Duncan Temple Lang

Here we describe the basics of the XML parsing facilitiesin the Omegahat package for R and S. There are
two styles of parsing -- document and event based.

Document. The document approach reads an entire file into memory as a hierarchical tree (i.e. alists
of listsin R and S) of XML tags or nodes. These XML elements in the tree contain the name of the XML
tag, its attributes and alist of the sub-elements.

Event. Theevent based styleinvokes handlersaseach XML element (start of atag, end of atag, comment,
text tag, etc.) isencountered in the parsing stream. The document approach is usually simpler to understand
and use for standard situations, while the event driven style provides greater control and the potential for
more efficient handling of very large XML data sources.

We discuss R functions for the document based approach first and then outline the event-based approach.
In each of the two approaches, thereis a single function that one calls to perform the parsing.

Aswell as parsing regular XML documents, the facilitiesin the package alow one to read and manipulate
(within R or S) DTDs -- Document Type Definitions -- which define or provide a general template for
different groups of documents. Thisfacility can be used to perform meta-programming on documents, both
creating valid XML documents programmatically and also providing mappings between tags.

Thisismore of a™"how to" than a > “why", or ““how does it work" document.

Basics Ildea

Each XML document is made up of XML tags organized hierarchically, where tags are nested within other
tags and some tags just have text.

Document-based Parsing

The fuction for parsing an XML document and returning it asalist of nodesisxni Tr eePar se() .

We will consider the following Structure Vector Graphics (SVG) file (in data/svg.xml) and we will setup
amechanism to process and render it.

<?xnml version="1.0" standal one="no"?>
<! DOCTYPE svg SYSTEM " SVG 19990812. dtd">
<svg w dt h="120" hei ght="120">

<l-- define the outside border as a black square with a smaller white square on to
<rect x="1" y="1" w dth="120" hei ght="120" style="fill: black"/>

<rect x="10" y="10" wi dth="102" hei ght="102" style="fill: white"/>

<l-- position the "ia" near the center of the inmge -->

<text style="font-size: 70; font-famly: serif; font-weight: bolder; color: black"
<I-- build a black triangle that covers the dot of the "i" and a black rectangle f

<g style="fill: black">
<pol ygon points="60 12 106 51 14 51 60 12" />
<rect x="14" y="87" wi dth="92" height="19" />

</ g>

<!-- create the white dot for the "i" -->
<ellipse cx="40" cy="44" rx="7" ry="4" style="fill:white" />
</ svg>

Processing the Nodes

When we build the R document tree having generated theinternal DOM version in C, we create the different
nodesby first creating the default version with classes XMLNode, XM_LConment , XMLENnt i t y, XMLText ,
etc. However, the user can provide functions that post-process these nodes before they are added to the R
document tree. To do this, one provides anamed list of functions as the value of the parameter handl er s.
The C-level conversiontakeseach XML element, convertsit to an XM_Node (or similar class) and then calls
the appropriate function from this list. These functions return either NULL indicating that the node should
be discarded and not added to the document tree, or an object to be added to the tree. Currently, the only
argument to these functions is the node itself. (The parent may be added in the future.) This node contains
its children nodes. (If this proves to be excessively expensive as many nodes are discarded or modified to
discard their child information, one should consider event driven parsing.)

How is the appropriate function selected?

A simple example of utilizing these post-processing node handlersis to discard all comment elements.

doc <- xm TreeParse(systemfil e("exanpl ebData”, "ntcars.xnl ", package = "XM."),
handl ers = list(startEl ement =function(node) {
i f(inherits(node, "XM.Comrent
NULL
el se
node

1),
asTree = TRUE

)

A dlightly more advanced version uses a closure to store a list of tag names that we wish to keep in the
document tree, discarding all others. (Event driven parsing would be better for this application.)

xm KeepTags <- function(tagNanmesToKeep) {
start El enent <- function(node) {

i f (any(xm Nane(node) == tagNanesToKeep)) {
cat (" Keepi ng", xm Name(node), "\ n")
return(node)

}

el se {
cat (" Di scardi ng", xm Narme(node), "\ n")
ret urn(NULL)

}

}

return(list(startEl ement=startEl enent))

doc <- xm TreeParse(systemfil e("exanpl ebData", "ntcars.xnml ", package =
xm KeepTags(c("vari abl es", "dataset")))

Note that the nodes are processed upwards (i.e. from leaf to root node) rather than from the root down
through the child nodes. Thus, if we discard the parent node of anodewe aretrying to preserve, eg<vari -
abl es> when trying to preserve <var i abl e>, we will throw away the children nodes also and discard
al the<vari abl e> elements.

One can query the DTD to find what nodes allow the ones in which we are interested as sub-elements.
dtd <- parseDTD("Dat aset ByRecord. dtd")

whi ch <- character()
for(i in names(dtd$el ements)) {if(dtdvalidEl enent("variable", i, dtd))

Event-based Parsing

Processing each XML element as the parser occurs can be a very useful and more flexible approach than
reading an entire document, maintaining an intermediate form in memory and then processing. Firstly, the
amount of memory required is smaller, often significantly. In other cases, the source of the XML may not
be a complete document, but may be a source that periodically generates more output. For example, one
might be monitoring a device in a factory, etc. where the datais an “infinite" stream. By processing the
XML units as they arrive, one can provide dynamic updating of the intermediate or current results. This
approach allows users to decide whether to continue, monitor for strange events, perform quality control
procedures and generally perform statistical analysis on the process, not static data. This is similar to the
idea of triggersin databases. A third case where the el ement-wise approach works well iswhen one wishes
to extract rows or cells that fit particular criteria. Rather than reading all the data and then processing it,
one can discard those records that do not satisfy the criteria. This record-wise processing works well when
a transformation of the record is required as the transformation can be done in-line before assigning the
value(s) and hence avoids a copy of the data.

Wewill look at an exampl e of the dynamic event-driven processing which reads adata set and keeps certain
records. The first example will keep rows based on their order or index. The second example examines
the contents of the record to determine whether it should be discarded or kept. These are different in that
in the first, we can determine this when we handle the <r ecor d> tag, whereas the second case waits for
the text value within the <r ecor d> tag and must be done differently. This uses the basic event handler
in dat aFr ameEvent and provides aternative versions of the r ecor d() and t ext () functions in that
closure. Ther ecor d() closure

record <- function(x, atts) {
if(is.na(match(atts[["id"]], desiredRowNanmes))) {
discard this entry
return()

}

processRow <<- 1
advance the current record index.
(Same as previous version).
current Record <<- currentRecord + 1

XL,

whi ch <<-

rowNanes <<- c(rowNanes, atts[["id"]])
}

The definition of the t ext () changes so that it returns if we are expecting a record (i.e. not expecting a
variable name) and pr ocessRowis FALSE.

One other small changes relate to how we set the dimensions and the row names of the resulting dataframe.
Rather than using the number of records reported in the XML file, we use the length of the desired row
names specified when creating the closure. This can be handled more dynamically if we cannot assume
uniqueness, etc.

Filtering on a Record's Values

We now make the filtering dightly more complicated. We will create an event filter to which the user
suppliesafunction expecting the record asits only argument and returning alogical valueindicating whether
the record should be accepted or not. The argument isanamed list of values.

function(data) {
as. nuneric(data["cyl"]) >= 6 & as.integer(data[2]) < 100

Here, we change the logic dlightly from the way we read the entire dataframe. Firstly, we do not want to
alocate a matrix or data frame to store the number of records that the <dat aset > tag indicates. We are
trying to be conservative in the amount of memory we use. So, instead, we append each record that we
accept to alist and at the conclusion of the XML stream, we convert the list of records to a dataframe. This
involves changing the segment in the t ext () function

for(i in els) {
dat a[current Record, current Columm] <<- as.nuneric(i)
current Col um <<- currentColum + 1
}
to read

data[[l engt h(data) +1]] <<- els

Another changeishow we handletherecord <i d> attribute. We can discard the current record count (cur -
r ent Recor d) and change the definition of the <r ecor d> handler to store the record id. The <t ext >
handler can then access thisif it accepts the record, and append it to ther owNanes vector.

names(el s) <- var Nanes
i f(accept(els)) {
data[[l engt h(data)+1]] <<- els
rowNanmes <<- c(rowNames, current RowNane)

}

And finally, the endEl enent () function in the closure is changed to convert the list of records stored in
dat a() to adataframe.

if(x == "dataset") {
data <- data.frane(matrix(unlist(data),|ength(data),!|ength(varNanmes), byrow=T))
nanmes(data) <- var Nanes
rownanes(data) <- rowNanes

}

After dl this, we can use the filter

accept <- function(data) {
as. nhuneric(data["cyl"]) >= 6 & as.integer(data[2]) < 100
}

nyData <- xm Event Parse(systemfil e("exanpl eData", "mtcars.xm ", package = "XM.")
val ueDat aFr aneFi | t er (accept)) $dat a()

	
	
	Basics Idea
	Document-based Parsing
	Processing the Nodes

	Event-based Parsing
	Filtering on a Record's Values

