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Abstract

The traveling salesperson or salesman problem (TSP) is a well known and important
combinatorial optimization problem. The goal is to find the shortest tour that visits each city
in a given list exactly once and then returns to the starting city. Despite this simple problem
statement, solving the TSP is difficult since it belongs to the class of NP-complete problems.

The importance of the TSP arises besides from its theoretical appeal from the variety
of its applications. In addition to vehicle routing, many other applications, e.g., computer
wiring, cutting wallpaper, job sequencing or several data visualization techniques, require the
solution of a TSP.

In this paper we introduce the R package TSP which provides a basic infrastructure for
handling and solving the traveling salesperson problem. The package features S3 classes for
specifying a TSP and its (possibly optimal) solution as well as several heuristics to find good
solutions. In addition, it provides an interface to Concorde, one of the best exact TSP solvers
currently available.

1 Introduction

The traveling salesperson problem (TSP; Lawler, Lenstra, Rinnooy Kan, and Shmoys, 1985;
Gutin and Punnen, 2002) is a well known and important combinatorial optimization problem.
The goal is to find the shortest tour that visits each city in a given list exactly once and
then returns to the starting city. Formally, the TSP can be stated as follows. The distances
between n cities are stored in a distance matrix D with elements dij where i, j = 1 . . . n and
the diagonal elements dii are zero. A tour can be represented by a cyclic permutation π
of {1, 2, . . . , n} where π(i) represents the city that follows city i on the tour. The traveling
salesperson problem is then the optimization problem to find a permutation π that minimizes
the length of the tour denoted by

nX
i=1

diπ(i). (1)

For this minimization task, the tour length of (n − 1)! permutation vectors have to be
compared. This results in a problem which is very hard to solve and in fact known to be
NP-complete (Johnson and Papadimitriou, 1985b). However, solving TSPs is an important
part of applications in many areas including vehicle routing, computer wiring, machine se-
quencing and scheduling, frequency assignment in communication networks and structuring
of matrices (Lenstra and Kan, 1975; Punnen, 2002).

In this paper we give a very brief overview of the TSP and introduce the R package TSP
which provides a infrastructure for handling and solving TSPs in R. The paper is organized
as follows. In Section 2 we briefly present important aspects of the TSP including different
problem formulations and approaches to solve TSPs. In Section 3 we give an overview of the
infrastructure implemented in TSP and the basic usage. In Section 4, several examples are
used to illustrate the packages capabilities. Section 5 concludes the paper.
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2 Theory

In this section, we briefly summarize some aspects of the TSP which are important for the
implementation of the TSP package described in this paper. For a complete treatment of all
aspects of the TSP, we refer the interested reader to the classic book edited by Lawler et al.
(1985) and the more modern book edited by Gutin and Punnen (2002).

It has to be noted that in this paper, following the origin of the TSP, the term distance
is used. Distance is used here exchangeably with dissimilarity or cost and, unless explicitly
stated, no restrictions to measures which obey the triangle inequality are made. An important
distinction can be made between the symmetric TSP and the more general asymmetric TSP.
For the symmetric case (normally referred to as just TSP), for all distances in D the equality
dij = dji holds, i.e., it does not matter if we travel from i to j or the other way round, the
distance is the same. In the asymmetric case (called ATSP), the distances are not equal for all
pairs of cities. Problems of this kind arise when we do not deal with spatial distances between
cities but, e.g., with the cost or needed time associated with traveling between locations. Here
the price for the plane ticket between two cities may be different depending on which way we
go.

2.1 Different formulations of the TSP

Other than the permutation problem in the introduction, the TSP can also be formulated
as a graph theoretic problem. Here the TSP is regarded as a complete graph G = (V, E),
where the cities correspond to the node set V = {1, 2, . . . , n} and each edge ei ∈ E has an
associated weight wi representing the distance between the nodes it connects. If the graph is
not complete, the missing edges can be replaced by edges with very large distances. The goal
is to find a Hamiltonian cycle, i.e., a cycle which visits every node in the graph exactly once,
with the least weight in the graph (Hoffman and Wolfe, 1985). This formulation naturally
leads to procedures involving minimum spanning trees for tour construction or edge exchanges
to improve existing tours.

TSPs can also be represented as integer and linear programming problems (see, e.g., Pun-
nen, 2002). The integer programming (IP) formulation is based on the assignment problem
with additional constraints described as follows:

Minimize
Pn

i=1

Pn
j=1 dijxij

Subject to Pn
i=1 xij = 1, j = 1, · · · , n,Pn
j=1 xij = 1, i = 1, · · · , n,

xij = 0 or 1
X contains no subtours

The solution matrix X = (xij) of the assignment problem represents a tour or a collection
of subtour (several unconnected cycles) where only edges which corresponding to elements
xij = 1 are on the tour or a subtour. The additional restriction that solution contains no
subtours are called subtour elimination constraints). Unfortunately, the number of subtour
elimination constraints grows exponentially with the number of cities which leads to an ex-
tremely hard problem.

The linear programming (LP) formulation of the TSP is given by:

Minimize
Pm

i=1 wixi = wT x

Subject to
x ∈ S

where m is the number of edges ei in G, wi ∈ w is the weight of edge ei and x is the incidence
vector indicating the presence or absence of each edge in the tour. Again, the constraints
given by x ∈ S are problematic since they have to contain the set of incidence vectors of all
possible Hamiltonian cycles in G which amounts to a direct search of all (n− 1)! possibilities
and thus in general is infeasible. However, relaxed versions of the linear programming problem
with removed integrality and subtour elimination constraints are extensively used by modern
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TSP solvers where such a partial description of constraints is used and improved iteratively
in a branch-and-bound approach.

2.2 Useful manipulations of the distance matrix

Sometimes it is useful to transform the distance matrix D = (dij) of a TSP into a different
matrix D′ = (d′ij) which has the same optimal solution. Such a transformation requires that
for any Hamiltonian cycle H in a graph represented by its distance matrix D the equalityX

i,j∈H

dij = α
X

i,j∈H

d′ij + β,

holds for suitable α > 0 and β ∈ R. From the equality we see that additive and multiplicative
constants leave the optimal solution invariant. This property is useful to rescale distances,
e.g., for many solvers, distances in the interval [0, 1] have to be converted into integers from 1
to a maximal value.

A different manipulation is to reformulate an asymmetric TSP as a symmetric TSP. This
is possible by doubling the number of cities (Jonker and Volgenant, 1983). For each city a
dummy city is added. Between each city and its corresponding dummy city a very small value
(e.g., −∞) is used. This makes sure that each city always occurs in the solution together
with its dummy city. The original distances are used between the cities and the dummy
cities, where each city is responsible for the distance going to the city and the dummy city
is responsible for the distance coming from the city. The distances between all cities and the
distances between all dummy cities are set to a very large value (e.g., ∞) which makes these
edges infeasible. An example for equivalent formulations as a asymmetric TSP (to the left)
and a symmetric TSP (to the right) for three cities is:

0@ 0 d12 d13

d21 0 d23

d31 d32 0

1A ⇐⇒

0BBBBBB@
0 ∞ ∞ −∞ d21 d31

∞ 0 ∞ d12 −∞ d31

∞ ∞ 0 d13 d23 −∞
−∞ d12 d13 0 ∞ ∞
d21 −∞ d23 ∞ 0 ∞
d31 d32 −∞ ∞ ∞ 0

1CCCCCCA
Instead of the infinity values suitably large negative and positive values can be used. The

new symmetric TSP can be solved using techniques for symmetric TSPs which are currently
far more advanced than techniques for ATSPs. Removing the dummy cities from the resulting
tour gives the solution for the original ATSP.

2.3 Finding exact solutions for the TSP

Finding the exact solution to a TSP with n cities requires to check (n− 1)! possible tours. To
evaluate all possible tours is infeasible for even small TSP instances. To find the optimal tour
Held and Karp (1962) presented the following dynamic programming formulation: Given a
subset of city indices (excluding the first city) S ⊂ {2, 3, . . . , n} and l ∈ S, let d∗(S, l) denote
the length of the shortest path from city 1 to city l, visiting all cities in S in-between. For
S = {l}, d∗(S, l) is defined as d1l. The shortest path for larger sets with |S| > 1 is

d∗(S, l) = minm∈S\{l}

“
d∗(S \ {l}, m) + dml

”
. (2)

Finally, the minimal tour length for a complete tour which includes returning to city 1 is

d∗∗ = minl∈{2,3,...,n}

“
d∗({2, 3, . . . , n}, l) + dl1

”
. (3)

Using the last two equations, the quantities d∗(S, l) can be computed recursively and
the minimal tour length d∗∗ can be found. In a second step, the optimal permutation π =
{1, i2, i3, . . . , in} of city indices 1 through n can be computed in reverse order, starting with
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in and working successively back to i2. The procedure exploits the fact that a permutation π
can only be optimal, if

d∗∗ = d∗({2, 3, . . . , n}, in) + din1 (4)

and, for 2 ≤ p ≤ n− 1,

d∗({i2, i3, . . . , ip, ip+1}, ip+1) = d∗({i2, i3, . . . , ip}, ip) + dipip+1 . (5)

The space complexity of storing the values for all d∗(S, l) is (n − 1)2n−2 which severely
restricts the dynamic programming algorithm to TSP problems of small sizes. However, for
very small TSP instances the approach is fast and efficient.

A different method, which can deal with larger instances, uses a relaxation of the linear
programming problem presented in Section 2.1 and iteratively tightens the relaxation till a
solution is found. This general method for solving linear programming problems with complex
and large inequality systems is called cutting-plane method and was introduced by Dantzig,
Fulkerson, and Johnson (1954).

Each iteration begins with using instead of the original linear inequality description S
the relaxation Ax ≤ b, where the polyhedron P defined by the relaxation contains S and
is bounded. The optimal solution x∗ of the relaxed problem can be found using standard
linear programming solvers. If the found x∗ belongs to S, the optimal solution of the original
problem is found, otherwise, a linear inequality can be found which satisfies all points in S
but violates x∗. Such an inequality is called a cutting-plane or cut. A family of such cutting-
planes can be added to the inequality system Ax ≤ b to get a tighter relaxation for the next
iteration.

If no further cutting planes can be found or the improvement in the objective function
due to adding cuts gets very small, the problem is branched into two subproblems which
can be minimized separately. Branching is done iteratively which leads to a binary tree of
subproblems. Each subproblem is either solved without further branching or is found to be
irrelevant because its relaxed version already produces a longer path than a solution of another
subproblem. This method is called branch-and-cut (Padberg and Rinaldi, 1990) which is a
variation of the well known branch-and-bound (Land and Doig, 1960) procedure.

The initial polyhedron P used by Dantzig et al. (1954) contains all vectors x for which all
xe ∈ x satisfy 0 ≤ xe ≤ 1 and in the resulting tour each city is linked to exactly two other
cities. Various separation algorithms for finding subsequent cuts to prevent subtours (subtour
elimination inequalities) and to ensure that x∗ is an integer vector (Gomory cuts; Gomory,
1963) where developed over time. The currently most efficient implementation of this method
is described in Applegate, Bixby, Chvátal, and Cook (2000).

2.4 Heuristics for the TSP

The NP-completeness of the TSP already makes it more time efficient for medium sized TSP
instances to rely on heuristics if a good but not necessarily optimal solution suffices. TSP
heuristics typically fall into two groups, tour construction heuristics which create tours from
scratch and tour improvement heuristics which use simple local search heuristics to improve
existing tours.

In the following we will only discuss heuristics available in TSP, for a comprehensive
overview of the multitude of TSP heuristics including an experimental comparison, we refer
the reader to the book chapter by Johnson and McGeoch (2002).

2.4.1 Tour construction heuristics

The implemented tour construction heuristics are the nearest neighbor algorithm and the
insertion algorithms.

Nearest neighbor algorithm. The nearest neighbor algorithm (Rosenkrantz, Stearns,
and Philip M. Lewis, 1977) follows a very simple greedy procedure: The algorithm starts with
a tour containing a randomly chosen city and then always adds to the last city in the tour
the nearest not yet visited city. The algorithm stops when all cities are on the tour.
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An extension to this algorithm is to repeat it with each city as the starting point and then
return the best of the found tours. This heuristic is called repetitive nearest neighbor.

Insertion algorithms. All insertion algorithms (Rosenkrantz et al., 1977) start with a
tour consisting of an arbitrary city and then choose in each step a city k not yet on the tour.
This city is inserted into the existing tour between two consecutive cities i and j, such that
the insertion cost (i.e., the increase in the tour’s length)

d(i, k) + d(k, j)− d(i, j)

is minimized. The algorithms stops when all cities are on the tour.
The insertion algorithms differ in the way the city to be inserted next is chosen. The

following variations are implemented:

Nearest insertion The city k is chosen in each step as the city which is nearest to a city on
the tour.

Farthest insertion The city k is chosen in each step as the city which is farthest to any of
the cities on the tour.

Cheapest insertion The city k is chosen in each step such that the cost of inserting the
new city is minimal.

Arbitrary insertion The city k is chosen randomly from all cities not yet on the tour.

The nearest and cheapest insertion algorithms correspond to the minimum spanning tree
algorithm by Prim (1957). Adding a city to a partial tour corresponds to adding an edge to a
partial spanning tree. For TSPs with distances obeying the triangular inequality, the equality
to minimum spanning trees provides a theoretical upper bound for the two algorithms of twice
the optimal tour length.

The idea behind the farthest insertion algorithm is to link cities far outside into the tour
fist to establish an outline of the whole tour early. With this change, the algorithm cannot
be directly related to generating a minimum spanning tree and thus the upper bound stated
above cannot be guaranteed. However, it can was shown that the algorithm generates tours
which approach 2/3 times the optimal tour length (Johnson and Papadimitriou, 1985a).

2.4.2 Tour improvement heuristics

Tour improvement heuristics are simple local search heuristics which try to improve an initial
tour. A comprehensive treatment of the topic can be found in the book chapter by Rego and
Glover (2002).

k-Opt heuristics. The idea is to define a neighborhood structure on the set of all admis-
sible tours. Typically, a tour t′ is a neighbor of another tour t if tour t′ can be obtained from
t by deleting k edges and replacing them by a set of different feasible edges (a k-Opt move).
In such a structure, the tour can be iteratively improved by always moving from one tour to
its best neighbor till no further improvement is possible. The resulting tour represents a local
optimum which is called k-optimal.

Typically, 2-Opt (Croes, 1958) and 3-Opt (Lin, 1965) heuristics are used in practice.

Lin-Kernighan heuristic. This heuristic (Lin and Kernighan, 1973) does not use a
fixed value for k for its k-Opt moves, but tries to find the best choice of k for each move. The
heuristic uses the fact that each k-Opt move can be represented as a sequence of 2-Opt moves.
It builds up a sequence of 2-Opt moves, checking after each additional move, if a stopping
rule is met. Then the part of the sequence which gives the best improvement is used. This
is equivalent to a choice of one k-Opt move with variable k. Such moves are used till a local
optimum is reached.

By using full backtracking, the optimal solution can always be found, but the running time
would be immense. Therefore, only limited backtracking is allowed in the procedure, which
helps to find better local optima or even the optimal solution. Further improvements to the
procedure are described by Lin and Kernighan (1973).
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TOUR()
as.TOUR()

read_TSPLIB()

Figure 1: An overview of the classes in TSP.

3 Computational infrastructure: the TSP package

In the package TSP, a traveling salesperson problem is defined by an object of class TSP (sym-
metric) or ATSP (asymmetric). solve_TSP() is used to find a solution, which is represented
by an object of class TOUR. Figure 1 gives a overview of this infrastructure.

TSP objects can be created from a distance matrix (a dist object) or a symmetric matrix
using the creator function TSP() or coercion with as.TSP(). Similarly, ATSP objects are
created by ATSP() or as.ATSP() from square matrices representing the distances. In the
creation process, labels are taken and stored as city names in the object or can be explicitly
given as arguments to the creator functions. Several methods are defined for the classes:

� print() displays basic information about the problem (number of cities and the used
distance measure).

� n_of_cities() returns the number of cities.

� labels() returns the city names.

� image() produces a shaded matrix plot of the distances between cities. The order of the
cities can be specified as the argument order.

Internally, an object of class TSP is a dist object with an additional class attribute and,
therefore, if needed, can be coerced to dist or to a matrix. An ATSP object is represented
as a square matrix. Obviously, asymmetric TSPs are more general than symmetric TSPs,
hence, symmetric TSPs can also be represented as asymmetric TSPs. To formulate an
asymmetric TSP as a symmetric TSP with double the number of cities (see Section 2.2),
reformulate_ATSP_as_TSP() is provided. The function creates the necessary dummy cities
and adapts the distance matrix accordingly.

A popular format to save TSP descriptions to disk which is supported by most TSP
solvers is the format used by TSPLIB, a library of sample instances of the TSP maintained
by Reinelt (2004). The TSP package provides read_TSPLIB() and write_TSPLIB() to read
and save symmetric and asymmetric TSPs.

The class TOUR represents a solution to a TSP in form of an integer permutation vector
containing the ordered indices and labels of the cities to visit. In addition, it stores an
attribute indicating the length of the tour. Again, suitable print() and labels() methods
are provided. The raw permutation vector (i.e., the order in which cities are visited) can be
obtained from a tour using as.integer(). With cut_tour(), a circular tour can be split at
a specified city resulting in a path represented by a vector of city indices.

The length of a tour can always be calculated using tour_length() and specifying a TSP
and a tour. Instead of the tour, an integer permutation vector calculated outside the TSP
package can be used as long as it has the correct length.

All TSP solvers in TSP use the simple common interface:
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Table 1: Available algorithms in TSP.
Algorithm Method argument Applicable to
Nearest neighbor algorithm "nn" TSP/ATSP
Repetitive nearest neighbor algorithm "repetitive_nn" TSP/ATSP
Nearest insertion "nearest_insertion" TSP/ATSP
Farthest insertion "farthest_insertion" TSP/ATSP
Cheapest insertion "cheapest_insertion" TSP/ATSP
Arbitrary insertion "arbitrary_insertion" TSP/ATSP
Concorde TSP solver "concorde" TSP
2-Opt improvement heuristic "2-opt" TSP/ATSP
Chained Lin-Kernighan "linkern" TSP

solve_TSP(x, method, control)

where x is the TSP to be solved, method is a character string indicating the method used to
solve the TSP and control can contain a list with additional information used by the solver.
The available algorithms are shown in Table 1.

All algorithms except the Concorde TSP solver and the Chained Lin-Kernighan heuristic (a
Lin-Kernighan variation described in Applegate, Cook, and Rohe (2003)) are included in the
package and distributed under the GNU Public License (GPL). For the Concorde TSP solver
and the Chained Lin-Kernighan heuristic only a simple interface (using write_TSPLIB(), call-
ing the executable and reads back the resulting tour) is included in TSP. The code itself is
part of the Concorde distribution, has to be installed separately and is governed by a different
license which allows only for academic use. The interfaces are included since Concorde (Ap-
plegate et al., 2000; Applegate, Bixby, Chvatal, and Cook, 2006) is currently one of the best
implementations for solving symmetric TSPs based on the branch-and-cut method discussed
in section 2.3. In May 2004, Concorde was used to find the optimal solution for the TSP
of visiting all 24,978 cities in Sweden. The computation was carried out on a cluster with
96 nodes and took in total almost 100 CPU years (assuming a single CPU Xeon 2.8 GHz
processor).

4 Examples

4.1 Comparing some heuristics

In the following example, we use several heuristics to find a short path in the USCA50 data
set which contains the distances between the first 50 cities in the USCA312 data set. The
USCA312 data set contains the distances between 312 cities in the USA and Canada coded
as a symmetric TSP. The smaller data set is used here, since some of the heuristic solvers
employed are rather slow.

> library("TSP")

> data("USCA50")

> tsp <- USCA50

> tsp

object of class 'TSP'

50 cities (distance 'euclidean')

We calculate tours using different heuristics and store the results in the the list tours.
As an example, we show the first tour which displays the used method, the number of cities
involved and the tour length. All tour lengths are compared using the dot chart in Figure 2.
For the chart, we add a point for the optimal solution which has a tour length of 14497. The
optimal solution can be found using Concorde (method = "concorde"). It is omitted here,
since Concorde has to be installed separately.

> methods <- c("nearest_insertion", "farthest_insertion", "cheapest_insertion",

+ "arbitrary_insertion", "nn", "repetitive_nn", "2-opt")
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Figure 2: Comparison of the tour lengths for the USCA50 data set.

> tours <- lapply(methods, FUN = function(m) solve_TSP(tsp,

+ method = m))

> names(tours) <- methods

> tours[[1]]

object of class 'TOUR'

result of method 'nearest_insertion' for 50 cities

tour length: 17421

> opt <- 14497

> dotchart(c(sapply(tours, FUN = attr, "tour_length"), optimal = opt),

+ xlab = "tour length", xlim = c(0, 20000))

4.2 Finding the shortest Hamiltonian path

The problem of finding the shortest Hamiltonian path through a graph can be transformed
into the TSP with cities and distances representing the graphs vertices and edge weights,
respectively (Garfinkel, 1985).

Finding the shortest Hamiltonian path through all cities disregarding the endpoints can
be achieved by inserting a ‘dummy city’ which has a distance of zero to all other cities. The
position of this city in the final tour represents the cutting point for the path. In the following
we use a heuristic to find a short path in the USCA312 data set. Inserting dummy cities is
implemented in TSP as insert_dummy().

> library("TSP")

> data("USCA312")

> tsp <- insert_dummy(USCA312, label = "cut")

> tsp

object of class 'TSP'

313 cities (distance 'euclidean')

The TSP contains now an additional dummy city and we can try to solve this TSP and
print the labels to see the resulting tour.

> tour <- solve_TSP(tsp, method = "farthest_insertion")

> tour

object of class 'TOUR'

result of method 'farthest_insertion' for 313 cities

tour length: 38184
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Since the dummy city has distance zero to all other cities, the path length is equal to the
tour length reported above. The path starts with the first city in the list after the ‘dummy’
city and ends with the city right before it. We use cut_tour() to create a path and show the
first and last 6 cities on it.

> path <- cut_tour(tour, "cut")

> head(labels(path))

[1] "Lihue, HI" "Honolulu, HI" "Hilo, HI"

[4] "San Francisco, CA" "Berkeley, CA" "Oakland, CA"

> tail(labels(path))

[1] "Anchorage, AK" "Fairbanks, AK" "Dawson, YT"

[4] "Whitehorse, YK" "Juneau, AK" "Prince Rupert, BC"

The tour found in the example results in a path from Lihue on Hawaii to Prince Rupert
in British Columbia. Such a tour can also be visualized using the packages sp, maps and
maptools.

> library("maps")

> library("sp")

> library("maptools")

> data("USCA312_map")

> plot_path <- function(path) {

+ plot(as(USCA312_coords, "Spatial"), axes = TRUE)

+ plot(USCA312_basemap, add = TRUE, col = "gray")

+ points(USCA312_coords, pch = 3, cex = 0.4, col = "red")

+ path_line <- SpatialLines(list(Lines(list(Line(USCA312_coords[path,

+ ])))))

+ plot(path_line, add = TRUE, col = "black")

+ points(USCA312_coords[c(head(path, 1), tail(path, 1)),

+ ], pch = 19, col = "black")

+ }

> plot_path(path)

The map containing the path is presented in Figure 3. It has to be mentioned that the path
found by the used heuristic is considerable longer than the optimal path found by Concorde
with a length of 34928, illustrating the power of modern TSP algorithms.

For the following two examples, we show in a very low level way how the distance matrix
between cities can be modified to solve related shortest Hamiltonian path problems. These ex-
amples serve as illustrations of how modifications can be made to transform different problems
into a TSP.

The first problem is to find the shortest Hamiltonian path starting with a given city. In
this case, all distances to the selected city are set to zero, forcing the evaluation of all possible
paths starting with this city and disregarding the way back from the final city in the tour.
By modifying the distances the symmetric TSP is changed into an asymmetric TSP (ATSP)
since the distances between the starting city and all other cities are no longer symmetric.

As an example, we choose the city New York to be the starting city. We transform the
data set into an ATSP and set the column corresponding to New York to zero before solving
it. This means that the distance to return from the last city in the path to New York does not
contribute to the path length. We use the nearest neighbor heuristic to calculate an initial
tour which is then improved using 2-Opt moves and cut at New York City to create a path.

> atsp <- as.ATSP(USCA312)

> ny <- which(labels(USCA312) == "New York, NY")

> atsp[, ny] <- 0

> initial_tour <- solve_TSP(atsp, method = "nn")

> initial_tour

object of class 'TOUR'

result of method 'nn' for 312 cities

tour length: 49697
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Figure 3: A “short” Hamiltonian path for the USCA312 dataset.

> tour <- solve_TSP(atsp, method = "2-opt", control = list(tour = initial_tour))

> tour

object of class 'TOUR'

result of method '2-opt' for 312 cities

tour length: 39445

> path <- cut_tour(tour, ny, exclude_cut = FALSE)

> head(labels(path))

[1] "New York, NY" "Jersey City, NJ" "Elizabeth, NJ" "Newark, NJ"

[5] "Paterson, NJ" "Binghamtom, NY"

> tail(labels(path))

[1] "Edmonton, AB" "Saskatoon, SK" "Moose Jaw, SK" "Regina, SK"

[5] "Minot, ND" "Brandon, MB"

> plot_path(path)

The found path is presented in Figure 4. It begins with New York City and cities in New
Jersey and ends in a city in Manitoba, Canada.

Concorde and many advanced TSP solvers can only solve symmetric TSPs. To use these
solvers, we can formulate the ATSP as a TSP using reformulate_ATSP_as_TSP() which in-
troduces for each city a dummy city (see Section 2.2).

> tsp <- reformulate_ATSP_as_TSP(atsp)

> tsp

object of class 'TSP'

624 cities (distance 'unknown')

After finding a tour for the TSP, the dummy cities are removed again giving the tour for
the original ATSP. Note that the tour needs to be reversed if the dummy cities appear before
and not after the original cities in the solution of the TSP. The following code is not executed
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Figure 4: A Hamiltonian path for the USCA312 dataset starting in New York City.

here, since it takes several minutes to execute and Concorde has to be installed separately.
Concorde finds the optimal solution with a length of 36091.

> tour <- solve_TSP(tsp, method = "concorde")

> tour <- as.TOUR(tour[tour <= n_of_cities(atsp)])

Finding the shortest Hamiltonian path which ends in a given city can be achieved likewise
by setting the row corresponding to this city in the distance matrix to zero.

For finding the shortest Hamiltonian path we can also restrict both end points. This
problem can be transformed to a TSP by replacing the two cities by a single city which
contains the distances from the start point in the columns and the distances to the end point
in the rows. Obviously this is again an asymmetric TSP.

For the following example, we are only interested in paths starting in New York and
ending in Los Angeles. Therefore, we remove the two cities from the distance matrix, create
an asymmetric TSP and insert a dummy city called "LA/NY". The distances from this dummy
city are replaced by the distances from New York and the distances towards are replaced by
the distances towards Los Angeles.

> m <- as.matrix(USCA312)

> ny <- which(labels(USCA312) == "New York, NY")

> la <- which(labels(USCA312) == "Los Angeles, CA")

> atsp <- ATSP(m[-c(ny, la), -c(ny, la)])

> atsp <- insert_dummy(atsp, label = "LA/NY")

> la_ny <- which(labels(atsp) == "LA/NY")

> atsp[la_ny, ] <- c(m[-c(ny, la), ny], 0)

> atsp[, la_ny] <- c(m[la, -c(ny, la)], 0)

We use again the nearest insertion heuristic.

> tour <- solve_TSP(atsp, method = "nearest_insertion")

> tour
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Figure 5: A Hamiltonian path for the USCA312 dataset starting in New York City and ending in
Los Angles.

object of class 'TOUR'

result of method 'nearest_insertion' for 311 cities

tour length: 45029

> path_labels <- c("New York, NY", labels(cut_tour(tour, la_ny)),

+ "Los Angeles, CA")

> path_ids <- match(path_labels, labels(USCA312))

> head(path_labels)

[1] "New York, NY" "North Bay, ON" "Sudbury, ON"

[4] "Timmins, ON" "Sault Ste Marie, ON" "Thunder Bay, ON"

> tail(path_labels)

[1] "Eureka, CA" "Reno, NV" "Carson City, NV"

[4] "Stockton, CA" "Santa Barbara, CA" "Los Angeles, CA"

> plot_path(path_ids)

The path moves from New York on to other cities close in the State of New York and it
passes through cities in California before ending in Los Angeles. The whole path is displayed
in Figure 5.

4.3 Rearrangement clustering

Solving a TSP to obtain a clustering was suggested several times in the literature (see, e.g.,
Lenstra, 1974; Alpert and Kahng, 1997; Johnson, Krishnan, Chhugani, Kumar, and Venkata-
subramanian, 2004). The idea is that objects in clusters are visited in consecutive order and
from one cluster to the next larger “jumps” are necessary. Climer and Zhang (2006) call
this type of clustering rearrangement clustering and suggest to automatically find the clus-
ter boundaries of k clusters by adding k dummy cities which have constant distance c to all
other cities and are infinitely far from each other. Climer and Zhang (2006) show that in the
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Figure 6: Result of rearrangement clustering using three dummy cities and the nearest insertion
algorithm on the iris data set.

optimal solution of the TSP, the dummy cities must separate the most distant cities and thus
represent optimal boundaries for k clusters.

For the example, we use the well known iris data set. Since we know that the dataset
contains three classes denoted by the attribute called "Species", we insert three dummy
cities into the TSP for the iris data set and perform rearrangement clustering using the
nearest insertion algorithm. Note that this algorithm does not find the optimal solution and
it is not guaranteed that the dummy cities will present the optimal cluster boundaries.

> data("iris")

> tsp <- TSP(dist(iris[-5]), labels = iris[, "Species"])

> tsp_dummy <- insert_dummy(tsp, n = 3, label = "boundary")

> tour <- solve_TSP(tsp_dummy)

Next, we plot the TSP’s permuted distance matrix using shading to represent distances.
The result is displayed as Figure 6. Lighter areas represent larger distances. The additional
red lines represent the positions of the dummy cities in the tour, which mark the found
boundaries of the clusters.

> image(tsp_dummy, tour, xlab = "objects", ylab = "objects")

> abline(h = which(labels(tour) == "boundary"), col = "red")

> abline(v = which(labels(tour) == "boundary"), col = "red")

One pair of red horizontal and vertical lines exactly separates the darker from lighter areas.
The second pair occurs inside the larger dark. We can look at how well the found partitioning
fits the structure in the data given by the species field in the data set. Since we used the
species as the city labels in the TSP, the labels in the tour represent the partitioning with the
dummy cities named ‘boundary’ separating groups.

> labels(tour)

[1] "boundary" "virginica" "virginica" "virginica" "virginica"

[6] "virginica" "virginica" "virginica" "boundary" "virginica"
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[11] "virginica" "virginica" "virginica" "virginica" "virginica"

[16] "virginica" "virginica" "virginica" "virginica" "virginica"

[21] "virginica" "virginica" "virginica" "virginica" "virginica"

[26] "virginica" "virginica" "versicolor" "versicolor" "versicolor"

[31] "versicolor" "versicolor" "virginica" "virginica" "virginica"

[36] "virginica" "virginica" "virginica" "virginica" "virginica"

[41] "virginica" "virginica" "virginica" "virginica" "virginica"

[46] "virginica" "virginica" "virginica" "virginica" "virginica"

[51] "virginica" "virginica" "versicolor" "virginica" "virginica"

[56] "virginica" "versicolor" "versicolor" "versicolor" "versicolor"

[61] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[66] "versicolor" "versicolor" "versicolor" "versicolor" "virginica"

[71] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[76] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[81] "versicolor" "versicolor" "versicolor" "virginica" "versicolor"

[86] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[91] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[96] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[101] "versicolor" "versicolor" "boundary" "setosa" "setosa"

[106] "setosa" "setosa" "setosa" "setosa" "setosa"

[111] "setosa" "setosa" "setosa" "setosa" "setosa"

[116] "setosa" "setosa" "setosa" "setosa" "setosa"

[121] "setosa" "setosa" "setosa" "setosa" "setosa"

[126] "setosa" "setosa" "setosa" "setosa" "setosa"

[131] "setosa" "setosa" "setosa" "setosa" "setosa"

[136] "setosa" "setosa" "setosa" "setosa" "setosa"

[141] "setosa" "setosa" "setosa" "setosa" "setosa"

[146] "setosa" "setosa" "setosa" "setosa" "setosa"

[151] "setosa" "setosa" "setosa"

One boundary perfectly splits the iris data set into a group containing only examples of
the species ‘Setosa’ and a second group containing examples for ‘Virginica’ and ‘Versicolor’.
However, the second boundary only separates several examples of the species ‘Virginica’ from
other examples of the same species. Even in the optimal tour found by Concorde, this problem
occurs. The reason why the rearrangement clustering fails to split the data into three groups is
the closeness between the groups ‘Virginica’ and ‘Versicolor’. To inspect this problem further,
we can project the data points on the first two principal components of the data set and add
the path segments which resulted from solving the TSP.

> prc <- prcomp(iris[1:4])

> plot(prc$x, pch = as.numeric(iris[, 5]), col = as.numeric(iris[,

+ 5]))

> indices <- c(tour, tour[1])

> indices[indices > 150] <- NA

> lines(prc$x[indices, ])

The result in shown in Figure 7. The three true groups are identified by different markers
and all points connected by a single path represent a found cluster. Clearly, the two groups
to the right side of the plot are too close to be separated correctly by using just the dis-
tances between individual points. This problem is similar to the chaining effect known from
hierarchical clustering using the single-linkage method.

5 Conclusion

In this paper we presented the package TSP which implements the infrastructure to handle
and solve TSPs. The package introduces classes for problem descriptions (TSP and ATSP)
and for the solution (TOUR). Together with a simple interface for solving TSPs, it allows for
an easy and transparent usage of the package.

With the interface to Concorde, TSP also can use a state of the art implementation which
efficiently computes exact solutions using branch-and-cut.
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Figure 7: The 3 path segments representing a rearrangement clustering of the iris data set. The
data points are projected on the set’s first two principal components. The three species are
represented by different markers and colors.
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