An Introduction to the
XML package for R

Duncan Temple Lang
Thisprovidesabrief tour of how to usethe XML parsing package. It starts by showing how to read an XML
document into R and access the elements of the tree that represents the structured contents of the document.
Next, it discusses how to govern the creation of the tree as it is being read from the file. And finaly, it
discusses the use of event-driven (or SAX) parsing.

Suppose we have the following text in a file named as. Sxm . A quick look at the contents shows that
it contains some S-language functions and some documentation for each of them. This is similar to the
self-documenting facility in $4.

Note also that each function definition consists of 3 elements. a name, some comments and the function
definition itself. In this particular form, we have been able to specify the structure of the elements and not
use the R or S syntax to assign the function definition to the name, i.e.as <- function(..)

Why is this useful ? Because we have expressed what mean -- the relationships between the elements in
a system-neutral format. | could add a fourth element to some or all of these functions which provides a
Matlab implementation of the same function. The structure and syntax of the document would not have to
change. Instead, the software that reads the document would know which bits to read.

Note also that the S syntax causes complications for XML because certain characters S uses (e.g. <) have
special significance in XML. To avoid processing these S language elements as XML, one must escape
them. Thisis why the function definition (i.e. the right hand side) is enclosed within a<![CDATA[...]]>
construction. This indicates the XML parser that the text within the [[]] pair is to be read exactly as-is,
or "verbatim".

Note also that this is not needed in place. For example, the R processing instruction (<7R ..>) near the end
of the document) does not require escaping the R command(s). Thisis because XML parsersrecognize this
tag type as being specia and escape its contents automatically.

We are definitely giving up some readability in this format. For this to work, we must provide good tools
that are easy to use to generate and work with these types of documents.

<?xm version="1.0"?>
<I DOCTYPE functi ons>
<functi ons>
<functi onDef access="protected">
<name>as</ name>
<comment s>
return a the version of this object coerced to be the given d ass

If the corresponding "is' relation is true, it will be used. |In particular,
if the relation has a coerce nethod, the nmethod will be invoked on "object’

If the "is' relation is FALSE, and the coerceFlag is TRUE,
the coerce function will be called (which will throw an error if there is

An Introduction to the
XML package for R

no valid way to coerce the two objects). Oherwi se, NULL is returned.
</ comment s>
<def >
<! [CDATA[
function(object, Cass, coerceFlag = T) {
thi sCl ass <- O ass(object)
if(thisdOass == C ass)
return(object)
if(is(object, dass)) {
|1 ook for coerce nethod or indirection
thi sCl ass <- O ass(object)
coe <- extendsCoerce(thisC ass, C ass)
coe(obj ect)
}
el se if(coerceFl ag)
coerce(object, new(d ass, force=T))
el se
NULL
}
11 >
</ def >
</ functi onDef >
<f uncti onDef >
<nane>ext endsCoer ce</ nane>
<comment s>
the function to perform coercion based on the is relation
between two classes. My be explicitly stored in the nmetadata or
inferred. If the latter, the inferred result is stored in the session
net adata for fronCl ass, to save reconputation |ater.
</ comment s>
<def >
<! [CDATA[
function(frond ass, Cass) {
ext <- findExtends(fronC ass, C ass)
f <- NULL
if(is.list(ext)) {
coe <- ext$coerce
if(is.function(coe))
return(coe)
by <- l|ist$by
i f(length(by) > 0)
f <- substitute(function(object)
as(as(object, BY), CLASS), list(BY = by, CLASS=C ass))
el se, drop through
}
if(is.null(f)) {
Because is' was TRUE, nust be a direct extension.
Copy slots if the slots are a subset. Else, just set the
class. For VIRTUAL targets, never change the object.

An Introduction to the
XML package for R

virtual <- isVirtual Cass(d ass)
if(virtual)
f <- function(object)object
el se {
fronSl ots <- sl ot Nanmes(fronC ass)
toSlots <- sl otNanes(d ass)
sameSlots <- (length(toSlots) ==
|| (length(frontlots) == length(toSlots) &&
lany(is.na(match(fronSlots, toSlots)))))
i f(sanmeSl ots)
f <- substitute(function(object){C ass(object) <- CLASS; object},
list(CLASS = C ass))
el se
f <- substitute(function(object) {
val ue <- new(CLASS)
for(what in TOSLOTS)
sl ot (val ue, what) <- slot(object, what)
value }, list(CLASS=Cl ass, TOSLOTS = toSlots))
}
we dropped through because there was no coerce function in the
extends object. Make one and save it back in the session netadata

so no further calls will require constructing the function
if(lis.list(ext))
ext <- list()

ext $coerce <- f

O assDef <- getd ass(fronCl ass)
al | Ext <- get Extends(d assDef)
al | Ext $C ass <- ext

set Ext ends(C assDef, all Ext)

}
11 >
</ def >
</ functi onDef >
<?R X <- 1:107>
</ functions>

We parse the document and create the tree that contains the different elements within the XML document.
Notethat wearenot interested inthe DTD at thispoint, so weinstruct the parsing function to omit translating
itto S.

doc <- xm TreeParse("/tnp/as.S", getDID = F)

So now wewant to get at the contents of the data. We get the top node of the document using thexni Root ()
function.

r <- xm Root (doc)

An Introduction to the
XML package for R

Thisis the node which is referenced in the DOCTYPE and whose name is functions. We can find its name
using the xm Nanme() function.

xm Name(r)

We can determine how many sub-nodes this root node has by calling the function xm Si ze() .

xm Si ze(r)

In this case, the result is 3. That means that it has $3% children which are themselves XMLNode objects.

We can access the different child nodes using the [[() operator. For example, we can get the first child
node with the command.

r[[1]]

Thisis also an object of class XM_Node. We can ask it for its name and number of children, i.e. size.

xm Name(r[[1]])
xm Size(r[[1]])

Most all XML nodes have attributes corresponding to the nane="val ue" pairs within the tag start ele-
ment. For example, the first function definition in our example (i.e. the first sub-child of the root node) has
a"access' attribute with avalue "protected". We can retrieve a name character vector of anode's attributes
viathe functionxm At trs().

xm Attrs(r)

Lets get the first function definition object. Thisisthe first child of the top-level document object.

rifa]]
Thisisitself an object of class XMLNode and so has a tag hame, attributes and children. It has 3 children
whose tag names are given by

sappl y(xm Children(r[[1]]), xm Nane)

nane coment s def
“nane" "comments" "def"

Applying an operation to children of a node is so common that we provide functions xm Appl y() and
xm SAppl y() which are smple wrappers whose primary roleisto fetch thelist of children of the specified
node. (The apply functions are not generic.)

xm SAppl y(r[[1]], xm Name)
xml Appl y(r[[1]], xm Attrs)
xm SAppl y(r[[1]], xm Size)

Let's look further at this <f unct i onDef > element in the tree. As we seg, it has three sub-nodes named
<nanme>, <conment s> and <def >. Let'sgrab the <name> element first.

rila1001]]
Again, thisis of class XM_Node.

class(r[[1]][[1]])

[1] " XM.Node"

An Introduction to the
XML package for R

and it hasasingle child whose classis XML Text Node. This basically means we have aleaf node. Objects
of class XMLText Node have no children (but they are XM_Node so they have adlot for children!)

class(r[[1]][[1]]1[[1]])

[1] "XM.Text Node" "XM.Node"

Thisleaf nodeis not the text itself, but contains that text. We get it using the xm Val ue function.
xm Value(r[[1]][[2]11[[1]])

We should not that the lengthy subscripting to access nodes within nodes ... is ugly and tedious. Of course,
one can assign these intermediate nodes to variables and work on these

x <- r[[1]]

x <- x[[1]]

xm Val ue(x[[1]])
| personally find this sometimes more difficult to follow. But there are times that it is more readable. The
key point to remember here isthat these intermediate variables are copies of the element in thetree. Thisis
obviousto users of the Slanguage, but is dightly unexpected for those coming with backgroundsin C/C++,
Java, Perl, etc. These languages (can) use references to operate on XML trees and so changes to sub-nodes
arereflected in the bigger tree in which that sub-node resides. Sis not ideally suited to operating on highly
recursive, deep objects. But it is more than sufficient.

We have seen how we can extract individual sub-nodes from an object of class XM_Node using the[[()
operator and giving itsindex. It will come as no surprise that we can use the [() (asingle bracket) operator
to extract alist of nodes. For example,

r{[1]][1:2]

returns the first two elements of the root node, i.e. the <nane> and <comment s> nodes.
Similarly to using indices, one can identify nodes by nhame:

ri[1]11[" comrents"]

h <- xm TreeParse(systemfile("treeParseHel p. xm ", pkg="XM"))
xm Root (h) [c("nane", "author")]

nanes(xm Root (doc))

[1] "name" "title" "description" "usage" "argunent s"
[6] "details" "val ue" "references" "author” "not es”
[11] "seeal so" "exanpl es" "keywor ds"

nanmes(xm Root (doc) [["exanpl es"]])

[1] "exanple" "exanple" "exanple" "exanple" "exanple"

We find out which examples have explicit descriptions stanzas by looking at the number of sub-nodes they
have.

xm SAppl y(xm Root (doc) [["exanpl es"]], xm Size)

An Introduction to the
XML package for R

exanpl e exanpl e exanpl e exanpl e exanpl e
1 2 1 1 2

So we can get the last one and look at its description.

xm Root (doc) [["exanpl es"]]1[[5]][["description"]]
We can take the code from the example and execute it.

eg <- xm Root (doc)[["exanples"]][[5]]

canRun <- length(xm Attrs(eg)) == 0 | is.na(match("dontRun", nanmes(xm Attrs(eg)))
i f(!canRun)

canRun <- las.logical (xm Attrs(eg)["dontRun"])
i f(canRun)

eval (parse(text=eg[[2]]))

xnm TagByNanme <-

function(node, nane)

{
whi ch <- (1:xm Si ze(node)) [sappl y(node$chi |l dren, xm Nanme) == nane]
node$chi | dren[whi ch]

}

I appl y(xm TagByNane(d$children[[1]], "functionDef"), function(x) x$children[[2]][[1

Reading the entire XML document into a tree and then processing this tree works well in most situations.
There are cases however, where it is more convenient to process the nodes in the tree as they are being
created and inserted into the tree. This alows us to modify the node or even to discard it from the tree
atogether.

fileName <- systemfile("data/ntcars.xm")
doc <- xm TreeParse(fil eNane, handlers = (function() {
vars <- character(0) ;
list(variable=function(x, attrs) {
vars <<- c(vars, xm Value(x[[1]]))

NULL},
start El ement =function(x, attr){
NUL L
},
names = function() {
vars

}
)
1O
)
Now, suppose we want to make post-processing the tree easier. We can start by providing additional class
information. For example, when reading aR source codein XML format (seexm 2t ex. Sxmi) document,
we might process fragment chunks by giving them an additional class name XM_Fr agnment Node. This
would then allow us to process the resulting objectsin asimpler manner, dispatching to different functions.

h <- list(fragnent=function(x, attr){ class(x) <- c("XMFragment Node", class(x))
X

An Introduction to the
XML package for R

1)

doc <- xm TreeParse(file, handl ers=h, asTree=T)

Creating XML Nodes

There are two styles that can be used for creating nodes:

 top-down
create atop-level object and assign childrento it,

* bottom-up
create child nodes and group them together into container/parent nodes, and recursively work ones way
up the tree.

a <- xm Node("arg", attrs = c(default="T"), xm Node("nanme", "foo"), xnl Node("defau

aschildren[[3]] <- xm Node("duncan")
Theresulting treeis

<arg default="T">
<nane>

f oo

</ nane>
<def aul t Val ue>

1: 10

</ def aul t Val ue>
<duncan>

</ duncan>

</ ar g>

The worse form of generating ais

a <- xm Node("arg", attrs = c(default="T"),
xm Node(" nanme", xm Text Node("foo0")), xm Node("defaultVal ue", xm Text

Writing XML Output

If one hasatree of XM_Node objectsin S, then the basic print methods for these classeswill generate XML
that can be put in afile or generally used outside of S. But what about tranglating datain Sinto XML so that
it can be used elsewhere, e.g sent to Matlab, put on the web, communicated directly to another application
via SOAP, etc. How do we go about generating the XML text to represent an object? Well, take a look
at StatDataM L.

	An Introduction to the XML package for R
	
	Creating XML Nodes
	Writing XML Output

