditional log likelihood function in (14) with µ fixed and η treated as a function of Γ
(denoted by ηΓ).

The objective function in (17) is used in the heteroscedastic envelope model and groupwise
envelope model; the objective function in (18) is used in the envelope model in GLM; and the
objective function in (16) is used in all other envelope models. In different envelope models,
M, U and other matrices take different forms. For example, in response envelope model (c.f.
Section 2.1), M = Sres and M + U = SY, where Sres is the sample covariance matrix of
the residuals from the standard linear regression of Y on X and SY is the sample covariance
matrix of Y. In predictor envelope model (c.f. Section 2.6), M = SX − SXYS−1Y S>XY and
M + U = SX, where SXY is the sample covariance of X and Y.

The optimization problems in (16), (17) and (18) all involve Grassmann manifold optimiza-
tion, which can be slow in sizable problems. To resolve this issue, Cook et al. (2016) introduced
a re-parametrization of the parameters in the context of (16) that converts the Grassmann
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manifold optimization to an unconstrained matrix optimization. We first review this re-
parametrization with (16) and then generalize this technique to the objective functions in
(17) and (18).

Let Γ ∈ Ra×b be an orthonormal basis of the envelope subspace E . Without loss of generality,
we assume the matrix Γ1 formed by the first b rows of Γ is nonsingular. Let Γ2 be the
(a− b)× b matrix formed by the rest of the rows. Then Γ can be partitioned as

Γ =

(
Γ1

Γ2

)
=

(
Ib

Γ2Γ
−1
1

)
Γ1 :=

(
Ib
A

)
Γ1 := GAΓ1. (19)

Note that A depends on Γ only through span(Γ) = E . The re-parameterization in (19) builds
a one-to-one correspondence between E and A: If we know about A, then E = span(GA). If
E is given, we can take any of its orthonormal basis and go through the steps in (19) to get
A. Under this re-parametrization, the optimization in (16) is converted to

Â = arg min
A∈R(a−b)×b

log |G>AMGA|+ log |G>A(M + U)−1GA| − 2 log |G>AGA|. (20)

Note that the optimization in (20) does not involve manifold optimization and is uncon-
strained. When (r − u)u is small, the minimization in (20) can be carried out directly using
standard optimization tools. Otherwise, the optimization can be performed by the blockwise
coordinate descent algorithm, treating each row of A as a block. The details are included in
Cook et al. (2016).

Cook et al. (2016) suggested four possible initial values of A computed from the eigenvectors
of M or M + U, and showed the asymptotic property of these initial values.

Now we apply the re-parametrization to (17) and (18). After some calculations, the optimiza-
tion in (17) can be converted to

Â = arg min
A∈R(a−b)×b

log |G>AV−1GA|+
p∑

i=1

n(i)

n
log |G>AM(i)GA| − 2 log |G>AGA|, (21)

and the optimization in (18) can be converted to

Â = arg min
A∈R(a−b)×b

−Cn(µ,GAη∗) +
n

2

(
log |G>ASXGA|+ log |G>AS−1X GA| − 2 log |G>AGA|

)
,

(22)

where η∗ ∈ Rb carries the coordinates of β with respect to GA, i.e., β = GAη∗, and
Cn(µ,GAη∗) =

∑n
i=1 C(µ+η∗>G>AXi). Under Poisson regression, Cn(µ,GAη∗) =

∑n
i=1[Yi(µ+

η∗TG>AXi)− exp(µ+ η∗TG>AXi)].

The optimization of (21) and (22) can be performed similarly as (20) using blockwise coordi-
nate descent. The initial values for solving (21) can be computed from the eigenvectors of V
and

∑p
i=1 n(i)M(i)/n using the same way as computing the initial value for (20). To compute

the initial value for (22), we first fit the standard GLM to obtain µ̃ and β̃ (e.g. use the Fisher
scoring method implemented in R package stats). Then a

√
n-consistent initial value of A can

be obtained by solving (20) with U = β̃β̃> and M being the estimated asymptotic variance
of β̃ (Cook and Zhang 2015a). Specifically, the asymptotic variance of β̃ can be estimated by
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M =
∑n

i=1(Xi − µX(W ))C′′(θ̃i)(Xi − µX(W ))
>/n, where C′′ denotes the second derivative of

C, θ̃i = µ̃+ β̃>Xi, Wi = nC′′(θ̃i)/
∑n

i=1 C′′(θ̃i) and µX(W ) =
∑n

i=1WiXi/n.

3.2. Numerical demonstration

In this subsection, we compare our non-Grassmann estimation algorithm with the envelope
coordinate descent (ECD) algorithm (Cook and Zhang 2017) and the one-direction-at-a-time
(1D) algorithm (Cook and Zhang 2016). The 1D algorithm estimates each column of the
orthonormal basis of E at a time. The ECD algorithm is developed under the framework
of the 1D algorithm. It utilizes an approximation in estimating each column and turns
out to be much faster than the 1D algorithm. Both the ECD and 1D algorithms yield

√
n-

consistent estimators. In the simulation studies, the non-Grassmann, ECD and 1D algorithms
are all implemented in R. We compare the computing time and estimation accuracy among
these algorithms. The estimation accuracy is measured by the principal angle between two
subspaces. Its calculation is described in Knyazev and Argentati (2002). The convergence
criterion is met when the relative change of the objective function is less than 10−3 or the
number of iteration reaches 100. The computing time is recorded on a Macbook with 1.3GHz
dual-core Intel Core i5 and RAM 4GB.

The first simulation focuses on the computing time. We adopted the simulation settings in
Cook and Zhang (2017) and estimated the envelope subspace with the objective function (16)
given M and U. We fixed r = 200 and considered three scenarios. For each scenario, we
considered u = 5 and u = 10, and generated the matrices M and U as follows

M =


ΓΩΓ> + Γ0Ω0Γ

>
0 , for Scenario I,

ΓΓ> + 0.01Γ0Γ
>
0 , for Scenario II,

0.01ΓΓ> + Γ0Γ
>
0 , for Scenario III,

U = ΓΦΓ>, for all scenarios,

where A ∈ Ru×u, B ∈ R(r−u)×(r−u) and C ∈ Ru×u were matrices containing independent
uniform (0, 1) variates, and Ω = AA>, Ω0 = BB> and Φ = CC>. The matrix (Γ,Γ0) was
obtained by normalizing an r× r matrix of independent uniform (0, 1) variates. After M was
generated, we added 0.0001Ir to M to assure that M is positive definite.

For each u in each scenario, 50 replications were generated. The results were summarized
in Table 1, where each cell was the averaged computing time with the standard deviation
in parentheses. The angle between the true envelope subspace and the estimated envelope
subspace was less than 10−5 for all algorithms in each replication, so it is not reported in the
table. Under this setting, the non-Grassmann algorithm is about five to ten times faster than
the ECD algorithm. The ECD algorithm is faster than the 1D algorithm in Scenario I and
about the same as the 1D algorithm in Scenarios II and III.

The second simulation focuses on estimation accuracy. The simulation settings are the same
as in Cook et al. (2016), which is under the context of the response envelope model. We set
n = 250, r = 100, p = 100 and varied u from 1 to 90. The elements in X were generated
as independent N(0, 202). The matrix (Γ,Γ0) was obtained by normalizing an r × r matrix
of independent uniform (0, 1) variates, and the elements in η ∈ Ru×p were generated as
independent uniform (0, 10) variates. The intercept and the coefficients were µ = 0 and
β = Γη. First, we considered the setting where the immaterial part of Y is more variant
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Scenarios u non-Grassmann ECD 1D

Scenario I
5 0.31 (0.017) 1.67 (0.082) 4.24 (0.340)
10 0.33 (0.017) 3.53 (0.262) 9.33 (0.396)

Scenario II
5 0.30 (0.020) 1.82 (0.048) 1.21 (0.028)
10 0.32 (0.017) 3.62 (0.070) 2.35 (0.033)

Scenario III
5 0.31 (0.016) 1.80 (0.032) 1.21 (0.021)
10 0.33 (0.016) 3.36 (0.043) 2.32 (0.033)

Table 1: Computing time (in seconds) for each algorithm.

than the material part of Y and set the error covariance matrix as Σ = ΓΩΓ> + Γ0Ω0Γ
>
0 ,

where Ω = AA>, Ω0 = 25CC>. The elements in A ∈ Ru×u and C ∈ R(r−u)×(r−u) were
independent N(0, 1) variates. We generated 50 replications and recorded the angle between
the true envelope subspace and the estimated subspace as well as the computing time for all
three algorithms. The results are summarized in Table 2. The ECD algorithm is faster and has
a smaller angle when u ≤ 50. However, as u increases, the advantage of the non-Grassmann
algorithm becomes more apparent. The 1D algorithm is inferior than the non-Grassmann
algorithm in both accuracy and computational efficiency when u > 10.

We repeated the simulation with the setting that the material part of Y is more variant than
the immaterial part of Y. The error covariance matrix was generated exactly the same as
in the last setting except that Ω = 25AA>, Ω0 = CC>. In this setting, estimating the
envelope subspace is more challenging. The results are summarized in Table 3. Although the
non-Grassmann algorithm and the ECD algorithm have about the same accuracy time when
u is not large, the non-Grassmann algorithm is much faster than the ECD algorithm. The
1D algorithm is inferior than the competitors, both in terms of accuracy and computational
efficiency.

4. Structure of Renvlp

The Renvlp package implements all the envelope models discussed in Section 2 based on the
non-Grassmann algorithm described in Section 3. The envelope models supported by Renvlp
along with the corresponding R function names are presented in Table 4. For example, the
function env implements the response envelope model and the function genv implements the
groupwise envelope model. Besides these main functions, Renvlp includes auxiliary tools that
select the dimension of the envelope subspace, and inference tools which perform bootstrap-
ping, prediction and hypothesis testing under different envelope models. The Renvlp package
depends on R package Rsolnp (Ghalanos and Theussl 2015) for the estimation of the scaled
response envelope model and scaled predictor envelope model.

4.1. Main functions

Given the predictors and responses, the main functions Function name fit the corresponding
envelope model with the specified envelope dimension u. The corresponding Function name

for different envelope model is given in Table 4. The outputs of the main functions are the
envelope estimators as well as a few important statistics. All the main functions have the same
basic structure for inputs and outputs, but they vary slightly according to different models.
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u non-Grassmann ECD 1D

1 0.67 (0.26) 0.66 ( 0.26) 0.67 ( 0.27)
5 3.04 (0.74) 2.18 ( 0.28) 2.17 ( 0.29)
10 3.94 (0.78) 2.93 ( 0.30) 2.88 ( 0.31)
20 4.79 (0.72) 3.76 ( 0.55) 16.86 (30.51)
30 5.91 (0.92) 4.33 ( 0.39) 21.09 (34.17)
40 6.44 (0.81) 4.88 ( 0.67) 21.27 (33.38)
50 7.12 (1.10) 7.01 (11.99) 27.68 (36.49)
60 7.60 (1.48) 9.27 (16.65) 39.63 (39.22)
70 8.46 (1.78) 9.57 (16.26) 48.71 (38.73)
80 8.84 (2.50) 17.20 (27.02) 41.49 (33.13)
90 9.72 (6.69) 27.39 (35.03) 33.00 (23.04)

u non-Grassmann ECD 1D

1 0.09 (0.01) 0.09 (0.01) 0.28 (0.09)
5 2.36 (2.49) 0.43 (0.02) 1.45 (0.25)
10 3.38 (2.77) 0.79 (0.02) 2.69 (0.30)
20 4.49 (3.23) 1.35 (0.03) 4.98 (0.41)
30 4.45 (3.61) 1.77 (0.03) 6.91 (0.52)
40 6.09 (3.76) 2.04 (0.04) 8.27 (0.60)
50 5.11 (3.33) 2.28 (0.05) 9.40 (0.70)
60 4.95 (2.84) 2.40 (0.07) 10.24 (0.77)
70 3.68 (1.90) 2.50 (0.13) 11.10 (0.80)
80 2.79 (1.35) 2.66 (0.16) 11.66 (0.75)
90 1.39 (0.47) 3.23 (0.32) 11.74 (0.99)

Table 2: Upper panel: Angles between the true envelope subspace and the estimated envelope
subspace. Lower panel: Computing time (in seconds). Each cell contains the average value
from 50 replications with the standard deviation in parentheses.
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u non-Grassmann ECD 1D

1 0.30 (0.06) 0.30 ( 0.06) 0.30 ( 0.06)
5 0.77 (0.06) 0.77 ( 0.07) 0.77 ( 0.07)
10 0.90 (0.08) 0.90 ( 0.08) 2.26 ( 5.47)
20 1.09 (0.08) 1.09 ( 0.08) 4.49 ( 6.71)
30 1.24 (0.10) 1.24 ( 0.11) 13.87 (19.58)
40 1.33 (0.10) 1.33 ( 0.11) 13.57 (15.80)
50 1.49 (0.14) 1.50 ( 0.15) 24.55 (32.16)
60 1.57 (0.19) 1.59 ( 0.22) 16.32 (26.51)
70 1.56 (0.17) 1.60 ( 0.30) 11.06 (21.20)
80 1.54 (0.19) 8.61 (24.16) 12.18 (25.78)
90 1.31 (0.21) 15.53 (32.69) 12.59 (28.22)

u non-Grassmann ECD 1D

1 0.07 (0.02) 0.07 (0.01) 0.27 (0.01)
5 0.18 (0.03) 0.35 (0.20) 1.36 (0.25)
10 0.28 (0.06) 0.82 (0.33) 2.71 (0.38)
20 0.38 (0.11) 2.12 (0.66) 5.17 (0.43)
30 0.43 (0.19) 4.91 (0.96) 7.03 (0.32)
40 0.55 (0.19) 7.85 (0.87) 8.52 (0.47)
50 0.61 (0.28) 9.66 (0.80) 9.66 (0.48)
60 0.74 (0.30) 11.18 (0.69) 10.82 (0.64)
70 0.69 (0.33) 12.15 (0.82) 11.58 (0.77)
80 0.59 (0.30) 13.02 (0.80) 11.91 (0.75)
90 0.43 (0.17) 14.53 (0.82) 12.13 (0.74)

Table 3: Upper panel: Angles between the true envelope subspace and the estimated envelope
subspace. Lower panel: Computing time (in seconds). Each cell contains the average value
from 50 replications with the standard deviation in parentheses.

Function name Model

env Response envelope model (Section 2.1)
penv Partial envelope model (Section 2.2)
henv Heteroscedastic envelope model (Section 2.3)
genv Groupwise envelope model (Section 2.4)
senv Scaled response envelope model (Section 2.5)
xenv Predictor envelope model (Section 2.6)
stenv Simultaneous envelope model (Section 2.7)
sxenv Scaled predictor envelope model (Section 2.8)

logit.env Envelope model in logistic regression (Section 2.9)
pois.env Envelope model in poisson regression (Section 2.9)

weighted.env Weighted response envelope estimation (Section 2.10)
weighted.penv Weighted partial envelope estimation (Section 2.10)
weighted.xenv Weighted predictor envelope estimation (Section 2.10)

Table 4: A list of models supported by Renvlp
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For instance, weighted.env does not require the users to specify u; and stenv requires the
users to specify the dimensions for both the predictor envelope EΣX

(β) and the response
envelope EΣY|X(β>). We take env as an example to explain the usage of the function, since
it presents the basic structure of the main functions. The syntax of env is

env(X, Y, u, asy = TRUE, init = NULL)

The required inputs are X, Y and u, where X contains the predictors, Y contains the multivariate
responses and u is the dimension of the envelope subspace. The selection of the dimension is
included in Section 4.2. The optional inputs are asy and init: asy is the flag for computing
the asymptotic variance of the envelope estimator. The default setting is TRUE. If only the
envelope estimators are needed, the flag can be set to asy = FALSE. init is the user-specified
initial value of Gamma. If no starting value is provided, env will use the starting value suggested
in Cook et al. (2016).

The output of the main function is a list which consists of the envelope estimators and a
few important statistics. The envelope estimators include beta, Sigma, Gamma, Gamma0, eta,
Omega, Omega0 and mu, which are estimators of β, Σ, Γ, Γ0, η, Ω, Ω0 and µ in (2). The
statistics in the output list are loglik, the maximized log likelihood; covMatrix, the asymp-
totic covariance of the vectorized beta; asySE, the asymptotic standard error for elements in
beta; ratio, the asymptotic standard error ratio of the standard multivariate linear regres-
sion estimator over the envelope estimator and n, the number of observations in the dataset.
An illustration is given in Section 5.

4.2. Selection of the dimension

The functions u.Function name choose the dimension of the envelope subspace u based on
AIC, BIC and likelihood ratio testing (LRT) with specified significance level. For example,
u.env selects u under the response envelope model, and u.henv selects u under the het-
eroscedastic envelope model. We again use the example of the response envelope model. The
syntax of u.env is

u.env(X, Y, alpha = 0.01)

The required inputs are X and Y, which are the predictors and responses. The optional input
alpha is the significance level for LRT. The default value is 0.01.

The output of u.Function name includes u.aic, u.bic and u.lrt, which are dimensions
selected by AIC, BIC and LRT; as well as loglik.seq, aic.seq and bic.seq, which are
sequences of log likelihood, AIC value and BIC for u = 0, . . . , r.

4.3. Inference functions

Renvlp supports inference tools including bootstrapping, prediction and hypothesis testing.

The function boot.Function name computes the standard errors of the envelope estimator
of β by residual bootstrap. For the response envelope model, the syntax of boot.env is
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boot.env(X, Y, u, B)

The inputs X, Y, u and B are predictors, responses, dimension of the envelope subspace, and
the number of bootstrap samples. The output is a matrix with the same size as β containing
the standard error for each element in the estimated β.

Prediction under the envelope models is performed by pred.Function name. For example,

pred.env(m, Xnew)

performs prediction under the response envelope model. The input m is the output from the
main function env and the input Xnew is the value of the predictor. The outputs include value,
which is the fitted or the predicted value evaluated at Xnew; covMatrix.estm and SE.estm,
which are the covariance matrix of the fitted value and standard error of each element in the
fitted value; covMatrix.pred and SE.pred, which are the covariance matrix of the predicted
value and standard error of each element in the predicted value. The covariance matrix and
standard errors are estimated with normality assumption.

The function cv.Function name provides the prediction errors using m-fold cross validation.
If Ypred is the predicted value and Yo is the true value, then the prediction error computed
in cv.Function name is the square root of (Ypred − Yo)

>(Ypred − Yo). For the response
envelope model, the syntax of cv.env is

cv.env(X, Y, u, m, nperm)

The inputs of this function X, Y, u, m and nperm are predictors, responses, dimension of the
envelope subspace, the number of folds, and the number of permutations. The data is divided
into m parts randomly and each part is in turn used for testing while the rest m - 1 parts are
used for training. This process is repeated for nperm times and the output is the average
prediction error.

The function testcoef.Function name tests for the hypotheses

H0 : LβR = A versus Ha : LβR 6= A, (23)

where L, R and A are constant matrices. The test statistics is vec(Lβ̂R−A)V̂−1vec(Lβ̂R−
A)>, where β̂ is the envelope estimator, vec is the vector operator that vectorize a matrix
into a vector columnwise, and V̂ is the estimated asymptotic covariance of vec(Lβ̂R −A).
Suppose A is a d1 by d2 matrix. The reference distribution is chi-squared distribution with
degrees of freedom d1 ∗ d2. To test hypothesis (23) under the envelope model, we use

testcoef.env(m, L, R, A)

The input m is the output from the main function env, and the inputs L, R and A correspond
to the matrices L, R and A in (23). The output of testcoef.env includes the test statistic,
the degrees of freedom of the reference chi-squared distribution, the p-value of the test, and
V̂, the estimated covariance matrix of vec(Lβ̂R−A).

5. Illustration
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This section illustrates the usage of the main functions, dimension selection functions and
inference functions with the response envelope model. The Berkeley guidance study (Tud-
denham and Snyder 1953) contains height measurement for 39 boys and 54 girls born in
1928–1929 in Berkeley, CA. For simplicity, we take heights at ages 13 and 14 to be the bi-
variate response Y = (Y1, Y2)

>, and gender to be the predictor X. The predictor takes
value 1 or 0 to indicate boys or girls. Therefore β = E(Y | X = 1) − E(Y | X = 0)
indicate the height difference between boys and girls. The data is included in the pack-
age. We first load the data and select the dimension of the envelope subspace with u.env.

library("Renvlp")

data("Berkeley")

X <- Berkeley[ , 1]

Y <- Berkeley[ , c(22, 24)]

u <- u.env(X, Y)

u

## $u.aic

## [1] 2

##

## $u.bic

## [1] 1

##

## $u.lrt

## [1] 1

##

## $loglik.seq

## [1] -547.0461 -506.6899 -505.0067

##

## $aic.seq

## [1] 1104.092 1025.380 1024.013

##

## $bic.seq

## [1] 1116.755 1040.575 1041.741

From the output of u.env, BIC and LRT agree that the dimension of the envelope subspace
is 1 while AIC picks the dimension to be 2. AIC tends to overfit the model when the sample
size is small. So we fit the envelope model with u = 1.

m <- env(X, Y, 1)

m$beta

## [,1]

## [1,] -2.149607

## [2,] 2.134949

m$Gamma

## [,1]
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## [1,] -0.7095217

## [2,] 0.7046835

m$Gamma0

## [,1]

## [1,] 0.7046835

## [2,] 0.7095217

The envelope estimator of β is (−1.72, 1.66)>, indicating that girls are 1.72 cm taller than
boys on average at age 13 but boys 1.66 cm are taller than girls on average at age 14. By the
construction of the envelope model (2), Γ>0 Y ≈ 0.71(Y1 +Y2) is immaterial to the variation in
X and Γ>Y ≈ −0.71(Y1 − Y2) is material to the variation in X. This indicates that the sum
of the height Y1 + Y2 does not differ between boys and girls at these ages. It is the difference
of the height Y1 − Y2 that carries the gender information. We also fit the standard model to
the data. When u = 2, the envelope model reduces to the standard model. So we can simply
use the env function with u = 2.

m2 <- env(X, Y, 2)

m2$beta

## [,1]

## V22 0.7844729

## V24 5.0891738

The standard estimator indicates that the boys are slightly taller than girls at age 13 and
this height difference is more pronounced at age 14. This shows a discrepancy between the
envelope model m and the standard model m2 on whether boys or girls are taller at age 13.
To compare the two estimators, we calculate the standard errors of each estimator.

m$asySE / sqrt(93)

## [,1]

## [1,] 0.1878946

## [2,] 0.1866617

m2$asySE / sqrt(93)

## [,1]

## [1,] 1.595197

## [2,] 1.606984

To obtain the standard errors of each estimator, we use the asymptotic standard deviation
asySE divided by the square root of the sample size 93. Notice that the standard errors
of the standard estimator are 7.4 and 8.0 times as large as that of the envelope estimator,
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which indicates the envelope estimator is much more efficient than the standard estimator.
asySE is calculated by assuming normality. The sample distribution of boys and girls both
resembles normal, so the estimates of the standard errors should be reliable. Nevertheless, we
also estimated the standard errors using bootstrap.

bootse1 <- boot.env(X, Y, 1, 200)

bootse2 <- boot.env(X, Y, 2, 200)

bootse1

## [,1]

## [1,] 0.1659043

## [2,] 0.1752482

bootse2

## [,1]

## [1,] 1.668975

## [2,] 1.693617

The bootstrap standard errors are very close to the standard errors derived from asymptotic
standard errors. By investigating the standard errors, the height difference at age 13 under
the standard model is not significant, while the envelope model detects that the girls are
significantly taller than the boys. This is a result of the efficiency gains from the envelope
model. We also perform a hypothesis testing to confirm that the first element in β is 0, i.e.,

H0 : (1, 0)>β = 0 versus Ha : (1, 0)>β 6= 0,

both under the standard model and the envelope model.

L <- matrix(c(1, 0), 1, 2)

R <- as.matrix(1)

A <- as.matrix(0)

hres <- testcoef.env(m, L, R, A)

hres2 <- testcoef.env(m2, L, R, A)

hres

## $chisqStatistic

## [,1]

## [1,] 130.885

##

## $dof

## [1] 1

##

## $pValue

## [,1]

## [1,] 2.623771e-30

##



20 envlp: Envelope Estimation

## $covMatrix

## [,1]

## [1,] 0.03530436

hres2

## $chisqStatistic

## [,1]

## [1,] 0.2418397

##

## $dof

## [1] 1

##

## $pValue

## [,1]

## [1,] 0.6228806

##

## $covMatrix

## [,1]

## [1,] 2.544652

The p values indicate that the height difference is significant under the envelope model and
not significant under the standard model, which is consistent with our preceding discussion.
At last, suppose we want to predict heights at ages 13 and 14 for a boy, we can use pred.env.

pres <- pred.env(m, 1)

pres

## $value

## [,1]

## [1,] 158.6604

## [2,] 166.2257

##

## $covMatrix.estm

## [,1] [,2]

## [1,] 0.6778970 0.5963893

## [2,] 0.5963893 0.6860584

##

## $SE.estm

## [1] 0.8233450 0.8282864

##

## $covMatrix.pred

## [,1] [,2]

## [1,] 60.43901 59.19872

## [2,] 59.19872 61.24913
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##

## $SE.pred

## [1] 7.774253 7.826182

The heights of a boy at ages 13 and 14 are predicted to be 158.66cm and 166.23cm, with
prediction standard error 7.77cm and 7.83cm.

6. Conclusion

The R package Renvlp aims to provide accurate and computational efficient estimations for
the envelope models. It includes the fundamental envelope models as well as the recent
developments. The structure of the package is straightforward: for a particular envelope
model, it contains the main function that fits the model, the dimension selection tools and
the inference functions. So it is easy for the developers to include new models or extend the
functionality of the package. The package will be uploaded to the Comprehensive R Archive
Network (CRAN) and under constant maintenance.
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