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Abstract

Rpackage ToxLim (De˜Laender and Soetaert 2010) contains the OMEGA model to
estimate the estimates the bioaccumulation of a nonbiotransforming chemical through a
food web.

It also contains several food web examples.
The methodology was described in the paper by (De˜Laender, Van˜Oevelen, Middel-

burg, and Soetaert 2009). Please cite this paper when using this package.
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1. Introduction

R-package ToxLim , accompanying the paper (De˜Laender et˜al. 2009) models the bioaccu-
mulation of a nonbiotransforming chemical through a food web.

It contains an implementation of the OMEGA model (Hendriks, van˜der Linde, Cornelissen,
and Sijm 2001), as extended for multiple food sources by (De˜Laender et˜al. 2009), and three
food web examples: the pelagic food web of the Barents Sea, and two food webs of freshwater
(lake) enclosures.

For background on inverse modelling, we refer to the documents of the LIM package (van
Oevelen, van˜den Meersche, Meysman, Soetaert, Middelburg, and Vezina 2010), or the lim-
Solve package (Soetaert, den Meersche, and van Oevelen 2009).

Also see (Van˜den Meersche, Soetaert, and Van˜Oevelen 2009) for running a constrained
monte carlo.

The LIM package also contains many other food web examples.
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2. The example food webs

Three food webs are included in the package.

2.1. LIMbarents

The Barents Sea food web was published in (De˜Laender, Van˜Oevelen, Middelburg, and
Soetaert 2010a) and the bioaccumulation model applied to it in (De˜Laender, Van˜Oevelen,
S, Middelburg, and Soetaert 2010b).

It consists of the linear inverse model specification for the Southern Barents Sea.

The food web compartments for the area are dissolved organic carbon (DOC), detritus, bac-
teria, heterotrophic flagellates and ciliates, phytoplankton (pico- and nanoplankton, diatoms
and Phaeocystis sp.), mesozooplankton (copepods), macrozooplankton (krill and chaetog-
naths), cod (Gadus morhua), herring (Clupea harengus) and capelin (Mallotus villosus).
Adult cod (> 3 yrs) and young cod (< 3 yrs) were considered as two different populations.

First the food web is solved:

> plotweb(Flowmatrix(LIMbarents),main="Barents Sea Food Web",

+ sub="gC/m2/day")

Then the ranges of flows and variables are calculated and plotted:

> pm <- par(mfrow=c(1,2))

> Plotranges(LIMbarents,lab.cex=0.7,xlab="gC/m2/d",

+ main="Flows")

> #

> Plotranges(LIMbarents,type="V",lab.cex=0.7,xlab="gC/m2/d",

+ main="variables")

> mtext(outer=TRUE,"Southern Barents Sea food web",side=3,line=-1,cex=1.5)

> par(mfrow=pm)
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Barents Sea Food Web
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Figure 1: The Barents Sea food web
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Figure 2: The Barents Sea food web ranges of flows and variables
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2.2. LIMlake and LIMlakeFish

This includes the Linear inverse model specification for two freshwater lake enclosures (Lac
Croche, Canada), (Ridal, Mazumder, and Lean 2001), used as demonstration example in
(De˜Laender et˜al. 2009).

Food web compositions in the enclosures were manipulated by additions of planktivorous fish
and/or nutrients giving four types of food webs: planktonic, planktonic with nutrient addi-
tion, planktonic with planktivorous fish, and planktonic with planktivorous fish and nutrient
additions. The trophic links in the mass-balances of each LIM are identical, except that the
fish compartment is only present in F and FN.

LIMlake is the linear inverse model for the food web without fish and without nutrient addi-
tion. LIMlakeFish has fish, but also no nutrients were added.

First the food web is solved:

> pm <- par(mfrow=c(1,2))

> lake <- Flowmatrix(LIMlake)

> plotweb(lake,main="Lake enclosure food web",sub="gC/m2/day")

> plotweb(Flowmatrix(LIMlakeFish),main="Lake enclosure food web + FISH",

+ sub="gC/m2/day")

Then the ranges of flows and variables are calculated and plotted:

> # ranges of flows

> Plotranges(LIMlake,lab.cex=0.7,xlab="gC/m2/d",

+ main="Flows")

> # ranges of variables

> Plotranges(LIMlake,type="V",lab.cex=0.7,xlab="gC/m2/d",

+ main="variables")

> mtext(outer=TRUE,"Lake enclosure food web",side=3,line=-1,cex=1.5)

> par(mfrow=pm)
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Lake enclosure food web
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Figure 3: The Limlake food web with and without fish
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Figure 4: The Limlake food web ranges of flows and variables
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3. The LimOmega function

The OMEGA model (Hendriks et˜al. 2001) estimates the rate of change of the concentration
Ci of a nonbiotransforming chemical in compartment i by taking into account the chemical
uptake rates through feeding and directly from water, the chemical dilution rate through
production and the rates of egestion with faeces and excretion to water.

While OMEGA initially was developed to represent food chains, it was extended with multiple
food sources in (De˜Laender et˜al. 2009).

The set of differential equations for all m compartments in a food web was cast in matrix
notation as:

dC

dt
= Kup,food · C + Kup,water · Cwater −Kout+dil · C

where C is the internal concentration vector, dC
dt is the rate of change of the internal concen-

tration vector, Kup,food is a m * m matrix with chemical uptake rates through feeding (d-1),
containing elements kup,food,ji on row i, column j, Kup,water the uptake rates directly from
water (L˜kg−1˜d−1) is a column vector with m elements and Kout+dil the chemical dilution
rate through production, the rates of egestion with faeces and excretion to water (d−1), a m
* m diagonal matrix with elements kout,eg,i + kdil,pr,i + kout,water,i.

Expressions for rate coefficients (kup,food,ji; kup,water,i; kout,eg,i; kdil,pr,i; kout,water,i) that reg-
ulate chemical uptake and loss processes and how these relate to the carbon flows predicted
by the LIM framework can be found in Table S1 of the Supporting Information (SI) of
(De˜Laender et˜al. 2009).

Internal concentrations in small particles such as microzooplankton, phytoplankton, detritus,
protozoa, and bacteria (collectively termed INST in this package), are assumed to be in rapid
equilibrium with the water phase and may be calculated as

C∗
INST = Cwater ·OCINST ·KOC

where C∗
inst denotes the concentration vector for model compartments that are in instant

equilibrium with the surrounding water (microg kg-1 wet weight), OCinst their organic carbon
fraction (-), and KOC , the organic carbon-water partition coefficient (L˜kg−1), calculated as
0.41KOW, with KOW the octanol-water partition coefficient.

3.1. The bioaccumulation model applied to the three example food webs

First we apply the bioaccumulation model to the three food webs, and using the default values
(e.g. a logKoW of 6):

The lake food web,

> LimOmega (lim = LIMlake,

+ INST=c("DET","DOC","BAC","PHY","NAN","CIL","MIZ"),

+ KINE= "MEZ", EXPO=c("sed","gr"),

+ DOC="DOC", DET="DET", DIC="dic",

+ WW_KINE=7.596535e-08, SS_KINE=0.079508)
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$BAF_LC

MEZ

1073583

$BCF_OC

DET DOC BAC PHY NAN CIL MIZ

410000 410000 410000 410000 410000 410000 410000

The lake food web with fish:

> LimOmega (lim = LIMlakeFish,

+ INST=c("DET","DOC","BAC","PHY","NAN","CIL","MIZ"),

+ KINE=c("MEZ","FIS"), EXPO=c("sed","gr"),

+ DOC="DOC", DET="DET", DIC="dic",

+ WW_KINE=c(1.85e-08,1.7e-3),

+ SS_KINE=c(0.00514800,0.26))

$BAF_LC

MEZ FIS

943609 1051809

$BCF_OC

DET DOC BAC PHY NAN CIL MIZ

410000 410000 410000 410000 410000 410000 410000

The Barents Sea example:

> LimOmega (lim = LIMbarents,

+ INST=c("DIA","PHA","AUT","CIL","HNA","DET","BAC"),

+ KINE=c("COP","CHA","KRI","CAP","COD","YCO","HER"),

+ EXPO=c("SED","GRA","GRO"),

+ DOC="DOC", DET="DET", DIC="DIC",

+ WW_KINE=c(0.000001,8e-05,0.00006,10e-3,3,1,20e-3),

+ LIPID_KINE=c(0.01,0.01,0.01,0.03,0.03,0.03,0.03),

+ LIPID_INST=0.04,

+ SS_KINE=c(1.79,0.6965,0.003,0.38,0.053,0.006,0.055))

$BAF_LC

COP CHA KRI CAP COD YCO HER

887935.9 1003297.5 467057.2 958170.3 1657017.9 780377.1 1160962.6

$BCF_OC

DIA PHA AUT CIL HNA DET BAC

410000 410000 410000 410000 410000 410000 410000

3.2. A monte carlo run on food web structure

First we take niter random samples from all possible solutions using a Markow Chain Monte
Carlo approach (Van˜den Meersche et˜al. 2009)
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> X0 <- Lsei(LIMlake)$X

> niter <- 50

> SolXS <- Xsample(LIMlake, iter=niter, type = "mirror",

+ jmp=NULL, x0=X0, fulloutput = FALSE)

> BAFlc_all <- NULL

Then, for each of these samples the flowmatrix is created and LimOmega applied:

> for (i in 1:niter) {

+ flowmat <- Flowmatrix(LIMlake, SolXS[i,])

+ LO<- LimOmega (flowmatrix=flowmat,

+ INST=c("DET","DOC","BAC","PHY","NAN","CIL","MIZ"),

+ KINE=c("MEZ"), EXPO=c("sed","gr"),

+ DOC="DOC", DET="DET", DIC="dic",

+ WW_KINE=7.596535e-08, SS_KINE=0.079508,

+ Growth=0, k=0.25, Q=1)

+

+ BAFlc_all <- c(BAFlc_all,LO$BAF_LC)

+ }

Show results

> hist(BAFlc_all)

Now the same food web structure is used with different chemical parameters:

> niter <- 100

We create a normally distributed sample of log kow:

> lkw <- rnorm(niter,mean=6,sd=0.4)

> BAFlc_all <- NULL

> BCFoc_all <- NULL

We also use the LIMlake foodweb:

> flowmat <- Flowmatrix(LIMlake)

and run the LimOmega model for each value of log kow:

> for (i in 1:niter) {

+ LO<- LimOmega (flowmatrix=flowmat,

+ INST=c("DET","DOC","BAC","PHY","NAN","CIL","MIZ"),

+ KINE=c("MEZ"), EXPO=c("sed","gr"),

+ DOC="DOC", DET="DET", DIC="dic",

+ WW_KINE=7.596535e-08, SS_KINE=0.079508,

+ Growth=0, k=0.25, Q=1, logKow = lkw[i])

+

+ BAFlc_all <- c(BAFlc_all,LO$BAF_LC)

+ BCFoc_all <- c(BCFoc_all,LO$BCF_OC[1])

+ }
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Figure 5: The LimOmega model, applied 50 times, to the lake food web
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Figure 6: The LimOmega model, applied with different values of log kow

Finally, we plot the results:

> pm <- par(mfrow=c(2,2))

> hist(BAFlc_all,main="BAF_LC")

> plot(lkw,BAFlc_all,xlab="log Kow",ylab="BAF_LC")

> hist(BCFoc_all,main="BCF_OC")

> plot(lkw,BCFoc_all,xlab="log Kow",ylab="BCF_OC")

> par(mfrow=pm)

4. Finally

This vignette was made with Sweave (Leisch 2002).
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