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Abstract

In this note, we explain how f(a) = log(1− e−a) = log(1− exp(−a)) can be computed
accurately, in a simple and optimal manner, building on the two related auxiliary functions
log1p(x) (= log(1 + x)) and expm1(x) (= exp(x)− 1 = ex − 1). The cutoff, a0, in use in
R since 2004, is shown to be optimal both theoretically and empirically, using Rmpfr high
precision arithmetic. As an aside, we also show how to compute log

(

1 + ex
)

accurately
and efficiently.
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1. Introduction: Not log() nor exp(), but log1p() and expm1()

In applied mathematics, it has been known for a very long time that direct computation of
log(1+ x) suffers from severe cancellation (in “1+ x”) whenever |x| ≪ 1, and for that reason,
we have provided log1p(x) in R, since R version 1.0.0 (released, Feb. 29, 2000). Similarly,
log1p() has been provided by C math libraries and has become part of C language standards
around the same time, see, for example, IEEE and Open Group (2004).

Analogously, since R 1.5.0 (April 2002), the function expm1(x) computes exp(x)− 1 = ex − 1
accurately also for |x| ≪ 1, where ex ≈ 1 is (partially) cancelled by “− 1”.

In both cases, a simple solution for small |x| is to use a few terms of the Taylor series, as

log1p(x) = log(1 + x) = x− x2/2 + x3/3−+ . . . , for |x| < 1, (1)

expm1(x) = exp(x)− 1 = x+ x2/2! + x3/3! + . . . , for |x| < 1, (2)

and n! denotes the factorial.

We have found, however, that in some situations, the use of log1p() and expm1() may not
be sufficient to prevent loss of numerical accuracy. The topic of this note is to analyze the
important case of computing log (1− ex) = log(1 − exp(x)) for x < 0, computations needed
in accurate computations of the beta, gamma, exponential, Weibull, t, logistic, geometric and
hypergeometric distributions, and even for the logit link function in logistic regression. For the
beta and gamma distributions, see, for example, DiDonato and Morris (1992)1, and further
references mentioned in R’s ?pgamma and ?pbeta help pages. For the logistic distribution,

1In the Fortran source, file “708”, also available as http://www.netlib.org/toms/708, the function AL-
NREL() computes log1p() and REXP() computes expm1().

http://www.netlib.org/toms/708
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FL(x) = ex

1+ex
, the inverse, aka quantile function is qL(p) = logit(p) := log p

1−p
. If the

argument p is provided on the log scale, p̃ := log p, hence p̃ ≤ 0, we need

qlogis(p̃, log.p = TRUE) = qL
(

ep̃
)

= logit
(

ep̃
)

= log
ep̃

1− ep̃
= p̃− log

(

1− ep̃
)

, (3)

and the last term is exactly the topic of this note.

2. log1p() and expm1() for log(1 - exp(x))

Contrary to what one would expect, for computing log (1− ex) = log(1 − exp(x)) for x < 0,
neither

log(1− exp(x)) = log(−expm1(x)), nor (4)

log(1− exp(x)) = log1p(− exp(x)), (5)

are uniformly sufficient for numerical evaluation. In (5), when x approaches 0, exp(x) ap-
proaches 1 and loses accuracy. In (4), when x is large, expm1(x) approaches −1 and similarly
loses accuracy. Because of this, we will propose to use a function log1mexp(x) which uses
either expm1 (4) or log1p (5), where appropriate. Already in R 1.9.0 (R Development Core
Team (2004)), we have defined the macro R_D_LExp(x) to provide these two cases automati-
cally2.

To investigate the accuracy losses empirically, we make use of the R package Rmpfr for
arbitrarily accurate numerical computation, and use the following simple functions:

R> library(Rmpfr)

R> t3.l1e <- function(a)

{

c(def = log(1 - exp(-a)),

expm1 = log( -expm1(-a)),

log1p = log1p(-exp(-a)))

}

R> ##' The relative Error of log1mexp computations:

R> relE.l1e <- function(a, precBits = 1024) {

stopifnot(is.numeric(a), length(a) == 1, precBits > 50)

da <- t3.l1e(a) ## double precision

a. <- mpfr(a, precBits=precBits)

## high precision *and* using the correct case:

mMa <- if(a <= log(2)) log(-expm1(-a.)) else log1p(-exp(-a.))

structure(as.numeric(1 - da/mMa), names = names(da))

}

where the last one, relE.l1e() computes the relative error of three different ways to compute
log(1− exp(−a)) for positive a (instead of computing log(1− exp(x)) for negative x).

R> a.s <- 2^seq(-55, 10, length = 256)

R> ra.s <- t(sapply(a.s, relE.l1e))

R> cbind(a.s, ra.s) # comparison of the three approaches

a.s def expm1 log1p

[1,] 2.7756e-17 -Inf -7.9755e-17 -Inf

2look for “log(1-exp(x))” in http://svn.r-project.org/R/branches/R-1-9-patches/src/nmath/dpq.h

http://CRAN.R-project.org/package=Rmpfr
http://svn.r-project.org/R/branches/R-1-9-patches/src/nmath/dpq.h


Martin Mächler 3

[2,] 3.3119e-17 -Inf -4.9076e-17 -Inf

[3,] 3.9520e-17 -Inf -7.8704e-17 -Inf

[4,] 4.7157e-17 -Inf -4.5998e-17 -Inf

[5,] 5.6271e-17 1.8162e-02 -7.3947e-17 1.8162e-02

[6,] 6.7145e-17 1.3504e-02 -4.4921e-17 1.3504e-02

[7,] 8.0121e-17 8.8009e-03 -1.2945e-17 8.8009e-03

.......

.......

[251,] 4.2329e+02 1.0000e+00 1.0000e+00 -3.3151e-17

[252,] 5.0509e+02 1.0000e+00 1.0000e+00 2.9261e-17

[253,] 6.0270e+02 1.0000e+00 1.0000e+00 1.7377e-17

[254,] 7.1917e+02 1.0000e+00 1.0000e+00 -4.7269e-12

[255,] 8.5816e+02 1.0000e+00 1.0000e+00 1.0000e+00

[256,] 1.0240e+03 1.0000e+00 1.0000e+00 1.0000e+00

This is revealing: Neither method, log1p or expm1, is uniformly good enough. Note that
for large a, the relative errors evaluate to 1. This is because all three double precision
methods give 0, and that is the best approximation in double precision (but not in higher
mpfr precision), hence no problem at all, and we can restrict ourselves to smaller a (smaller
than about 710, here).

What about really small a’s?

R> t3.l1e(1e-20)

def expm1 log1p

-Inf -46.052 -Inf

R> as.numeric(t3.l1e(mpfr(1e-20, 256)))

[1] -46.052 -46.052 -46.052

both the default and the log1p method return -Inf, so, indeed, the expm1 method is abso-
lutely needed here.

Figure 1 visualizes the relative errors of the three methods. Note that the default basically
gives the maximum of the two methods’ errors, whereas the final log1mexp() function will
have (approximately) minimal error of the two.

R> matplot(a.s, abs(ra.s), type = "l", log = "xy",

col=cc, lty=lt, lwd=ll, xlab = "a", ylab = "", axes=FALSE)

R> legend("top", leg, col=cc, lty=lt, lwd=ll, bty="n")

R> draw.machEps <- function(alpha.f = 1/3, col = adjustcolor("black", alpha.f)) {

abline(h = .Machine$double.eps, col=col, lty=3)

axis(4, at=.Machine$double.eps, label=quote(epsilon[c]), las=1, col.axis=col)

}

R> eaxis(1); eaxis(2); draw.machEps(0.4)

In Figure 2 below, we zoom into the region where all methods have about the same (good)
accuracy. The region is the rectangle defined by the ranges of a. and ra2:

R> a. <- (1:400)/256

R> ra <- t(sapply(a., relE.l1e))

R> ra2 <- ra[,-1]

In addition to zooming in Figure 1, we want to smooth the two curves, using a method
assuming approximately normal errors. Notice however that neither the original, nor the
log-transformed values have approximately symmetric errors, so we use MASS::boxcox() to
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Figure 1: Absolute relative errors (with respect to 1024 bit Rmpfr computation) of the default,
log(1− e−a), and the two methods “expm1” log(−expm1(−a)) and “log1p” log1p(− exp(−a)).
Figure 2 will be a zoom into the gray rectangular region where all three curves are close.

determine the “correct” power transformation,

R> da <- cbind(a = a., as.data.frame(ra2))

R> library(MASS)

R> bc1 <- boxcox(abs(expm1) ~ a, data = da, lambda = seq(0,1, by=.01), plotit=.plot.BC)

R> bc2 <- boxcox(abs(log1p) ~ a, data = da, lambda = seq(0,1, by=.01), plotit=.plot.BC)

R> c(with(bc1, x[which.max(y)]),

with(bc2, x[which.max(y)]))## optimal powers

[1] 0.38 0.30

R> ## ==> taking ^ (1/3) :

R> s1 <- with(da, smooth.spline(a, abs(expm1)^(1/3), df = 9))

R> s2 <- with(da, smooth.spline(a, abs(log1p)^(1/3), df = 9))

The optimal boxcox exponent turns out to be close to 1

3
, and now plot a“zoom–in”of Figure 1.

Then, the crossover point of the two curves already suggests that the cutoff, a0 = log 2 is
empirically very close to optimal.

R> matplot(a., abs(ra2), type = "l", log = "y", # ylim = c(-1,1)*1e-12,

col=cc[-1], lwd=ll[-1], lty=lt[-1],

ylim = yl, xlab = "a", ylab = "", axes=FALSE)

R> legend("topright", leg[-1], col=cc[-1], lwd=ll[-1], lty=lt[-1], bty="n")

R> eaxis(1); eaxis(2); draw.machEps()
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R> lines(a., predict(s1)$y ^ 3, col=cc[2], lwd=2)

R> lines(a., predict(s2)$y ^ 3, col=cc[3], lwd=2)

a

log(−expm1(−a))
log1p(−exp(−a))

0.0 0.5 1.0 1.5

10−18

5 × 10−18

10−17

5 × 10−17

10−16

5 × 10−16

10−15

εc

a0 = log 2

Linux 4.14.11−200.fc26.x86_64(lynne) −− x86_64

Figure 2: A “zoom in” of Figure 1 showing the region where the two basic methods, “expm1”
and “log1p” switch their optimality with respect to their relative errors. Both have small
relative errors in this region, typically below εc :=.Machine$double.eps= 2−52 ≈ 2.22·10−16.
The smoothed curves indicate crossover close to a = a0 := log 2.

Why is it very plausible to take a0 := log 2 as approximately optimal cutoff?

Already from Figure 2, empirically, an optimal cutoff a0 is around 0.7. We propose to compute

f(a) = log
(

1− e−a
)

= log(1− exp(−a)), a > 0, (6)

by a new method or function log1mexp(a). It needs a cutoff a0 between choosing expm1 for
0 < a ≤ a0 and log1p for a > a0, i.e.,

f(a) = log1mexp(a) :=

{

log(−expm1(−a)) 0 < a ≤ a0 (:= log 2 ≈ 0.693)

log1p(− exp(−a)) a > a0.
(7)

The mathematical argument for choosing a0 is quite simple, at least informally: In which
situations does 1− e−a loose bits (binary digits) entirely independently of the computational
algorithm? Well, as soon as it “spends” bits just to store its closeness to 1. And that is as
soon as e−a < 1

2
= 2−1, because then, at least one bit cancels. This however is equivalent to

−a < log(2−1) = − log(2) or a > log 2 =: a0.

3. Computation of log(1+exp(x))

Related to log1mexp(a) = log(1− e−a) is the log survival function of the logistic distribution
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log(1− FL(x)) = log 1

1+ex
= − log(1 + ex) = −g(x), where

g(x) := log(1 + ex) = log1p(ex), (8)

which has a “+”” instead of a “−”, compared to log1mexp, and is easier to analyze and
compute, its only problem being large x’s where ex overflows numerically.3 As g(x) = log(1+
ex) = log(ex(e−x + 1)) = x+ log(1 + e−x), we see from (1) that

g(x) = x+ log(1 + e−x) = x+ e−x +O((e−x)2), (9)

for x → ∞. Note further, that for x → −∞, we can simplify g(x) = log(1 + ex) to ex.

A simple picture quickly reveals how different approximations behave, where have used
uniroot() to determine the zero crossing, but will use slightly simpler cutoffs x1, x2, in
(10) below:

R> ## Find x0, such that exp(x) =.= g(x) for x < x0 :

R> f0 <- function(x) { x <- exp(x) - log1p(exp(x))

x[x==0] <- -1 ; x }

R> u0 <- uniroot(f0, c(-100, 0), tol=1e-13)

R> str(u0, digits=10)

List of 5

$ root : num -36.39022698

$ f.root : num 2.465190329e-32

$ iter : int 81

$ init.it : int NA

$ estim.prec: num 7.815970093e-14

R> x0 <- u0[["root"]] ## -36.39022698 --- note that ~= \log(\eps_C)

R> all.equal(x0, -52.5 * log(2), tol=1e-13)

[1] TRUE

R> ## Find x1, such that x + exp(-x) =.= g(x) for x > x1 :

R> f1 <- function(x) { x <- (x + exp(-x)) - log1p(exp(x))

x[x==0] <- -1 ; x }

R> u1 <- uniroot(f1, c(1, 20), tol=1e-13)

R> str(u1, digits=10)

List of 5

$ root : num 16.40822612

$ f.root : num 3.552713679e-15

$ iter : int 18

$ init.it : int NA

$ estim.prec: num 5.684341886e-14

R> x1 <- u1[["root"]] ## 16.408226

R> ## Find x2, such that x =.= g(x) for x > x2 :

R> f2 <- function(x) { x <- log1p(exp(x)) - x ; x[x==0] <- -1 ; x }

R> u2 <- uniroot(f2, c(5, 50), tol=1e-13)

R> str(u2, digits=10)

List of 5

$ root : num 33.2783501

3Indeed, log(1 − FL(x)) = −g(x), for x = 800, plogis(800, lower=FALSE, log.p=TRUE), underflowed to
-Inf in R, before version 2.15.1 (June 2012) from when on (10) has been used.
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$ f.root : num 7.105427358e-15

$ iter : int 9

$ init.it : int NA

$ estim.prec: num 6.394884622e-14

R> x2 <- u2[["root"]] ## 33.27835

R> par(mfcol= 1:2, mar = c(4.1,4.1,0.6,1.6), mgp = c(1.6, 0.75, 0))

R> curve(x+exp(-x) - log1p(exp(x)), 15, 25, n=2^11); abline(v=x1, lty=3)

R> curve(log1p(exp(x)) - x, 33.1, 33.5, n=2^10); abline(v=x2, lty=3)
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Using double precision arithmetic, a fast and accurate computational method is to use

ĝ(x) = log1pexp(x) :=























exp(x) x ≤ −37

log1p(exp(x)) −37 < x ≤ x1 := 18,

x+ exp(−x) x1 < x ≤ x2 := 33.3,

x x > x2,

(10)

where only the cutoff x1 = 18 is important and the other cutoffs just save computations.4

Figure 3 visualizes the relative errors of the careless “default”, log
(

1+ ex
)

, its straightforward
correction log 1p

(

ex
)

, the intermediate approximation x+ e−x, and the large x (= x), i.e., the
methods in (10), depicting that the (easy to remember) cutoffs x1 and x2 in (10) are valid.

4. Conclusion

We have used high precision arithmetic (R package Rmpfr) to empirically verify that com-
puting f(a) = log (1− e−a) is accomplished best via equation (7). In passing, we have also
shown that accurate computation of g(x) = log(1 + ex) can be achieved via (10). Note that
a version of this note is available as vignette (in Sweave, i.e., with complete R source) from
the Rmpfr package vignettes.

Session Information

R> toLatex(sessionInfo(), locale=FALSE)

4see the R plot curve(log1p(exp(x)) - x, 33.1, 33.5, n=2^10) above, revealing a somewhat fuzzy cutoff
x1.
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• R version 3.4.3 Patched (2018-01-09 r74108), x86_64-pc-linux-gnu

• Running under: Fedora 26 (Twenty Six)

• Matrix products: default

• BLAS: /sfs/u/maechler/R/D/r-patched/F26-64-inst/lib/libRblas.so

• LAPACK: /sfs/u/maechler/R/D/r-patched/F26-64-inst/lib/libRlapack.so

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: MASS 7.3-47, Rmpfr 0.7-0, gmp 0.5-13.1, polynom 1.3-9, sfsmisc 1.1-2

• Loaded via a namespace (and not attached): compiler 3.4.3, tools 3.4.3
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