A Short Introduction to
the XM. package for R

Duncan Temple Lang, UC Davis

Thisisintended to be a short document that gets you started with the R package XML. There aretwo main
things that one does with the XML package: read XML documents and create XML documents. We'll start
with the first of these.

Reading XML

To parse an XML document, you can use xm | nt er nal Tr eePar se() or xm Tr eePar se() (with
usel nt er nal Nodes specified as TRUE or FALSE) or xim Event Par se() . If you are dealing with
HTML content which is frequently malformed (i.e. nodes not terminated, attributes not quoted, etc.), you
canuse ht m Tr eePar se() . You can give these functions the name of afile, aURL (HTTP or FTP) or
XML text that you have previously created or read from afile.

Tree/DOM-based parsing

If you are working with small to moderately sized XML files, it is easiest to use xmi | nt er nal -
Tr eePar se() tofirst read the XML tree into memory.

#'http://ww. onmegahat . or g/ RSXM./ i ndex. ht m "
doc = xm I nternal TreeParse("lInstall/Wb/index. html .in")

Thenyou can traversethetreelooking for the information you want and putting it into different forms. There
are two ways to do thisiteration. Oneisto recursively "walk" the tree yourself by starting at the root node
and processing it, and then process each child node in the same manner, working on its name and attributes
and then its children, and so on. In order to collect the information at different levelsinto an data structure, it
isoften convenient to use global variables. Thisworksfor interactive computations. When writing functions
for this, make certain to use closures/lexical scoping to obtain non-local variables that are not truly global.

Many people find recursion confusing, and when coupled with the need for non-local variables and mutable
state, a different approach can be welcome. If we know what parts of the tree that we are interested in,
then it is convenient to just fetch them, process them and discard them to move on to the other pieces.
XPath isan XML technology that provides a language for accessing subsets of an XML tree. It allows us
to express things such as "find me all nodes named a" or "find me all nodes name a that have no attribute
named b" or "nodes a that have an attribute b equal to 'bob™ or "find me al nodes a which have c as an
ancestor node". It has asimilar feeling to R's subsetting capabilities and works for trees rather than vectors
and dataframes. It isalso very powerful and efficient. But it takesalittle timeto learn. Some decent tutorials
are available on the Web (e.g. Zvon [http://www.zvon.org/xxl/X PathTutorial/General/exampl es.html] and
w3schoals [http://www.w3schools.com/xpath]) and there are books that cover this subject, e.g. [XML in
aNutshell], [XPathXPointer].

The XPath functionsin the XML package are get NodeSet () and xpat hAppl y() . Basicaly, you specify
thedocument returned fromxm | nt er nal Tr eePar se() and the X Path expression to identify the nodes.
get NodeSet () returns alist of the matching nodes. xpat hAppl y() is used to apply afunction to each

http://www.omegahat.org/XML
http://www.omegahat.org/XML
http://www.zvon.org/xxl/XPathTutorial/General/examples.html
http://www.zvon.org/xxl/XPathTutorial/General/examples.html
http://www.w3schools.com/xpath
http://www.w3schools.com/xpath

A Short Introduction to
the XML package for R

of those nodes, e.g. find nodes named "a anywhere in the tree that have an "href" attribute and get the value
of that attribute

src = xpat hApply(doc, "//a[@ref]", xm GetAttr, "href")

Of course, once we have the nodes of interest, we need to be able to extract their information. There are
several functions to do this: xm Name() , xml Attrs(),xm Get Attr (), xm Chil dren() and xm -

Val ue() . xm Nane() getsthe name of the node/element. xmi At t r s() returns all the attribute name-val-
ue pairs as a character vector while xm Get At t r () is used to query the value of a single attribute with
facilities for providing a default value if it is not present and converting it if it is. We tend to use xmi -

Get At t r () as we typically know which attributes we are looking for. xml At t r s() is used when doing
general/meta- computations.

That's essentially all the information that is available directly from the node. Other information is available
from the child nodes. If you are dealing with a"simple" node that contains no XML child nodes but simply
text, e.g.

<enphasi s>t ext to be enphasi zed</ enphasi s>

then the text is actually a child node. We can deal with it in the way we deal with arbitrary children nodes,
but the function xni Val ue() is convenient for retrieving the text value of a node. So we could get the
string "text to be emphasized" viathe call

xni Val ue(node)

assuming node referred to the node. xm Val ue() works on arbitrary nodes, not just simple text nodes
and operates recursively.

The child nodes are accessed by xm Chi | dr en() and each of these is also a node and so amenable to
xm Nanme(),xm Attrs()andxm Get Attr ().xm Chi | dr en() givesyouaregular Rlist containingall
of the child nodes. Y ou can then accessindividual elements or subsets of these using regular R subscripting.
For example, suppose we have a node with name "A" and it has children with node names " X", "Y" and
"Z", and"X","Y" and"Z", i.e.

<A>
<X/ >
<Y/ >
<Z/ >
<X/ >
<Y/ >

</ A>

Then we can get the first or the last two children with

xm Chi I dren(node) [[1]]
xm Chi | dren(node) [2: 3]

We can determine how many children a node has with

I engt h(xm Chi | dr en(node))
or

xm Si ze(node)

A Short Introduction to
the XML package for R

You can also use names corresponding to the node names. Then we could get al the nodes named "Y"
and"Z" with
xm Chi l dren(node)[c("Y", "Z")]

You can aso index the children directly without having to use xml Chi | dr en() to get the list first. For
example, we can do the subsetting above more conveniently as

node[1: 3]
Similarly, we can use names directly
node[c("Y", "Z")]

We frequently apply the same operation on all the children, for example, get their class or get an attribute
of each. We can do this as

sappl y(xm Chi |l dren(node), xm GetAttr, "id")

but again, we can do it more tersely with either of the functions xm Appl y() and xm SAppl y() . So the
above becomes

xm SAppl y(node, xm GetAttr, "id")

If youusxm | nt er nal Tr eePar se() (orxm Tr eeParse(.., usel nternal Nodes = TRUE)),
you will end up with "internal” nodes that are references to the C data structures representing nodes. Oth-
erwise, you will end up with XML nodes represented aslists of listsin R. With the internal nodes, you can
"walk" the tree by going up and sideways, not just down through the children. The function xm Par ent ()
gets the parent node of an XML node, or returns NULL. Y ou can use this to iteratively walk to the top of
the tree

while(!is.null(node)) {
node = xm Par ent (node)

}

Given anode, we can aso useget Si bl i ng() to move sideways. This gets the next sibling to right or left
of aparticular node in thelist if children.

SAX & Event-driven parsing

If you have avery large XML file, you probably want to use the xml Event Par se() function to parse the
file. Thisis quite low-level and you have to provide functions that are invoked when the parser encounters
events within the XML stream such as the start of a node, the end of a node, a text chunk, a processing
instruction, and so on. There is no tree so you can't find the children of a node directly but your code has
to remember where it is based on the open and close node event so that one can understand the hierarchy.
Thisisastate machine and a quite different style of programming than that involved in pulling information
out of atree.

If you are lucky enough to be interested in reasonably-sized subsets of the tree, then you can use "branches’
to make things alittle simpler. Otherwise, you have to define handler functions for processing start and end
of nodes, and maintain the state of where the parser is to make sense of the information. This is the most
efficient way to read an XML file, but isnot the simplest. Sowetend to try towork withxm Tr eePar se()
unless we know that we have to deal with large datafiles.

A Short Introduction to
the XML package for R

SAX is very memory efficient as it doesn't build the tree. However, for quick results, you can try use
xm | nt er nal Tr eePar se() and XPath queries to get results even on very largefiles. If the tree can be
read into memory, it can be queried efficiently. So it is awaysworth atry.

Creating XML

We often want to generate XML. For example, we want to create an HTML document to view in abrowser.
Or we want to generate input for Google Earth to display. Or we want to create XML nodes for dynamic
documents. Again, the XML package provides severa different waysto go about doing this. We'll focuson
using internal nodes directly. There are higher-level functions to aid in this also, and alternative represen-
tations using R-level objects rather than C objects.

To create a regular node, we use newXM_Node() . This takes the name of the XML element/node, e.g.
"img" for animagein HTML. Attributes are given by theat t r s argument. And children can be added via
the. . . mechanism. So for example, we can create the tree we discussed 'simple tree' above

make-nodes

node = newXM._Node("A")

sapply(c("X", "Yy*, "zZ", "X, "Y"),
newXM_Node, parent = node)

cat (saveXM.(node))

W can change a odes attributes using xm At t r s() asin
xm Attrs(node)["src"] = "http://ww. omegahat. org"

Further Topics

We haven't mentioned name spaces, DTDs, schema, XSL or any of the advanced aspects of X Path.

Bibliography

[XML in aNutshell] XML in a Nutshell. A Desktop Quick Reference. O'Reilly & Associates, Inc.. Elliotte
Rusty Harold. W. Scott Means. third. 2004.

[XPathX Pointer] XPath and XPointer. O'Reilly & Associates, Inc.. John E. Simpson.

http://www.omegahat.org/XML

	A Short Introduction to the XML package for R
	
	Reading XML
	Tree/DOM-based parsing
	SAX & Event-driven parsing

	Creating XML
	Further Topics
	Bibliography

