
1

A Short Introduction to
the XML package for R

Duncan Temple Lang, UC Davis

This is intended to be a short document that gets you started with the R package XML. There are two main
things that one does with the XML package: read XML documents and create XML documents. We'll start
with the first of these.

Reading XML
To parse an XML document, you can use xmlInternalTreeParse() or xmlTreeParse() (with
useInternalNodes specified as TRUE or FALSE) or xmlEventParse() . If you are dealing with
HTML content which is frequently malformed (i.e. nodes not terminated, attributes not quoted, etc.), you
can use htmlTreeParse() . You can give these functions the name of a file, a URL (HTTP or FTP) or
XML text that you have previously created or read from a file.

Tree/DOM-based parsing
If you are working with small to moderately sized XML files, it is easiest to use xmlInternal-
TreeParse() to first read the XML tree into memory.

#"http://www.omegahat.org/RSXML/index.html"
doc = xmlInternalTreeParse("Install/Web/index.html.in")

Then you can traverse the tree looking for the information you want and putting it into different forms. There
are two ways to do this iteration. One is to recursively "walk" the tree yourself by starting at the root node
and processing it, and then process each child node in the same manner, working on its name and attributes
and then its children, and so on. In order to collect the information at different levels into an data structure, it
is often convenient to use global variables. This works for interactive computations. When writing functions
for this, make certain to use closures/lexical scoping to obtain non-local variables that are not truly global.

Many people find recursion confusing, and when coupled with the need for non-local variables and mutable
state, a different approach can be welcome. If we know what parts of the tree that we are interested in,
then it is convenient to just fetch them, process them and discard them to move on to the other pieces.
XPath is an XML technology that provides a language for accessing subsets of an XML tree. It allows us
to express things such as "find me all nodes named a" or "find me all nodes name a that have no attribute
named b" or "nodes a that have an attribute b equal to 'bob'" or "find me all nodes a which have c as an
ancestor node". It has a similar feeling to R's subsetting capabilities and works for trees rather than vectors
and data frames. It is also very powerful and efficient. But it takes a little time to learn. Some decent tutorials
are available on the Web (e.g. Zvon [http://www.zvon.org/xxl/XPathTutorial/General/examples.html] and
w3schools [http://www.w3schools.com/xpath]) and there are books that cover this subject, e.g. [XML in
a Nutshell], [XPathXPointer].

The XPath functions in the XML package are getNodeSet() and xpathApply() . Basically, you specify
the document returned from xmlInternalTreeParse() and the XPath expression to identify the nodes.
getNodeSet() returns a list of the matching nodes. xpathApply() is used to apply a function to each

http://www.omegahat.org/XML
http://www.omegahat.org/XML
http://www.zvon.org/xxl/XPathTutorial/General/examples.html
http://www.zvon.org/xxl/XPathTutorial/General/examples.html
http://www.w3schools.com/xpath
http://www.w3schools.com/xpath

A Short Introduction to
the XML package for R

2

of those nodes, e.g. find nodes named "a anywhere in the tree that have an "href" attribute and get the value
of that attribute

src = xpathApply(doc, "//a[@href]", xmlGetAttr, "href")

Of course, once we have the nodes of interest, we need to be able to extract their information. There are
several functions to do this: xmlName() , xmlAttrs() , xmlGetAttr() , xmlChildren() and xml-
Value() . xmlName() gets the name of the node/element. xmlAttrs() returns all the attribute name-val-
ue pairs as a character vector while xmlGetAttr() is used to query the value of a single attribute with
facilities for providing a default value if it is not present and converting it if it is. We tend to use xml-
GetAttr() as we typically know which attributes we are looking for. xmlAttrs() is used when doing
general/meta- computations.

That's essentially all the information that is available directly from the node. Other information is available
from the child nodes. If you are dealing with a "simple" node that contains no XML child nodes but simply
text, e.g.

<emphasis>text to be emphasized</emphasis>

then the text is actually a child node. We can deal with it in the way we deal with arbitrary children nodes,
but the function xmlValue() is convenient for retrieving the text value of a node. So we could get the
string "text to be emphasized" via the call

xmlValue(node)

assuming node referred to the node. xmlValue() works on arbitrary nodes, not just simple text nodes
and operates recursively.

The child nodes are accessed by xmlChildren() and each of these is also a node and so amenable to
xmlName() , xmlAttrs() and xmlGetAttr() . xmlChildren() gives you a regular R list containing all
of the child nodes. You can then access individual elements or subsets of these using regular R subscripting.
For example, suppose we have a node with name "A" and it has children with node names "X", "Y" and
"Z", and "X", "Y" and "Z", i.e.

<A>
 <X/>
 <Y/>
 <Z/>
 <X/>
 <Y/>

Then we can get the first or the last two children with

xmlChildren(node)[[1]]
xmlChildren(node)[2:3]

We can determine how many children a node has with

length(xmlChildren(node))

or

xmlSize(node)

A Short Introduction to
the XML package for R

3

You can also use names corresponding to the node names. Then we could get all the nodes named "Y"
and "Z" with

xmlChildren(node)[c("Y", "Z")]

You can also index the children directly without having to use xmlChildren() to get the list first. For
example, we can do the subsetting above more conveniently as

node[1:3]

Similarly, we can use names directly

node[c("Y", "Z")]

We frequently apply the same operation on all the children, for example, get their class or get an attribute
of each. We can do this as

sapply(xmlChildren(node), xmlGetAttr, "id")

but again, we can do it more tersely with either of the functions xmlApply() and xmlSApply() . So the
above becomes

xmlSApply(node, xmlGetAttr, "id")

If you us xmlInternalTreeParse() (or xmlTreeParse(.., useInternalNodes = TRUE)),
you will end up with "internal" nodes that are references to the C data structures representing nodes. Oth-
erwise, you will end up with XML nodes represented as lists of lists in R. With the internal nodes, you can
"walk" the tree by going up and sideways, not just down through the children. The function xmlParent()
gets the parent node of an XML node, or returns NULL. You can use this to iteratively walk to the top of
the tree

while(!is.null(node)) {
 node = xmlParent(node)
 }

Given a node, we can also use getSibling() to move sideways. This gets the next sibling to right or left
of a particular node in the list if children.

SAX & Event-driven parsing

If you have a very large XML file, you probably want to use the xmlEventParse() function to parse the
file. This is quite low-level and you have to provide functions that are invoked when the parser encounters
events within the XML stream such as the start of a node, the end of a node, a text chunk, a processing
instruction, and so on. There is no tree so you can't find the children of a node directly but your code has
to remember where it is based on the open and close node event so that one can understand the hierarchy.
This is a state machine and a quite different style of programming than that involved in pulling information
out of a tree.

If you are lucky enough to be interested in reasonably-sized subsets of the tree, then you can use "branches"
to make things a little simpler. Otherwise, you have to define handler functions for processing start and end
of nodes, and maintain the state of where the parser is to make sense of the information. This is the most
efficient way to read an XML file, but is not the simplest. So we tend to try to work with xmlTreeParse()
unless we know that we have to deal with large data files.

A Short Introduction to
the XML package for R

4

SAX is very memory efficient as it doesn't build the tree. However, for quick results, you can try use
xmlInternalTreeParse() and XPath queries to get results even on very large files. If the tree can be
read into memory, it can be queried efficiently. So it is always worth a try.

Creating XML
We often want to generate XML. For example, we want to create an HTML document to view in a browser.
Or we want to generate input for Google Earth to display. Or we want to create XML nodes for dynamic
documents. Again, the XML package provides several different ways to go about doing this. We'll focus on
using internal nodes directly. There are higher-level functions to aid in this also, and alternative represen-
tations using R-level objects rather than C objects.

To create a regular node, we use newXMLNode() . This takes the name of the XML element/node, e.g.
"img" for an image in HTML. Attributes are given by the attrs argument. And children can be added via
the ... mechanism. So for example, we can create the tree we discussed 'simple tree' above

make-nodes
node = newXMLNode("A")
sapply(c("X", "Y", "Z", "X", "Y"),
 newXMLNode, parent = node)
cat(saveXML(node))

W can change a odes attributes using xmlAttrs() as in

xmlAttrs(node)["src"] = "http://www.omegahat.org"

Further Topics
We haven't mentioned name spaces, DTDs, schema, XSL or any of the advanced aspects of XPath.

Bibliography
[XML in a Nutshell] XML in a Nutshell. A Desktop Quick Reference. O'Reilly & Associates, Inc.. Elliotte

Rusty Harold. W. Scott Means. third. 2004.

[XPathXPointer] XPath and XPointer. O'Reilly & Associates, Inc.. John E. Simpson.

http://www.omegahat.org/XML

	A Short Introduction to the XML package for R
	
	Reading XML
	Tree/DOM-based parsing
	SAX & Event-driven parsing

	Creating XML
	Further Topics
	Bibliography

