The idea here is to provide simple examples of how to get started with processing XML in R using some
reasonably straightforward "flat" XML files and not worrying about efficiency.

An Example: Grades

Hereis an example of asimplefilein XML containing grades for students for three different tests.

<?xm version="1.0" ?>
<TABLE>
<GRADES>
<STUDENT> Fred </ STUDENT>
<TEST1> 66 </ TEST1>
<TEST2> 80 </ TEST2>
<FI NAL> 70 </ FI NAL>
</ GRADES>
<GRADES>
<STUDENT> W /I ma </ STUDENT>
<TEST1> 97 </ TEST1>
<TEST2> 91 </ TEST2>
<FI NAL> 98 </ FI NAL>
</ GRADES>
</ TABLE>

We might want to turn thisinto a dataframe in R with arow for each student and four variables, the name
and the scores on the three tests.

Sincethisisasmall file, let's not worry about efficiency in any way. We can read the entire document tree
into memory and make multiple passes over it to get the information. Our first approach will be to read the
XML into an R tree, i.e. R-level XML node objects. We do thiswith asimple call toxm Tr eePar se() .

doc = xm Root (xm TreeParse("generic _file.xm "))

We use xm Root () to get the top-level node of the tree rather than holding onto the general document
information since we won't need it.

Since the structure of thisfileisjust alist of elements under the root node, we need only process each of
those nodes and turn them into something we want. The "easiest" way to apply the same function to each
child of an XML nodeiswiththexm Appl y () function. What do we want to do for each of the<GRADES>
node? We want to get the value, i.e. the simple text within the node, of each of its children. Sincethisisthe
samefor each of the child nodesin <GRADES>, thisisagain another call toxm Appl y() . Andsincethisis
all text, we can simplify the result and get back a character vector rather than alist by using xm SAppl y ()
which will perform this extra simplication step.

So afunction to do theinitial processing of an individual <GRADES> node might be

function(node)
xm SAppl y(node, xm Val ue)

since xm Val ue() returns the text content within an XML node. Let's check that this does what we want
by calling it on thefirst child of the root node.

xm SAppl y(doc[[1]], xni Val ue)
And indeed it does.

So we can process al the <GRADES> nodes with the command

tnp = xm SAppl y(doc, function(x) xm SApply(x, xm Value))

The result is a character matrix in which the rows are the variables and the columns are the records. So
let's transpose this.

tnmp = t(tnp)
Now, we have finished working with the XML ; therest isregular R programming.

grades = as.data.franme(matrix(as. nuneric(tnp[,-1]), 2))
nanes(grades) = nanmes(doc[[1]])][-1]
grades$St udent = tnp[, 1]

There seems to be more messing about after we have got the values out of the XML file. There are severa
things that might seem more complex but that actually just move the work to different places, i.e. when we
are traversing the XML tree.

Here's another alternative using X Path.

doc = xm TreeParse("generic _file.xm ", uselnternal = TRUE)

ans | appl y(c(" STUDENT", "TEST1", "TEST2", "FINAL"),
function(var)

unl i st (xpat hAppl y(paste("//", var, sep = ""), xm Value)))
And this gives us alist containing the variables with the values as character vectors.

as. data. frame(l appl y(nanmes(ans),
function(x) if(x !'= "STUDENT") as.integer(x) else x))

Another Example: Customer Information
List

The second exampleisanother list, thistime of description of customers. Thefirst two nodesin the document
are shown below:

<dat ar oot xm ns: od="urn: schenmas-ni crosoft-com of fi cedat a">
<Cust oner s>

<Cust oner | D>ALFKI </ Cust oner | D>

<CompanyNanme>Al freds Futterki st e</ ConpanyNane>
<Cont act Nane>Mari a Ander s</ Cont act Nane>
<ContactTitl e>Sal es Representative</ContactTitle>
<Address>Chere Str. 57</Address>
<CGity>Berlin</City>

<Post al Code>12209</ Post al Code>

<Count r y>Ger many</ Count ry>

<Phone>030- 0074321</ Phone>

<Fax>030- 0076545</ Fax>

</ Cust oner s>

<Cust oner s>

<Cust oner | D>ANATR</ Cust oner | D>

<ConpanyNane>Ana Trujill o Enparedados y hel ados</ ConpanyNane>
<Cont act Nane>Ana Truj il | o</ Cont act Nane>
<ContactTitl e>Omer</ContactTitl e>

<Address>Avda. de |l a Constituci on 2222</ Addr ess>
<City>México D.F.</City>

<Post al Code>05021</ Post al Code>

<Count r y>Mexi co</ Count ry>

<Phone>(5) 555-4729</ Phone>

<Fax>(5) 555-3745</ Fax>

</ Cust oner s>

We can quickly verify that all the nodes under the root are customers with the command

doc = xm Root (xm TreePar se(" Cust-List.xm"))
t abl e(nanmes(doc))

We see that these are all "Customers'. We could further explore to see if each of these nodes has the same
fields.

fields = xm Appl y(doc, nanes)

tabl e(sappl y(fields, identical, fields[[1]]))

And the result indicates that about half of them are the same. Let's see how many unique field names there
are:

uni que(unlist(fields))
Thisgives 11. And we can see how may fields are in each of the Customers nodes with

xm SAppl y(doc, xm Size)
So most of the nodes have most of the fields.

So let's think about a dataframe. What we can do istreat each of the fields as having a simple string value.
Then we can create adata frame with the 11 character columns and with NA values for each of the records.
Thnewe will fill thisin record at atime.

ans = as.data.frame(replicate(1l, character(xm Size(doc))),
stringsAsFactors = FALSE)

names(ans) = unique(unlist(fields))

Now that we have the skeleton of the answer, we can process each of the Customers nodes.

sappl y(1: xm Si ze(doc),
function(i) {
custoner = doc[[i]]
ans[i, nanmes(custoner)] <<- xnl SAppl y(custoner, xml Val ue)

})
Note that we used a global assignemnt in the function to change the ans in the global environment rather
than the local version within the function call. Also, weloop over theindices of the nodesinthetree, i.e. use
sappl y(1: xm Si ze(doc),) rather than xm SAppl y(doc,) simply because we need to know
which row to put the results for each node.

There are various other ways to process these two XML files. One is to use handler functions to process
the internal nodes as they are being converted from C-level data structuresto R objectsin acall to xmi -

Tr eePar se() . Thisavoids multipletraversal of thetree but can seem alittleindirect until you get the hang
of it. And some transformations can be cumbersome using this approach asit is abottom up transformation.

The event-driven parsing provided by xm Event Par se() isaSAX style approach. Thisisquite low level
and used when reading the entire XML document into memory and then processing it is prohibitive, i.e.
when the XML fileisvery, very large.

The use of XPath to perform queries and get subsets of nodesinvolves a) learning XPath and b) potentially
multiple passes over thetree. If one hasto do many queries, this can be slow overall eventhough eachisvery
fast. However, if you know XPath or are happy to learn the basics, this can be quite convenient, avoiding
having to write recursive functions to search for the nodes of interests. Using the internal nodes (as you
must for XPath) also gives you the ahility to go up thetree, i.e. find parent, ancestor and sibling nodes, and
not just down to children. So we have more flexibility in how we traverse the tree.

	
	An Example: Grades
	Another Example: Customer Information List

