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1 Introduction

Anonymous et al. (2019) propose a novel, physically motivated framework that integrates various
classes of models for adoption processes such as the Bass model and its variants or agent-based
models. The R package adoption implements the framework suggested in Anonymous et al. (2019).
This tool might be particularly useful for research and educational purposes as well as managerial
planning.

The gui has been developed under Ubuntu 16.04 and R version 3.5.0. It has been tested under Win-
dows 10 on Lenovo Yoga 710 14IKB and on a MAC “El Capitan”, see also Section 7 for installation
details. All screen shots have been made on a Linux machine; deviations between the below pictures
appear due to the different operating systems and further developments of the package.

1.1 Overview

Section 1: Introduction p- 3

Section 2: Diffusion Modeling in Marketing p. 4
The motivation and the theoretical background of the package are given. Here, but also in other
sections, phrases and even paragraphs can be identical to Anonymous et al. (2019) without
citation or quotation.

Section 3: The gui p- 10
When adoption() is called without any argument, a graphical user interface (gui) is started.
This gui is described here. A non-interactive mode of adoption also exists, see Section 4.1.3.

Section 4: Arguments of adoption p. 22
The most important argument for adoption might be data to fit an adoption model. This
and further arguments are described in an overview. Details are given in the manual pages of
the function adoption.

Section 5: Model definitions p. 24
The package implements the general modeling framework suggested in Anonymous et al.
(2019). The examples given in Anonymous et al. (2019), the Bass (1969) model and the
Goldenberg et al. (2010) model, are here also seen as examplary specifications only. As a con-
sequence, the user can pass her own specification to adoption. How this is done is described
in this section.

Sections 6: Further implementation details p. 27
To run the gui smoothly when a slider is moved, a fast implementation of the modeling
framework is necessary. This section gives some details on the C code and the R code to
ensure fast simulation despite the generality of the program.

As described in Anonymous et al. (2019) a model can be fitted to data by least squares. A
standard approach of the least squares method will quickly get stuck in a local minimum. This
section also describes the code that reduces the frequency of getting stuck in a local minimum
so that the fitting quality becomes acceptable.

Section 7: Installation details p- 29
Hints are given for the installation of the package adoption.



Disclaimer: Except for Section 7, the context of the sections becomes more and more specialized. In
particular, a beginner will probably loose interest within section 4 the latest, while Section 6 might
be of interest only for those who aim to program their own adoption package.

At the end of a subsection there might be a technical note which gives further details on the program
that might be of interest only for more specialized users.

2 Diffusion Modeling in Marketing

This section is a summary of Anonymous et al. (2019).

2.1 Introduction

Understanding the product adoption process is of considerable scholarly and managerial interest in
marketing and innovation management. While early adoption models, most notably the Bass model
(Bass, 1969), have considered social influence mainly in terms of social learning and imitation,
agent-based models (ABM) specify the role of influentials and network effects in product adoption.
For an overview, see Rand and Rust (2011), for instance. Notably, the Bass model takes a macro
perspective and ABM a micro perspective, which has contributed to fragmentation and misalignment
in literature.

This R package provides an integrated framework that unifies the fragmented approaches of Bass
and ABM. To this end we model the adoption utility instead of a binary adoption decision. We
adopt approaches by Tanny and Derzko (1988), Brock and Durlauf (2001), Van den Bulte and
Lilien (2001), Risselada et al. (2014) and others and decompose the utility function twice into two
complementary parts:

e aggregated utility and recent utility
e social utility and private utility (in a broad sense)
so that we obain 4 disjoint utilities:

1. the aggregated social utility /¢, also called the cumulative social utility; it captures normative
pressure;

2. the recent social utility /¢ it captures word-of-mouth (WOM);

3. the aggregated private utility M, also called memory effect which keeps track of one’s former
utility function;

4. the recent private utility UP, also called private utility in the narrow sense or briefly private
utility; it captures external influences such as mass-media communication.

Typically, the variants of the Bass model do not consider any recent social influence I", while ABM do

not consider cumulative social influence I" and any memory effect M (see, for instance, Goldenberg
et al. (2007)).



2.2 Modeling Framework

Typically, the utility U is defined as a weighted sum of the four elements I¢, I", M and U? (e.g.,
the Bass model) or through maxima and minima, see the Goldenberg et al. (2010) model below. A
weighted sum means that some elements (e.g., high private utility) can compensate for others (e.g.,
weak recent social influence), whereas the minimum function requires all elements to be above a
certain threshold. Conversely, the maximum function indicates that one element may suffice (e.g.,
strong recent social influence) to gain enough utility to make an adoption decision. We denote by
the maximum sign indexed by a greek letter, V, for instance, any of the three binary operators:
(weighted) sum, maximum or minimum. As we model the utility function at discrete time points
ty = kAt, k=0,1,2,... only, the utility U can be given by

Ut) = It — ADAL Vo I"(t— ADAL Vg M(t— At) V., AUP(t — At). (1)

where the chain of operators is evaluated from the left, ie., x Vo, vy Vg 2 = (z Vo y) Vg =z
The operator V, can be generalized to a smoothly parameterized class of operators as follows. For
a = (a1, az) € 10,1]* we define

T Vo y=y+a(r—y)y — oy —1);

where x, equals x if x > 0 and 0 otherwise. Important special cases are the convex combinations of
x and y, the minimum of z and y and the maximum, which are obtained by a € {(a,a) : a € [0, 1]},
a=(0,1), and a = (1,0), respectively. Since for ¢ € [0,1], o, 8 € [0,1]? and v = ca + (1 — ¢)3 the
equation z V., y =c(z Vo, y)+(1—c)(z Vs y) holds, the ensemble of functions {(z,y) — = V, v :
a € [0,1]*} equals the ensemble of all convex combinations of z, y, min{z,y} and max{x,y}.

If the memory effect M is naught, some of the effects I°At, I"At and UP should be interpreted as
absolute effects. If the memory effect M equals the utility U(t — At) at the preceding time point,
they are all rather incremental utilities. The border is nonetheless fuzzy since the memory effect can
be weak. The border line is blurred further by choosing At = 1, what is a typical choice in ABM.
Note that in our setup the modeling of the utility function is continued after adoption; in the period
after adoption the utility corresponds to the degree of satisfaction.

Our framework posits that an individual becomes an adopter when their utility function U reaches
or exceeds a given threshold 6, which is 0 by default.

2.3 Framework Specification

The above framework can further be specified whilst still including many models for adoption. So,
I¢ shall depend on t only through the total number N(¢) of adopters up to time ¢, i.e.,

I°(t) = I(N(t)).

The recent influence I] of an individual ¢ is given by a linear combination of all the utilities within
the market,

Li(t) = Zwijfr(Uj(t))- (2)

Here, the set of social weights w;; (Van den Bulte and Lilien, 2001) reflects the specific social network
of an individual, excluding the individual herself, i.e., w; = 0. Based on the notion that individuals
communicate their product utility, the function f, is included to model the transition from one’s
genuine utility to what is perceived by another individual. For simplicity we assume that f,. is the

b}



same between all pairs of individuals (and independent of time).

The memory effect M;(t) is a function of one’s own utility, i.e.,

M;(t) = fm(Ui(t))) (3)

for some function f,, that is the same for all individuals. In line with standard models we even
choose f,, = f. = f. In this special case, M could be included in (2) choosing w; = 1, but we will
keep I" and M separate in favor of clearer interpretation.

In the following subsections, we give details for the implemented models; the list of models can
be extended by the user, see Section 5. We assume here that we have m individuals and that the
individuals are numbered from 1 to m.

2.4 Bass (1969)
2.4.1 Specification

The Bass model can be written as

N(t)/dt = (m — N(t))(p+ qN(t)/m) = mp+ qN(t) = N(t)(p + ¢N(t)/m)

where the market potential m denotes the maximum number of adopters. The term mp refers to
the individual’s private appreciation of the product. The terms ¢N and —N(t)(p+ gN) refer to the
increasing and decreasing effect on an individual, respectively, when having many other adopters.
The decreasing effect is also necessary to control for the total number of adopters (Bass, 1969). The
Bass model fits into our framework in a discretized version,

N(t)=—N(t—At)(p—q+ gN(t — At)/m)At + N(t — At) + mpAt (4)

for discrete time instances to+ kAt. The idea for a physical interpretation of the Bass model through
microscopic modeling is to assume that the utility of all individuals is proportional to N, but that
individuals start with different (negative) utilities at time ¢ty = 0. More precisely, for individual ¢ we
define

Ui(t) = N(t) — i

so that all individuals have the same dynamic. Let the social influence I¢ be I¢(N) = —4N(p — ¢ +
gN/m) and the private utility be linearly increasing, UF(t) = 2mpt — i. Then for any i equation (4)
is equivalent to

Us(t) = IS(N(t — AD))AE Vo I" Vg AUi(t — At) V., AUP(t — At) (5)

where o = (1,1), 8 = v = (1/2,1/2) and I" is unimportant due to the choice of a. Hence,
equation (5) obeys (1) and (3) with f(z) = 4x. Since U;(t) > 0 if and only if N(¢) > 4, and
Uy >U;>...>U,, the number of adopters N(t) equals the number of individuals with utility at
least 0.

2.4.2 Implementation details

Since for each ¢ the dynamics in (5) is the same as for the discretized Bass model, model (5) converges

to the Bass model as m — oo and At — 0. A close approximation is already obtained for m = 1000
and At =



2.5 Modified Bass Model

2.5.1 Specification

The approach of the Bass model through an agent based model as given in Anonymous et al. (2019)
allows for various modifications and generalizations. First, the parameter p appears in both the
social utility /¢ and the private utility UP. It might be then more natural to introduce a further
parameter s:
dN(t)/dt = sm — N(t)(p — g+ qN(t)/m).

Next, replacing the deterministic starting value U’ (0) = —i by independent uniformly distributed
U?(0) on [—m, 0] shows that this minor modification introduces a visibly greater variability of N(t)
even when m is rather large. We have fixed that an individual will buy the product when her utility
exceeds the threshold 0 for the first time. Allowing different values for the threshold shows that the
Bass model is not too sensitive to this parameter. Finally, allowing for general operators Vg and
V., shows that the value of U is very sensitive to § and v whereas N(t) is rather sensitive only to

B and 7,.

2.5.2 Implementation details

The default values are the same as for the Bass (1969) model; particularly s = p.
As for the Bass, the theoretical curve is shown for which s = p.

2.6 Goldenberg et al. (2010)
2.6.1 Specification

In their agent-based model, Goldenberg et al. (2010) place individuals on a two-dimensional grid,
whereby every utility is primarily influenced by its 8 nearest neighbours on the grid, the so-called
eight-cell Moore neighborhood. Adoption of an individual occurs with probability p;(t)

[ 1= —=a)(1=b)™O if N(t)/m > h;
pi(t) = { 0, otherwise. ’ teN

where h; is an individual Gaussian threshold with mean g and variance o?u?, n;(t) is the number of
adopters in the Moore neighborhood, and a, b € [0, 1] are constants.

The Goldenberg et al. (2010) model can be described by the following formula

Ui(t) = I;(N) Va Zwijf<Uj(t_1)) Ve fUE=1)) vy AU(t=1),

where a = (0,1), 5 = (1,0) and v = (0.5,0.5). The utility at starting point ¢, = 0 equals
U(0) = UP(0) = ¢ for some arbitrary number ¢ < 0 so that nobody is an adopter at t,. Further,

If(N) = oo if N > mh; and —oo otherwise, so that the utility is negative whenever the condition

N(t)/m > h; is not satisfied. If the latter is satisfied, we have

Ui(t) = > wif(U(t = 1)) Vs FU(E=1)) v, AUZ(E 1)

Let w;; = 1/C for some C > 0 if individuals ¢ and j are in their mutual Moore neighbourhood and
0 otherwise. Let f(U) = C1lys. Then,

>_wifUs(t = 1) = mi(o)

7



The interpretation of the Goldenberg et al. (2010) model is that each adopter in the neighborhood
of an individual contributes positively and with the same value to the value of U;(t). Assume that
AU? is bounded from below by some number z and C' > —z. Then U(t) > 0 whenever U(t—1) > 0.
So we finally consider the case where U(t — 1) < 0 (and N(t)/m > h;). Let n = 8 be the number of
neighbours in the Moore neighbourhood and z < —n. Define

AUP(t) = max{z, ~ log(Za/(1 - )/ log(1 — b))
for i.i.d. random variables Z;; ~ U[0, 1]. Then

P(n;(t) + AU (t) > 0) = P(—log(Zi/(1—a))/log(l —b) > —n(t))
= P(log(Zit/(1 —a)) > n;(t)log(1 — b))
= P(Zy > (1—a)(1—b)"Y)

so that the probability p; in the Goldenberg et al. (2010) model is met. Note that the contribution
by the private utility AU/ (t) is positive only with probability a, while the society contributes only
positively.

2.6.2 Implementation details

We place the individuals on a square grid with grid points 1,2,...,v/N in each direction. Let p;
be the position of individual ¢ on the grid. The weights w;; equal 1/C if ¢ # j and the Euclidean
distance between p; and p; is less than or equal to d. For the Moore neighborhood we have d = V2.

2.7 Generalized Goldenberg et al. (2010) model

As in the modified Bass model the parameters of the operators Vg and V. allow arbitrary values
in the generalized Goldenberg et al. (2010) model. Furthermore, the threshold for the Euclidean
distance as described in the preceding subsection can be varied. As a genuine novel parameter the
probability of aversion is introduced, i.e., the sign of w;; in the weight matrix is flipped independently
with probability "prob of aversion" for each ¢,j =1,...,m.

2.8 Rand and Rust (2011)

2.8.1 Specification

The general requirements of an ABM model outlined in Section 6 of Rand and Rust (2011) can be
met by our generalized framework. Rand and Rust (2011) suggest that adoption occurs at time ¢ if

Xi<zor Xo< Z-i’)%(t)
n?

7

for two independent, on [0, 1] uniformly distributed random variables X; and X,, n; the number of
individuals in the neighborhood and n;(t) the number of adopters at time ¢ in the neighborhood. It
is easily seen that the adoption probability p;(¢) equals

Pilt) = 22+ —omi() = Ztmi(t).

7 7



Hence, in order to obtain an example of a model that fits the framework of Rand and Rust (2011),
it suffices to take the model of Goldenberg et al. (2010) with AU/ (¢) replaced by

AUP(t) = ( i _ 1) i

1—21 Z9

for constants zq, z2 € (0,1). Assuming that n} is the same for all ¢ we get with Z; = nf/zs that

AUP () :52( i _ 1).

1—21

Again, the contribution of AU? is positive with a probability less than 1, here 2.

2.8.2 Implementation details

The Rand and Rust (2011) approach is very general and we picked out a specification that is very
close to the Goldenberg et al. (2010) model. So, for instance, as in the Goldenberg et al. (2010)
model, we model the neighbourhood by means of the Euclidian distance.

2.9 A Vector-Autoregressive Approach
2.9.1 Specification

Vector auto-regressive models are typically used to model multivariate time series in economics and
finance, such as joint price developments of different products. For instance, Dekimpe and Hanssens
(1999) use such a (non-spatial) VAR model to jointly model the a brand’s sales performance, its
marketing budget, and the competitiors marketing spending. The spatial VAR model is used in
economics (see Beenstock and Felsenstein (2007), for instance) to model spatially located agents,
e.g. markets, but also to model the spatial spread of a utility, see Durlauf and Ioannides (2010).
The general model for VAR is given by

Ut+1) = WU(#) + (1) (6)

Here, the vectors £(t) are independent in time and consist of independent variables, frequently chosen
as being Gaussian (Johansen, 1991). A row of the weight matrix W reflects the neighborhood of an
individual, cf. Section 2.3.

The VAR model can be included in our framework if the diagonal elements of W are all the same.
If Wiy # 0, we have for w;; in (2) that w; = 0, and w;; = 4?/‘/}51 for i # j. Further, f(U) = 4W1,U,
At =1, a = (1,0), B = v = (1/2,1/2), AUY = 2e. If Wy, = 0, a similar but simpler model
representations can be given.

To conclude we note that linear systems of differential equations are well-known for modeling the
spread of information (Mahajan et al., 1995; Peres et al., 2010). Our VAR model can be seen as a
discretized version of a linear system of stochastic differential equations:

(t)/dt = wa t)+dUP(t)/dt,  i=1,...,m. (7)



2.9.2 Implementation details

In the R package adoption, w;; = exp(—rdist(s,j)) for some x € R. Here, dist(7, j) denotes the
Euclidean distance between individuals ¢ and j. Hence, w;; — 0 as kK — oo and the eigenvalues of
W are all within (—1,1) for s large enough and § any fixed value in the interval (0,2). In this case
we have a stationary model for the utilities.

3 The gui

The package adoption primarily provides a real-time graphical user interface (gui) for modeling

adoption processes, which is described in the following.
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Figure 1: The 6 different areas of the gui

3.1 Start with
The gui is simply started with

library(adoption)
a <- adoption()
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You will get the gui presented on the cover sheet, showing Bass (1969) model. On the first right
column, see Figure 1 (AREA 6), only the very first sliders are active, namely those for the two
parameters of the Bass model. When slipping the sliders the resulting number of trials per time
instance (and all the other figures in the simulation area ( ) will change in real time.

If there is a speed problem when slipping the sliders call

a <- adoption(quantiles=NULL)

so that some minor, but time consuming details will not be shown. Or use parallel computing by
calling

a <- adoption(cores=2) ## or more than 2

if you system supports OMP.
The gui is devided into the following areas, which are indicated in Figure 1:

1. general stuff such as return button and a button for restarting simulations with a different
seed ( );

2. model choice (AREA 4);

3. general parameters: parameters that belong to all the models such as the size m of the market
or the number of repetitions of simulations (AREA 5);

4. model specific parameters (AREA 6);

5. up to 4 pictures can used to depict the temporal or spatial development of adoptors and utilities
( ), depending on the user’s choice (AREA 3).

Technical note: When a slider is moved, typical reaction times are 0.1 —0.2 seconds so that about
5-10 frames per second become visible. The exact reaction time depends, of course, on the model,
its parameter specifications and the computer itself.

The sliders and buttons on the bottom (AREA 5) or on the very right column (on Windows systems)
change fundamental parameters and can lead to considerably higher reaction times. These parameter
should be changed with care.

3.2 General buttons ( )

AREA 4 has four or six buttons, which are described in the following subsections.

3.2.1 New Simulation

This button causes the gui to perform the calculations on a new set of realisations of the involved
random variables.

Technical note: Particularly in agent based models, random variables are involved at different
parts of the modeling process, e.g. as random initial value for the private utilties and as random
decisions whether the product will be adopted given that a certain number of neighbours has already
adopted. To ensure comparability of the realisations based on different parameter values of the
model, at least the random seed at the very beginning must be stored. For efficiency, the random
seed for all parts of the model are stored in adoption, so that only that only a part has to be
resimulated, when a parameter value is changed. The button “New simulation” defines a new seed
for every part of the model and resimulates all the random variables used in the model.

11



3.2.2 Fit 1 step (not shown in Figure 1)

When data have been passed to adoption, this button appear in this area and row of tick boxes
appears to select the parameters that shall be fitted (AREA 6). The button “fit” performs an
ordinary least squares fit with the selected parameters. When the button is pressed a second time
for the same model, then the fitting result is deleted. Since the fitting can take a rather long time,
information upon the progress of the fitting is shown. While under Linux (and alike) the values are
shown in the xterm, an additional window opens under Windows. When closing the gui, all output
is shown on the console also under Windows.

By default, all parameters have a hook in the box to left of its slider and will be fitted. An exception
is the parameter Uthreshold and the parameters for the operators which are never suggested to
estimated. All parameters that are not fitted take their values from the gui. The current values in
the gui also build the starting values of the fitting process.

Technical note: There are many additional options to direct the fitting. Among others these are
fitm, cumfit, fit repetitions, fit window, pgtol, factr. See the manual pages of RFoption
for details on the options and Section 6.3 for details on the fitting procedure.

The parameter dt is given by the data and should never be changed in the gui when data are given.
In most cases, a higher value of fit_repetitions entails higher precision, but also longer calculation
times. Integer valued model specific parameters are never fitted with one exception. If the adoption
is called with the argument £it m=TRUE, then the market size m is fitted.

3.2.3 Complete fit (not shown in Figure 1)

The fitting procedure uses a local approximation of the RSS which is necessary because of the
generally high collinearities among the parameters. The button fit 1 step performs such an op-
timization. Since the approximation is good only locally, but fixed for the whole fitting procedure,
the result is not optimal. Because of this the complete fit iterates the fit 1 step until an im-
provement cannot be seen anymore (through a simple criterion). Clearly, the complete fit is time
consuming.

Technical note: the stopping criterion is given by the optional argument max_increasing.

3.2.4 Screen shot

This button takes a screen shot of the gui, see Figure 2 for an example. This button is implemented
mainly for Linux users of Xfce.

3.2.5 Save & PDF

This button does two things:
1. it saves all possible graphics in separate pdf files;

2. it saves the whole session in an rda file. A session can be restored if adoption is restarted
with argument user being the file name.

Important:  The button is programmed in a rather simple way, so that it is best to use empty
directories for saving.

12



3.2.6 Return

The gui is terminated and the adjustments of the whole session including all sets is returned (i.e.,
the same information as for “PDF and save” above).

Technical note: The precise behaviour of the return button depends on the wait argument of the
function adoption. If wait is negative, the current session model is stored in .adoption.exit in
the .GlobalEnv environment. If wait is non-negative, the gui will return the current session model
(after at most wait milli seconds).

3.3 Model choice (AREA 4)

In AREA 4, the user may choose a model among a default list of models, where the currently
chosen model is given in red. Furthermore, on Linux systems, on the very top right of AREA 6,
an abbreviation of the model name is shown. According to the model choice, different parameters
become relevant and the names of the parameters may change.

Technical note: for each model, the currently used model parameters are stored, so that the
former parameter values reappear when switching back to a model.

3.4 General parameters (AREA 5)

The gui knows 4 general parameters,
1. the market size m

2. the number of repetitions in the simulations. Note that the Bass model is deterministic;
changing this value will not lead to different results in this case.

3. the time increment dt and

4. the instance of time in the spatial representations, see Section 3.6.9.
Technical note: The first three parameters are fundamental and trigger a complete resimulation
of all the random variables when their value is changed. So, adoption might need a considerable
amount of time to react when these values are changed.
Although the first three parameters are common to all models, different frozen parameter sets (see

Section 3.5.1) may have different values. To make them equal for all sets the last buttom “apply all
over” must be pressed. This button has not been tested intensively yet.

3.5 Model parameters (AREA 6)

In AREA 6, the user can change the parameter values of the current model either by slipping the
slider or by changing the value in the entry box.

Technical note: Here, we only describe how the gui works; for the meaning of the parameters we
refer to Section 2. The interface for the parameters (AREA 6) has the following characteristics:

1. Grey scales signify importance. The lighter the names of the parameters are printed the less
important are the paramters considered.
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For each part of the model, space for a certain number of parameters is reserved. If the current
model does not use the full space the place holder “(unused)” appears; changing the value of
the place holder does not have any effect.

If the parameter used in the model is fixed, then the slider cannot be moved. The latter
happens especially for the parameters of the operators V,, V3 and V. which are fixed for most
models given in literature.

Sliders have different underlying scales depending on the fact whether the variable is integer
valued, positive or real valued.

. Entry boxes allow to supply arbitrary numbers, even outside the mathematical domain of the

parameter. Parameter values outside their domain can indeed be of interest, e.g., the definition
of the parameter « of the operator V, can be extended beyond [0, 1]2. An additional effect of
the entry box is that the boundary of the slider might be changed so that invalid values might
be obtained subsequently through the slider as well.

Note that the entry boxes react instantaneously when the contents is changed. This is mostly
the desired behaviour as one can see directly the effect of the changings.

This instantaneous reaction might be stopped (e.g. when a completely new number is typed
in) by first typing a non-interpretable sign, e.g. a ‘#’, which must be removed at the end.

At the very top left (AREA 6) there is a button called “cpy” which will store the current model
and its parameters in a separate column. See Section 3.5.1 for details; on Windows systems
this button is on the very top on the right hand side.

3.5.1 Sets

With the button “cpy” on the top left of the right column (AREA 6) (on Windows systems: on
the top right), the current model and its parameters and realization are frozen. Figure 2 shows
an example with one frozen model. Up to 4 frozen models are possible. The frozen models and
the current models are called sets. The column(s) with the frozen model(s) have the following
characteristics:

1.
2.

SIS A

On the top an abbreviation of the model is given.

The color given on the top corresponds to the color in the graphics. Note that the color scheme
is always kept in the following way: the current model is in black, first frozen model is in red,
second frozen model is in blue, etc.

The button “d” on the top deletes the frozen model.
The button “1” (“1st”) on the top switches the current model and the frozen model.
Frozen models do not have sliders, but do have entry boxes.

The graphics show the current model and the frozen model(s). Note that the scale of a graphic
is always given by the current model so that the graph of a frozen model might be even not
visible.

Technical note: When the value of a entry boxes is changed in a frozen box, the gui visibly first
exchanges the current column and the frozen column, then performs a new simulation, and then
switches back. This is slow.
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Figure 2: Screen shot for Linux and MAC system, which shows one additional fixed parameter set
(second column from the right). Black curves: Bass (1969) model; red curves: Goldenberg et al.
(2010) model.

15



15 20 o548

5

]

percentage experiencing trial [%6] 52
10

600 1000
|

utility U

0 200

cumulative social influence 1, cUmulative percentage experiencing

10(

20 40 B0 80

]

100 200 300

4]

Adoption Gui: Bass (1969) model

time

cpy |SOCIAL sesfEffc1o
innovation p mean h
0.02 (0.1
imnitation q sigma
0.4 1
1.41¢
1
PRIVATE
1
1
prob_a
0.1
prob_b
0.1

0

MAX/PLUS OPERATORS

1

1

0.50C

0.50(C

0.50(C

0.50C

0.5

0.5

=N |
New Simulation

Scr Shot (xfce)
pdf & save
Return

GRAPHICS
spatial

v I

v trials N(t)

Ir

v cumul trials
M

Up

v U

Delta Up

MODEL
Bass (1969)
Modified Bass
Goldenberg et. al (2010)
Generalized Goldenberg
Rand & Rust (2011)
Autoregressive (VAR)

GLOBALS
m
1000
repetitions
1
dt
0.1
relative.instance
v]

apply all over

Figure 3: Screen shot typical for Windows systems, which shows one additional fixed parameter set
(second column from the right). Black curves: Bass (1969) model; red curves: Goldenberg et al.

(2010) model.

3.6 Graphics (

Graphics are drawn until the place for four plots is filled or the gui runs out of the list of ticked
boxes. The plotting always starts at the top left. In the following the meaning of the tick boxes are

described.

In each of the below figures we give realisations for the figures visible at starting point when choosing
one of the main four models of the package, the Bass (1969) model, the Goldenberg et al. (2010)

, AREA 3)

model, the Rand and Rust (2011) model and the VAR model.

Technical note:

library(adoption)

RFoptions(fontsize

set.seed(0)

g <=

g(1, "bass")

g(3, "goldenberg")
g(5, "randrust")
g(6, "VAR")
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The figures have been obtained by the following code:

function(sw, fn) adoption(startwith=sw, gui=FALSE, filename=fn)




3.6.1 Cumulative number of trials N

The cumulative number of trials in most of the adoption models show an S-shaped curve, which is
caused by a small number of adopters at the beginning and at the end of the period.

Bass (1969) model  Goldenberg et al. (2010) model Rand and Rust (2011) model VAR model
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Figure 4: Cumulative number of trials. All figures are based on 1000 individuals. The orange curve
on the very left figure shows the theoretical curve in the Bass (1969) model; obviously, the theoretical

curve and the black curve obtained through the approximative model given in Section 2.4 can hardly
be distinguished.

Technical note: In the gui, the S-shaped graph of the cumulative trials is always given in percent.
If repetitions is larger than 1, the black curve is the mean value of all individuals in all repeated
simulations. If, additionally, quantiles is not NULL in function adoption, the quantiles among the
repetitions are also plotted, namely in a lighter color and in different line type. Note that calculating
the quantiles is very time consuming, taking more than 60 % of the total computing time.

3.6.2 Number of trials per unit of time dN

The number of trials dV gives the increments of N. In most models d/N is small at the beginning
and at the end of a period and is (essentially) unimodal.

Bass (1969) model ~ Goldenberg et al. (2010) model Rand and Rust (2011) model VAR model
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Figure 5: Number of trials per unit of time.

Technical note: In the gui, the orange curve on the very left figure shows the theoretical curve
in the Bass (1969) model; obviously, the the black curve obtained through the approximative model
given in Section 2.4 is an excellent discretization of the theoretical curve. The intensity of the trials,

not the trials themselves are given, so that the result of the Bass model remains stable when the
slider “dt” is moved.
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If repetitions is larger than 1, the black curve is the mean value of all individuals in all repeated
simulations. If furhter quantiles is not NULL in function adoption, the quantiles among the rep-
etitions are also plotted, namely in a lighter color and in different line type. Note that calculating
the quantiles is very time consuming, taking more than 60 % of the total computing time.

3.6.3 Utility U

The utility U(t) is based of the two social influence 7¢ and I”, the memory effect M and the private
utility UP. It is the key quantity in the model for two reasons:

1. The first time U(t) exceeds a certain threshold 6, here 0, the product is adopted. Hence, by
6, the non-observable U(t) is related to the observable fact of a trial.

2. The utility U(t) enters into I¢ and M in the next time step.

Bass (1969) model ~ Goldenberg et al. (2010) model Rand and Rust (2011) model VAR model
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Figure 6: Utility. Here, the four models show very different behaviour. In our representation of
the Bass (1969) model the utility U equals the number of trials N, see Figure 4. The Goldenberg
et al. (2010) model leads eratic paths for the default parameter values. In the Rand and Rust (2011)
model the curves are nearly monotonic and level out. In the VAR model the values are rapidly
increasing. In the Bass (1969) model the curves of first ten individuals start at -1 to -10, what is
hard to distinguish from 0 so that only one curve seems to be present.

Technical note: In the gui, the temporal development of the characteric for show.n.indiv = 10
individuals is depicted. If only one set is given, the graphs are shown in a wide range of colors. In
case of several sets, the individual courses are shown in the color of the set.

3.6.4 Cumulative social influence /¢

The cumulative social influence is a function of the number of trials N(¢) made so far. Generally,
one might assume that /¢ is an increasing function of N. A function /¢ that decreases for small N
signifies aversion against a new product. If it decreases for large N it signifies aversion against an
established product.
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Bass (1969) model ~ Goldenberg et al. (2010) model Rand and Rust (2011) model VAR model
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Figure 7: Cumulative social influence. In the Bass (1969) model it argued that this quantity must
become negative, particularly to prevent the cumulative number of trials to tend to infinity. In our
representation of the Goldenberg et al. (2010) model and the Rand and Rust (2011) model, the
cumulative social influence jumps from —oo to co. The vector autoregressive model (VAR) does not
depend on [¢; as a default, ¢ is set to 0.

Technical note: In the gui, the temporal development of the characteric for show.n.indiv = 10
individuals is depicted. If only one set is given, the graphs are shown in a wide range of colors. In
case of several sets, the individual courses are shown in the color of the set.

3.6.5 Recent social influence I"

The recent social influence reflects the effect of word of mouth to an individual. This is modeled
mainly by ABMs.

Bass (1969) model  Goldenberg et al. (2010) model Rand and Rust (2011) model VAR model
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Figure 8: Recent social influence. Here, the four models show very different behaviour. In our
representation of the Bass (1969) model the recent social influence I” is not included. Hence the
value of I" is set to 0 by default. The Goldenberg et al. (2010) model leads to non-monotonic paths
except for values a and b close to 1. In the Rand and Rust (2011) model the curves are increasing
and level out, while in the VAR model the values are rapidly increasing.

Technical note: In the gui, the temporal development of the characteric for show.n.indiv = 10
individuals is depicted. If only one set is given, the graphs are shown in a wide range of colors. In
case of several sets, the individual courses are shown in the color of the set.

3.6.6 Private Utility U?

The private utility UP is considered as influenceable by external factors such as mass media. Hence,
it is natural to consider U? as a random variable with time dependent mean.
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Figure 9: Private Utility. Here, the models show three different kinds of behaviour. In our repre-
sentation of the Bass (1969) model the private utility U? is linearly increasing, whilst for the the
models of Goldenberg et al. (2010) and Rand and Rust (2011), the curves are essentially linearly
decreasing. In the VAR model the curves seem to fluctuate only.

Technical note: In the gui, the temporal development of the characteric for show.n.indiv = 10
individuals is depicted. If only one set is given, the graphs are shown in a wide range of colors. In
case of several sets, the individual courses are shown in the color of the set.

3.6.7 Difference of the private utility between two time steps AU?

The increment AUP gives a clearer picture about the jumps of the private utility U? between
subsequent instances of time.

Bass (1969) model ~ Goldenberg et al. (2010) model Rand and Rust (2011) model VAR model
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Figure 10: Difference of the private utility between two time steps. These curves are essentially the
derivatives of the private utility U? shown in Figure 9. The two figures in the middle show that the
Goldenberg et al. (2010) model and Rand and Rust (2011) model are based on two different kinds
of distribution.

Technical note: In the gui, the temporal development of the characteric for show.n.indiv = 10
individuals is depicted. If only one set is given, the graphs are shown in a wide range of colors. In
case of several sets, the individual courses are shown in the color of the set.

3.6.8 Memory effect M

Models based on differential or difference equations obviously include a memory effect. In our
representation of ABMs, memory effects appear as well and play an important role of control.

Technical note: In the gui, the temporal development of the characteric for show.n.indiv = 10
individuals is depicted. If only one set is given, the graphs are shown in a wide range of colors. In
case of several sets, the individual courses are shown in the color of the set.
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Figure 11: Memory effect. Since the memory effect is a function of the utility U, the four models
show very different behaviour as the utility U does. Being based on a differential equation, the
memory effect M of the Bass (1969) model equals N (¢t — 1), so that the curves here and in figure 4
are essentially the same. In the Goldenberg et al. (2010) model, the value of M jumps between 0
and some very high value; the Rand and Rust (2011) model jumps only once. Since the VAR model
is based on a difference equation, the curves here and in figure 4 are essentially the same.

3.6.9 Spatial distribution of adopters

Most models have an underlying spatial definition, so that the spatial spreading of the adopters
can be made visible.

Bass (1969) model  Goldenberg et al. (2010) model Rand and Rust (2011) model VAR model
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Figure 12: Spatial distribution of adopters. The individuals are assumed to be placed on a square
grid. In case the coordinates coord, see section 5, are not given, such as in the Bass (1969) model,
the spatial distribution of the adopters is not defined and no image is shown.

Technical note: In the gui, the time point for which the spatial pattern is shown is determined
by the button “relative.instance”, a value between 0 and 1, where 0 and 1 refer to the argument
Tstart and Tend, respectively, of the function adoption. The button “spatial” is the only tick box
that can trigger more than one graphic, namely as many graphics as there are sets.

3.7

The curves for the trials and cumulative trials are plotted in the stong colors ‘black’, ‘darkred’,
‘darkblue’‘orange’, ‘forestgreen‘, according to their set number. The set colors build also the back-
ground color for the buttons [d]elete und [1|st once the parameters have being [cpy]-ed. The light
colors ‘grey’, ‘red’, ‘lightblue’, ‘yellow’, ‘lightgreen’ are used respectively for the quantiles.

For all the other graphs the colors used depends on the number of sets. If the number of set is 1,
some nice 7 colors are used for a bundle of curves. If 2 or more sets are present, the curves take the
strong colors of the sets.

Colors
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Data are given in ‘pink’ in graphics for trials and cumulative trials, the fit to the data is given in
‘purple’, If a theoretical curve is known, it is plotted in ‘orange’.

The sliders are given in different grey scales. In general, the more important a parameter seems to
be, the darker the title of the slider isdrawn. Sliders that cannot be used are drawn only in a very
light, nearly unreadable, grey color.

4 Arguments of adoption

Here an commented overview over the parameters are given. For technical details and a comprehen-
sive list, see the manual pages of the package and the package RandomFieldsUtils.

The definition of the function adoption is

adoption(user = NULL,

Tend=30,

quantiles = c(0.25, 0.75),

included.models =c("Bass (1969)",
"Modified Bass",
"Goldenberg et. al (2010)",
"Generalized Goldenberg",
"Rand & Rust (2011)",
"Autoregressive (VAR)"),

dt = NULL,

data = NULL,

cumdata = NULL,

)

The simplest arguments are Tend and quantiles. Tend gives the endpoint of the simulation. (The
simulation starts at time Tstart which is 1 by default.) If quantiles is given (i.e. not NULL), in
some of the plots, quantiles are depicted, additionally to the mean curves.

The argument user has a threefold meaning:

1. called with the output of the last session, adoption restores the former session except for the
random seed of the simulations. A sample code is the following:

a <- adoption()
b <- adoption(a)

2. called with a filename, adoption restores the session saved by the button pdf & store in the
gui.

3. called with a list or a list of lists, adoption assumes that the user passes new model definition(s)
which are then displayed as additional models (in AREA 4 of the gui, see Figure 1).

The following code takes the definition of the Bass (1969) model and defines AU? as a waving
function leading to a waving behaviour of the trials.

a <- adoption(gui=FALSE, printlevel=0) ## get all model definitions

my_model <- a[["Bass (1969)"]] ## get the Bass model definition
my_model $ Up <- function(param, dt, m, nT, rep)
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rep(2 * dt * m * Value("Ic.param", 1) * sin((1:nT) * dt * 0.3),
rep * m)
m <- adoption(list("Bass funny waving" = my_model))

The number of default models can be reduced by the argument included.models. Here, the model
names might be abbreviated as long as the abbreviations are unique. For instance, starting the gui
with

a <- adoption(included.models=c("Ba", "Mo"))

will offer only the Bass (1969) model and its modification.

Data can be passed as an integer valued vector through the arguments data or cumdata. The
instances when the data have been measured are assumed to be gridded. The time span between
subsequent measurements is passed through the argument dt. Note that cumdata accepts missing
values (NA).

Important: If the system supports OMP (OpenMP, Open Multi-Processing), the speed of the
program can be accelerated by the argument cores.

4.1 Options passed by “...” (advanced)

The following options can be set within adoption() or globally by RFoptions. There are three
different kinds of options.

4.1.1 Optional arguments of general purpose

Two general parameters are used in adoption,
e cores which sets the number of cores used in parallel

e printlevel a higher number results in a higher entertainment on the xterm of Linux machines
with additional informations.

Technical note: The list of general parameters can be obtained by RFoptions()$basic.

4.1.2 Optional arguments for fitting to the data
The following arguments control the fitting to the data:

e fit m Default is that integer values are never fitted by adoption. An exception builds the
market size m which is never known in real life and should be estimated, too, If fit m = TRUE,
then also the market size is fitted at a rather high price of time.

Technical note: The fitting procedure for the market size m is seen to be in a rudimentary
stage and might need further work of research.

e fit repetitions The minimum number of simulations used to calculate N (t) from the model.
If the value in gui for repetitions is higher than fit repetitions, this value is taken for the
calculation of N(t).

e pgtol, factr see optim for their meaning.
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e tracefit If the value is 1 or 2, more entertainment of the user is given whilst fitting.

e max_increasing If the number of non-decreasing iterations equal max_increasing the com-
plete fitting algorithm ends.

Technical note: The list of fitting parameters is a subset of RFoptions () $adoption.

4.1.3 Other optional arguments

e The appearance of the gui can be adjusted, for instance, the placement of certain buttons
by button2right, the fontsize, the model number to startwith, the starting time point
Tstart and how often simulations are updated when the entry box is used (simuOnTheF1ly).

e wait This argument influences the return value of the gui, see Section 3.2.6, but also the
amount of time the CPU is idling. The lower the value the more time is spend in doing
nothing productive.

e ymax When plotting a series of plots of the number of trials AN, there is a trade off between
changing the scale all the time (leading to eye irritation) and imprecision (keeping the same
scale for a too long time). This trade off can be modified by the argument ymax.

e gui The option gui=FALSE runs adoption in an non-interactive mode where figures are plotted
and saved before adoption is left. If additionally printlevel=0 then only the definitions of the
default models are returned; i.e., this option returns templates for one’s own model definition
or modification.

Technical note: The above list of arguments is a subset of RFoptions () $adoption.

5 Model definitions

Beyond the six predefined models in adoption, the user may define one’s own models. In this rather
technical section we give details about coding new models. If you are happy with the six predefined
models, you might skip this section.

To give an idea how such a model definition might look like, we give examplarily the definition of
the Bass model as defined in the file adoption.R of the package:

Bass69 <- list( m = 1000,
repetitions=1L,
repetitions.max=1,
dt = 0.1,
relative.instance = O,
max.relative.instance = 0,

SOCIAL = c(1, 3, 3),
Ic.start = NULL,

Ic = function(param, Nt, m, ...) {

rep(- 4 x Nt * (param[1] - param[2] + param[2] * Nt / m), each=m)
T,
Ic.param = c("innovation p" = 0.02,

"imitation q" = 0.4),
Ic.param.min = c(0, 0),
Ic.param.max = c(1, 1),
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Utrafo = function(U, ...) 4 * U,

PRIVATE = rep(5, 3),
Up.start = function(param, m, rep) base::rep(-(1:m), rep),
CrossReferences = function() TRUE
Up = function(param, dt, m, nT, rep)

rep(2 * dt * m * Value("Ic.param", 1), nT * rep * m),
Uthreshold = 0,
Uthreshold.min
Uthreshold.max

0,
0,

"MAX/PLUS OPERATORS" = rep(5, 3),

alpha = c("alpha_1"=1, "alpha_2"=1),
alpha.min = c(1, 1),

alpha.max = c(1, 1),

beta = c("beta_1"=0.5, "beta_2"=0.5),
beta.min = ¢(0.5, 0.5),

beta.max = c(0.5, 0.5),

gamma = c("gamma_1"=0.5, "gamma_2"=0.5),
gamma.min = c(0.5, 0.5),

gamma.max = c(0.5, 0.5),

theor.dN = function(Ic.param, t, m) {
p <- Ic.param[1]
q <~ Ic.param[2]
E <- exp((g+p) * (t + log(p / m)/(p+q)))
Nt <- (m*E-p) / (E+ q/ m
(m - Nt) = (p+q* Nt / m

}

)

In such a model definition the ordering of the elements of the list is irrelevant, since the elements
are reordering according to an internal list which includes also some default values and the titles
within the gui:

list("m",
"repetitions",
"dt",
"relative.instance",
SOCIAL = c(1, 1, 3),
"Ic.param",
"weight.param",
"coord.param" = FALSE,
PRIVATE = c(1, 1, 3),
"Up.start.param",
"Up.param",
"Uthreshold",
"MAX/PLUS OPERATORS" = c(2, 2, 2),
"alpha",
"beta",
"gamma")

This order gives the order presented in the gui and cannot be changed. The model definition of
the user may leave out some parameters, which are considered as “(unused)” then. The user must
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include additionally several function definitions that are described below. The above list, which is
taken from the internal R code in adoption.R, has the following interpretations: if a parameter is
FALSE, here coord.param, then this parameter is invisible in the gui and hence can never be changed
by the gui user. Titles are followed by a vector of integers. These values give the importance of
the subsequent parameters (1 for high and 4 for low; 5 for unused or fixed parameters). The
parameters before the first title (“SOCIAL”) are the global parameters. All the parameters can be
vectors except for the global ones, which are always scalars. The parameters are given as vectors
of named default elements, e.g. Ic.param = c("innovation p" = 0.02, "imitation q" = 0.4)
in the Bass model. These names are printed in the gui. Additionally to the default values, values
for the minimum and the maximum can be given, e.g. Ic.param.min = c(0, 0). The following
functions do not have default definitions, so most of them must be given. Some of them can be NULL
and that model part is ignored then. The argument Nt equals N(¢), m is the market size, rep the
number of repetitions, dt the time increment, and nT is the number of performed time steps. We
have

1. Ic.start = function(Ic.param, m, rep) : This function has no direct correspondance in
the model definition of Anonymous et al. (2019), but is used to create additional random
parameters for I¢. The function returns a vector of length m * rep, which is used as argument
start in the function Ic. Here, the function will be called with parameter Ic.param; the
parameter Ic.start.param does not exist.

N
—

¢ = function(Ic.param, Nt, m, start) : This function corresponds to /¢ in Anonymous
et al. (2019). It returns a vector of length start. The latter is created by function Ic.start.

3. coord = function(coord.param, m) : The output of this function is used to define the
weights w;; in Anonymous et al. (2019). It creates a matrix of m rows. The number of columns
equals the dimension of the space and is given by coord.param[1].

4. weight = function(weight.param, dist) : This function returns the matrix of weights
(wij)ij=1,..m in Anonymous et al. (2019). The function returns a matrix of the same size
as dist. Here, dist is a matrix of distances calculated as Euclidean distances from the
coordinates given by coord. Note that there is no check whether diagonal values are zero as
required in the theoretical approach by Anonymous et al. (2019).

5. Utrafo = function(U, Uthreshold, m) : This is the function f in the model defintion in
Anonymous et al. (2019). The function returns a vector of the same length as U. The argument

Uthreshold equals the parameter 6 in the model definition of Anonymous et al. (2019) and is
0 by default.

6. Up.start = function(Up.start.param, m, rep) : This function delivers the starting values
UP(0) of the private utility UP. The function returns a vector of length m * rep.

7. Up = function(Up.param, dt, m, nT, rep) : This function defines either UP or AU? in
Anonymous et al. (2019). If the function returns a vector of length nT * rep * m, then the
result is considered as values AU?. If the function returns NULL, then U? is considered as being
a Brownian motion with variance given by Up.param[1]~2. (If it returns a RMmodel of the R
package RandomFields, then this model defines UP — this will be implemented in future.)

8. theor.dN = function(Ic.param, t, m) : This function gives the theoretical number of
adoptors. It returns a vector of size t. Here, t is a vector of time instances.
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9. CrossReferences = function() TRUE : This technical function does not have an immediate
correspondance in the theoretical framework. CrossReferences is either not given or looks
exactly like this. If given, functions may use the parameters of other functions as well. For
instance, in the Bass model, the parameter p appears in both ¢ and U? so that the definition
of U? is the following;:

Up = function(Up.param, dt, m, nT, rep)
rep(2 * dt * m * Value("Ic.param", 1), nT * rep * m)

Here, Value(par, i) returns the ith component of the parameter par, where par must be
given as a character. Note that if CrossReferences is given, the simulation time might
increase considerably as the system has to redo all the simulation parts for any change of the
parameter values in the gui, as the system does not know which parts are affected by cross-
referencing. Second note is that the R environment of the model definition is changed so that
no variables of the R session (in particular no global variables of R) may be used in the model
definition. (E.g., the use of the variable Goldenberg_C <- 1e6 in the internal definition of
the Goldenberg et al. (2010) model in the R function adoption would not be possible.)

One’s own models are passed to adoption through the argument user as a lost of a list of lists, see
also Section 4.

6 Further implementation details

6.1 Evaluation of the operator

Note that we have
T Vo y=y+&(xy)(r—y).

with &, (z,y) = o115y + a2l,o,. Since the value of z or y could be oo and x = y implies £, = 0,
we define 0 - oo = 0. This is the form the operator is implemented in the C code of the gui.

6.2 Simulation

The code is a mixure of R code, where the model definition is given, and C code, where the temporal
development of the model is calculated.

For efficiency reasons of code of R (R Development Core Team, 2019) all the initial and boundary
values, e.g. UP are simulated at once at the very beginning. A slider or entry change triggers only a
partial recalculation of random variables and initial and boundary values. The temporal development
of the model must always be recalculated.

The calculation of I" is very time consuming so that three cases are distinguished: no weight matrix
is given or the weight matrix consists of zeros only, weight matrix is sparse (containing at least 80
% of zero), and matrix is full.

Since R tends to copy values and since in the R language only functions are defined, and not
procedures, special functions for calculation the distances between individuals in the Goldenberg
et al. (2010) and in the VAR model are defined that can modify globally defined variables without
any copying. These functions may be used only with great care.

Creating random variables is time expensive. So, the simulated random variables are reused until
the button new simulation is pressed.
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6.3 Fitting

We fit the model to the data by least squares so that the RSS between the empirical cumulative
distribution function and the distribution function calculated from the model (by enough simulations
from the model) is the decisive criterion.

Most parameters influence heavily the location of the density function so that the parameter have a
collinear behavior and optim is not able to estimate the parameters correctly, in general. We define
the location of a density function as its median. The fitting consists of several steps.

1.

Global search versus local search for the optimum

We determine the medians for a grid of values of the parameters that roughly cover the space
of the parameters (3 points in each direction so in total 3* points where k is the number of
parameters are to be estimated). We also determine the RSS for all the grid points in the
parameter space. If all RSS are greater than the RSS of the user’s suggestion, this global grid
is discarded and replaced by a grid with the user’s suggestion (i.e. the parameter values given
by the current slider positions in the gui) in the middle and a small lattice spacing around.

Determination of the collinearity correction

Instead of performing the fitting with the genuine model parameters, The fitting is performed
with a set of dummy parameters that are (locally) algrebraically independent. The relation be-
tween the genuine model parameters and the dummy parameters are assumed to be a (locally)
linear relation. This linear relation is calculated from the above parameter grid.

So, we fit a hyperplane by LSQ to the values of the medians of the grid in the parameter space.
Now, we determine the closest point (by the square of the Euclidean distance) to the starting
point suggested by the user under the constraint that the solution is on the intersection of the
hyperplane and the median of the data (considered as a hyperplane of constant value). If one
of the obtained values is outside the range of the parameters, a genuine quadratic program
is solved by solve.QP of the R package quadprog (Berwin and Weingessel, 2013). Still it can
happend that quadprog fails (for theoretical reasons). Then the absolute value of the leading
coefficient of the hyperplane (i.e. the coefficient with the highest absolute value except the
intercept) is increased. And the fitting by quadprog is redone. This part might be even
repeated for a few times.

Optimisation of the dummy parameters

The optimizer optim will optimize the above mentioned dummy parameters. Of course these
dummy parameters have first to be transformed to the genuine model parameters before the
RSS is calculated. Boundaries of the parameter values have to taken into account.

Complete fit

Not surprisingly, the above algorithm (which is run in gui through the button fit 1 step)
suffers also from the collinearity problems when our (locally optimized) correction for the
collinearity is not good anymore. To circumvent this problem we iterate the above procedure
with an updated starting value until the fit looks satisfying. Since the local correction causes
a waving behaviour of the RSS, the stopping criterion is rather crude. The algorithms stopps
if no improvement is obtained for a (short) run of iterations, determined by the optional
argument max_iterations.

Fitting of the market size
Here, the base is a simple RSS optimization of the parameters for a fixed market size m
A correction for the collinearity as described above is currently not performed. The lowest
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possible value for m is given by the empirical data by the maximum value of N. Starting with
this minimal value a search for the optimal m is performed by first doubling the value of m
until an improvement is possible any more. Then the interval is determined where the optimal
value for m must be. Then a standard search in the interval is performed. In a last step, the
model parameters with collinearity correction and fixed market size might be estimated.

Technical note: (i) See Section 4.1.2 for argument controlling the fitting procedure.

(ii) Not surprisingly from description, the fitting result will depend on the starting values given
by user (through the current parameter values in the gui). Since the starting value given by the
user is compared with further potential starting values, we firstly reduce the dependence on the
user’s values and secondly obtain a complex dependency of the result on the user’s values. This
dependency is further blurred and reduced by the iteration steps in the complete fit. Overall, the
dependency on the user’s values seem to be acceptable low. (iii) In Anonymous et al. (2019), the
presented results are based, whenever applicable, on the same starting values to ensure maximum
comparability among the results. Furthermore, an extensive testing in Anonymous et al. (2019)
indicated that the variation of the starting values may not be able to improve the model fit by more
than one percent.

7 Installation details

Here some details and potential difficulties are listed when installing the package adoption:

adoption is based on the package RandomFieldsUtils (Schlather et al., 2019) which itself
needs a fortran compiler, e.g. gfortran

e tcltk and tk must be installed on the OS system, additionally to the R package tcltk2

e newer MAC OS systems need additional installation of XQuartz on the system. This program
must be running when adoption is used.

e On some systems openmp does not work although openmp is recognized. Then versions of
RandomFieldsUtils and adoption with no $ (SHLIB_OPENMP_CXXFLAGS) flags in /src/Makevars
must be installed.
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