
Package animation: Animated Statistics Using R

Yihui Xie1

December 25, 2007

1School of Statistics, Renmin University of China, Beijing, 100872, China; Tel: 86-
10-82509086; Fax: 86-10-82509086; Email: paste("xieyihui", "@", "gmail.com",

sep = ""); Homepage: http://www.yihui.name; You may visit my project“Animated
Statistics Using R” at http://R.yihui.name for a variety of animations in statistics
in web pages.

http://www.yihui.name
http://R.yihui.name

Abstract

Animated pictures are undeniably both interesting and intuitional. This vi-
gnette mainly gives a brief overview to a large variety of animations in statstics,
which could probably aid in teaching statistics, data analysis, and the pre-
sentation of statistical reports. The methods of making animations are also
introduced. It is hoped that the traditional “static” statistics can be altered to
some degree by such a kind of “animated” approach.

Contents

1 Introduction 4

2 Tools for Animation 5
2.1 R Graphical Devices . 5
2.2 HTML & JavaScript . 6
2.3 Other Tools . 7

3 Statistics and Animations 8
3.1 Iterative Algorithms . 8
3.2 Random Numbers . 10
3.3 Dynamic Trends . 10

4 Package animation Overview 14

5 Statistical Animations Gallery 16
5.1 Probability Theory . 16

5.1.1 Probability in Flipping Coins 16
5.1.2 Buffon’s Needle . 17
5.1.3 Brownian Motion . 17
5.1.4 Law of Large Numbers . 18
5.1.5 Monte-Carlo Simulation for Computing Areas 18
5.1.6 Central Limit Theorem 18

5.2 Sampling Survey . 19
5.2.1 Simple Random Sampling 19
5.2.2 Stratified Sampling . 20
5.2.3 Cluster Sampling . 21
5.2.4 Systematic Sampling . 21
5.2.5 CLT in Sampling Survey 22

5.3 Mathematical Statistics . 23
5.3.1 Confidence Intervals . 23

5.4 Linear Models . 23
5.4.1 Subset Selection . 23

5.5 Multivariate Statistics . 23
5.5.1 K-Means Cluster Analysis 23

5.6 Nonparametric Statsitics . 24
5.6.1 Kernal Density Estimation 24

5.7 Time Series Analysis . 24
5.7.1 Moving Window Auto-Regression 24

1

CONTENTS CONTENTS

5.8 Computational Statistics . 25
5.8.1 Gradient Descent Algorithm 25

5.9 Data Mining . 25
5.10 Machine Learning . 25

5.10.1 Bootstrapping . 25
5.10.2 k-fold Cross-Validation . 27
5.10.3 k -Nearest Neighbor Classification 28

A Introduction to R 30

B R Graphics 31

C Misc Functions in animation 32
C.1 Functions for R . 32

C.1.1 Tidy up the Source Code 32
C.1.2 Generate R Definition File for Highlight 33

C.2 Functions for Systems . 33
C.3 Functions for the Web . 33

C.3.1 Create RSS Feed from a CSV Data File 33

2

List of Figures

2.1 An illustration of the process of animations. 6

3.1 Basic steps of K-Means cluster algorithm. 9
3.2 Sample iterations of K-Means cluster algorithm. 9
3.3 The problem of Buffon’s Needle. 10
3.4 Simulation of Buffon’s Needle. 11
3.5 ACF and PACF for the number of visits to Yihui’s website . . . 11
3.6 Illustration for Moving Window Auto-Regression with real data . 13

5.1 Probability of flipping a coin. 17
5.2 Two sample frames of Brownian Motion. 18
5.3 A possible result of simple random sampling. 19
5.4 A possible result of stratified sampling. 20
5.5 A possible result of cluster sampling. 21
5.6 A possible result of systematic sampling. 22
5.7 The first iteration for K-Means cluster analysis. 23
5.8 A general illustration for Moving Window Auto-Regression . . . 24
5.9 Bootstrapping for i.i.d data. 26
5.10 An illustration of 10-fold cross-validation. 27
5.11 kNN algorithm in the 2D plane. 28

3

Chapter 1

Introduction

The concept of statistics, viewed from an analytical way, can be defined as “the
study of algorithms for data analysis” ([1]). Nowadays statistical methods and
models are increasing at an exploding speed, leading to more and more dif-
ficulties for people to understand those abstract mathematical and statistical
algorithms. Basically this happens because sometimes it is really hard to imag-
ine what on earth has happened behind a statistical algorithm, or how it works
in processing data. While on the other hand, the size and complexity of data
are also increasing, which results in the other problem for knowledge discov-
ery. In the mean time, traditional static statistical reports (printed on paper in
presses) for these complex data can be rather unsatisfactory for explainations
of statistical results, and we need a more active way to present the fruits of our
analyses.

We’re drowning in information and starving for knowledge.

– Rutherford D. Rogers

To solve these problems, I adopted the approach of animation at last, be-
cause the human visual cortex is arguably the most powerful computing system
we have access to, and visualization (especially animation) allows us to put
information into a form which allows us to use the power of this computing sys-
tem. Thus by virtue of our visual system we may be able to quickly understand
a somewhat complicated method or result (usually in a simplified case).

However, there is currently very few work in such a literature for animations
in statistics1, therefore this vignette provides an integrated discussion on the
animating of statistical models and data in the environment of R language ([5]).

1Most of work has been contributed to the computer science, media and entertainment
industries.

4

Chapter 2

Tools for Animation

Perhaps most people would think of GIF images as the first choice for making
animations, because it is well known that GIF is one of the only few image
formats that has the ability to create animations1, nevertheless ultimately I
didn’t adopt this format for several reasons2.

Actually it is not so convenient to make animated image files in R, whereas
we still have other choices, among which I list two main tools I have employed
as follows in section 2.1 and 2.2, and other possible means are mentioned in
section 2.3.

2.1 R Graphical Devices

The R package grDevices has offered a variety of graphics devices, and it’s really
a great help when we need to produce single image files – there are several
choices such as PNG, JPEG, BMP, PDF, PS, TEX/LATEX and WMF, etc. All of
them work very well when producing images files one by one, but the essential
problem is that none of them is able to make animation files directly. At most
what we can do is to produce a sequence of images.

Nevertheless, we may as well just use the Windows graphics devices (under
Windows) or X Window System graphics devices (under Linux) or MacOS X
Quartz devices (under MacOS X) inside R to make animations, i.e. draw graphs
one after another in these devices. Again, there is an obvious drawback: it’s
inconvenient for users who don’t have R installed in their computers to watch the
animations, as the pictures are displayed inside R and we need an independent
platform to show our animations.

For users who have installed R, animations can be made with the function
Sys.sleep() in a loop. Obviously this function is intentionally used to slow down
the loop so that we can see the whole process clearly. For example, we can show

1There are other formats such as APNG (Animated Portable Network Graphics), MNG
(Multiple-image Network Graphics) and SVG (Scalable Vector Graphics), etc, but less popular
(SVG might be promising in animations).

2You may read this page: http://r.yihui.name/misc/gif_pdf_grDev.htm

5

http://r.yihui.name/misc/gif_pdf_grDev.htm

2.2. HTML & JavaScript Chapter 2. Tools for Animation

Animation

An
im

at
io

n

A
ni

m
at

io
n

Animation

Animation

A
nim

ation

Anim
ation

Animation

00:01 00:02 00:03 00:04

00:0500:0600:0700:08

Figure 2.1: An illustration of the process of animations.

the process of rotating the word “Animation” in the loop below3 (Figure 2.1
shows some sample frames of this animation):

> for (i in 1:360) {

+ plot(1, ann = F, type = "n", axes = F)

+ text(1, 1, "Animation", srt = i, col = rainbow(360)[i],

+ cex = 7 * i/360)

+ Sys.sleep(0.01)

+ }

For detailed instructions and explainations in R graphics system, you may
refer to the book “R graphics” ([4]) by Paul Murrell, or read R-help on graphics
functions (e.g. packages graphics, grDevices, etc) carefully.

2.2 HTML & JavaScript

Why use HTML & JavaScript? I believe there are at least three reasons:

• R already has built-in functions for reading and writing text files, so we can
create HTML files easily, e.g. use cat() with arguments file and append;

• Although R has no devices for image formats such as GIF, there are still
many other “static” image formats which can be well shown in web pages,
e.g. JPEG, PNG, ...;

• Generally speaking, no additional programs are needed in order to display
the animations, as long as the web browser supports JavaScript – surely
most browsers can meet such a simple requirement.

3This code is used in the header of http://R.yihui.name. Argument srt controls the
rotating degree, col for colors, and cex for magnification.

6

http://R.yihui.name

2.3. Other Tools Chapter 2. Tools for Animation

The work to do is just to create single image frames and try to show them in
an HTML page. And how can we fulfill this? The answer is through JavaScript4.
This idea has already been implemented in this package animation: all animation
functions has a special argument saveANI, which determines whether to generate
animation files or just to show animations inside R.

2.3 Other Tools

Currently there are still at least other two choices for animations: the first one is
to use the package rgl which takes advantage of the OpenGL system to make 3D
visulizations. The user may conveniently interact with 3D elements in the plot
(drag and rotate, etc). And the second one is Scalable Vector Graphics (SVG),
which is a language for describing two-dimensional graphics and graphical ap-
plications in XML. SVG files are compact and provide high-quality graphics on
the Web, in print, and on resource-limited handeld devices. In addition, SVG
supports scripting and animation, so is ideal for interactive, data-driven, per-
sonalized graphics. Besides, SVG is a royalty-free vendor-neutral open standard
developed under the W3C (World Wide Web Consortium) Process. Currently
there are a few packages supporting the creation of SVG files, e.g. Cairo, cairoDe-
vice, and RSvgDevice, etc5.

Besides, this package might be a little bit like TeachingDemos, which contains
several demonstrations for teaching and learning, however, clearly animation is
focused on demonstrations that can be animated, and what’s more, the tools
for animations of these two packages are different, too6. The package animation
also aims to cover many more fields in statistics.

And there is still another project related to the package animation. That is
“the R Movies Gallery”. Currently I haven’t checked it carefully, but I see at
least one difference: special software has to be installed to watch the movies,
which is not necessary for the package animation.

4Refer to this page again for details: http://r.yihui.name/misc/gif_pdf_grDev.htm
5As far as I know, there is one other package gridSVG by Paul Murrell, but it is still highly

experimental.
6TeachingDemos mainly takes advantage of the function locator(), the package rgl and

Tcl/Tk to interact with users.

7

http://cran.r-project.org/src/contrib/Descriptions/Cairo.html
http://cran.r-project.org/src/contrib/Descriptions/cairoDevice.html
http://cran.r-project.org/src/contrib/Descriptions/cairoDevice.html
http://cran.r-project.org/src/contrib/Descriptions/RSvgDevice.html
http://addictedtor.free.fr/movies/
http://r.yihui.name/misc/gif_pdf_grDev.htm
http://www.stat.auckland.ac.nz/~paul/R/gridSVG_0.5-1.tar.gz

Chapter 3

Statistics and Animations

So what is the connection between statistics and animations? Generally there
are three areas in which animations can be used, namely:

• algorithms involving iterations, e.g. K-Means cluster algorithm

• methods relevant to random numbers, e.g. simple random sampling

• statistics with dynamic trends, e.g. time series

Below I’ll explain with examples how they work in animations respectively.

3.1 Iterative Algorithms

There are a large number of algorithms in statistics which involve iterations to
optimize certain functions. For example, in the K-Means cluster analysis, the
basic steps are described in Figure 3.1. What animation can do is to show the
output of each iteration.

Here I use a cluster problem containing two numerical variables as a simpli-
fied case; actually the main reason is for the convenience of making scatterplots
on the 2D plane: the x-axis and y-axis denote the two variabels respectively.
During the process of iterations, we may present these two elements at each
iteration:

• Location of each center: just average x-y locations within each cluster.

• Temporary cluster results: annotate each cluster by different point sym-
bols.

As the iteration goes on, both the centers and cluster membership will change
– this is just the source of animation. To sum up, the animation steps may
be: show centers, compute distances and cluster, show cluster membership,
re-compute centers and move, re-compute distances and change cluster mem-
bership, and so one and so forth. Figure 3.2 gives two iterations of locating
centers and computing distances.

8

3.1. Iterative Algorithms Chapter 3. Statistics and Animations

Initial centers

Compute distances Cluster sample

Move centers

Stop

Figure 3.1: Basic steps of K-Means cluster algorithm: the iteration in the middle
box will go on and on until maximum number of steps is achieved or clusters
are converged.

●

●

●

●

●

●

0.2 0.4 0.6 0.8

0.
2

0.
6

(1)

●

0.2 0.4 0.6 0.8

0.
2

0.
6

(2)

●
●

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8

0.
2

0.
6

(3)

●

0.2 0.4 0.6 0.8

0.
2

0.
6

(4)

●
●

●

●

●

Figure 3.2: Sample iterations of K-Means cluster algorithm: (1) locate cluster
centers based on the average of the last step; (2) compute distances and de-
termine cluster membership again (centers are not moved!); (3) locate cluster
centers again based on the result of (2); (4) compute distances and determine
cluster membership again (centers not moved). Check carefully for the changes
especially from (2) to (3) and from (3) to (4).

The animation function in the package animation is kmeans.ani(); see the
help files for detailed usage (Section 5.5.1).

9

3.2. Random Numbers Chapter 3. Statistics and Animations

D φφ
x ●

L

ππ
0

D/2

y ==
L

2
sin((φφ))

Figure 3.3: The problem of Buffon’s Needle. (1) The left plot: bold segments
stand for “needles”; D is the distance between lines; L is the length of needle; x
is the distance from the middle of the needle to the nearest line; φ is the angle
at which the needle falls; (2) The right plot: the needle will cross the lines if and
only if x ≤ (L/2)sin(φ), i.e. the point (φ, x) should fall into the shadow area.

3.2 Random Numbers

Surely statistics cannot survive without randomness. We can see random num-
bers in subjects such as probability theory, survey sampling, and numerical
simulation/optimization, etc. In areas which involve with random numbers,
we may generate random numbers again and again to do simulations and get
corresponding results – this is just where animations can play an important role.

Let’s take the Buffon’s Needle for example. This is one of the oldest problems
in the field of geometrical probability and it’s familiar to people who have basic
knowledge of probability theory, so I wouldn’t repeat the background here.

The critical parts for the simulation of this problem are:

• Randomly generate a location where the needle falls (only the middle point
of the needle is needed).

• Randomly generate an angle φ at which the needle falls (a number in
[0, π]).

After these two elements have been decided, we’ll immediately know whether
the needle will cross the lines or not. The problem and solution are explained
in Figure 3.3, while the simulation is illustrated in Figure 3.4.

The animation function in the package animation is buffon.needle(); see the
help files for detailed usage (Section 5.1.2).

3.3 Dynamic Trends

We are always exploring relationships among our variables, as descriptions for
single variables are far from enough in statistics; therefore the method of con-
ditioning is fairly important. For instance, we may want to examine how a

10

3.3. Dynamic Trends Chapter 3. Statistics and Animations

Simulation of Buffon's Needle

L

D

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

y ==
L

2
sin((φφ))

0 50 100 150 200

2.
0

3.
0

4.
0

Dropping times

ππ
ππ̂

Figure 3.4: Simulation of Buffon’s Needle. (1) Top left: simulation of dropping
needles; (2) Top right: corresponding point pairs (φ, x); (3) Bottom: values of
π calculated from the above simulations; actually this is the 150th animation
frame taken from the whole process of 200 needle falls.

0 2 4 6 8 10 12 14

−
0.

4
0.

4
1.

0

A
C

F

2 4 6 8 10 12 14

−
0.

2
0.

4

P
ar

tia
l A

C
F

Figure 3.5: ACF and PACF for the number of visits to Yihui’s website from
Oct 1 to 31, 2007.

11

3.3. Dynamic Trends Chapter 3. Statistics and Animations

certain statistic A varies conditioned on a variable B. This “variation” (or sim-
ply “change”) just builds the connection between statistics and the application
of animations.

The most common case is the subject of time series1, in which the condi-
tioning variable is usually time.

For example, in time series analysis we often use the whole data set to fit
an ARIMA model to examine the relationship between Xt and corresponding
lagged terms such as Xt−1, Xt−2, . . ., however, if we want to know how such a
relationship varies over time, this single model surely cannot help. Here I simply
employ an intuitional method called “Moving Window Regression” (MWR) to
fulfill this idea. MWR is able to show the changes of coefficients over time, and
what I do next is rather naive (just for demonstration). Further topics can be
found in [6], etc.

The time series data is from the dataset pageview in animation, and we may
have a look at the ACF and PACF plots in Figure 3.5 just for data between Oct
1 to 31, 2007.

> library(animation)

> data(pageview)

> x = pageview$visits[11:41]

> par(mfrow = c(2, 1))

> acf(x)

> pacf(x)

Not going further in the traditional ARIMA anlysis, I just use an AR(1)
model for computation. Suppose there are n observations {x1, x2, . . . , xn}, and
the MWR method is just to split the data into n − k + 1 subsets depending
on the window width k: {x1, . . . , xk}, {x2, . . . , xk+1}, ..., {xn−k+1, . . . , xn}, and
at last compute AR(1) models on each subset. In the code below, I computed
the coefficient φ for n − k + 1 AR(1) models xt = φxt−1 + εt using arima() in
package stats, and during the moving (in a loop), I marked out observations
used in MWR by rectangles with different colors, and plotted the corresponding
coefficients as well as “φ± 2*s.e.” in the lower part of the graph. The last line
Sys.sleep(1) is to slow down the process of moving windows so that we can
clearly see the “real moving”2.

> library(animation)

> data(pageview)

> x = pageview$visits[11:41]

> k = 15

> base = 0:(k - 1)

> sx = 2.5 * (x - min(x))/(max(x) - min(x)) + 1.6

> plot(sx, ylim = c(-0.3, 4.2), cex = 1.5, yaxt = "n")

> axis(2, c(0, 0.6, 1.2), col.axis = "red")

> axis(2, seq(1.6, 4.1, length = 4), seq(min(x), max(x),

1But the applications are absolutely not limited to time series!
2Just for demonstration; in practical applications there’s no need to slow down the com-

putation.

12

3.3. Dynamic Trends Chapter 3. Statistics and Animations

●
●

●
●

● ● ●
● ●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●
● ●

●

0 5 10 15 20 25 30

A
R

(1
)

co
ef

fic
ie

nt
 a

nd
 c

or
re

sp
on

di
ng

 o
rig

in
al

 d
at

a

0.
0

0.
6

1.
2

76
19

4
31

2
43

0

● ●
● ● ● ● ●

●
●

●
● ●

●

●
●

● ●

Figure 3.6: Illustration for Moving Window Auto-Regression with real data for
a window width of 15 days.

+ length = 4), col.axis = "blue")

> abline(h = 1.5)

> for (i in 1:(length(x) - k + 1)) {

+ idx = base + i

+ m = arima(x[idx], order = c(1, 0, 0))

+ phi = coef(m)["ar1"]

+ se = sqrt(vcov(m)[1, 1])

+ rect(i, min(sx[idx]), i + k - 1, max(sx[idx]), lty = 2,

+ border = i)

+ arrows(i + k/2 - 0.5, phi - 2 * se, i + k/2 - 0.5,

+ phi + 2 * se, angle = 90, code = 3, length = 0.05,

+ col = i)

+ points(i + k/2 - 0.5, phi, pch = 21, col = "red",

+ bg = "yellow")

+ Sys.sleep(1)

+ }

Figure 3.6 shows the eventual result; we can roughly observe that the AR(1)
coefficient φ is stable first, and begins to decrease in the 15 days centered at Oct
15, then increases from about Oct 13 (those 15 days are centered at Oct 20).

A general animation function for“Moving Window Auto-Regression”mwar.ani()
is available since the package version 0.1-3. See Section 5.7.1 for usage.

13

Chapter 4

Package animation Overview

The package animation is based on the most primitive idea of animation: make
picture frames one after another with a certain duration (time interval between
frames) specified. And this dull method has also been implemented in an HTML
animation page using JavaScript to animate the image frames.

Currently there are two ways for animation: one is just to show animations
in a graphical device (Windows, X Window, etc), and the other is to make
animations in an HTML page so that people without R installed are also able
to view the animations.

There are some common arguments in each animation function controlling
the way to make animations, for example, whehter to save PNG files during the
animation demonstration (saveANI), the time interval interval between each
frame of a whole animation, and the height and width of the animation frames
if they are to be saved. These arguments are controlled by a special function
ani.control():

Usage

ani.control(saveANI = FALSE, interval = 1, nmax = 50,
width = 480, height = 480, ...)

The meaning of these arguments are very easy because the way of making
animations is quite naive, e.g., for saveANI:

saveANI = TRUE Convert the animation frames into PNG files, which will be
used in the HTML animation page.

saveANI = FALSE Don’t generate animation files: just show animation inside
R.

Nevertheless, the interpretation for nmax is not so apparent: it depends
on the specified animation function; nmax is usually equal to the number of
animation frames (e.g. for brownian.motion()) but not always! The reason is
that sometimes there are more than one frame recorded in a single step of a

14

Chapter 4. Package animation Overview

loop, for instance, there are 2 frames generated in each step of kmeans.ani(),
and 4 frames in knn.ani(), etc.

To make an HTML animation page, you have to start a page first by ani.start(),
then use any animation functions to generate PNG files in the images directory
relative the HTML page, and at last use ani.stop() to complete writing the page.
By default, ani.stop() will automatically open a web browser to view the HTML
animation page1.

Here is a sample session:

> library(animation)

> ani.start()

> op = par(mar = c(3, 3, 2, 0.5), mgp = c(2, 0.5, 0), tcl = -0.3,

+ cex.axis = 0.8, cex.lab = 0.8, cex.main = 1)

> brownian.motion(control = ani.control(saveANI = TRUE,

+ interval = 0.01, nmax = 100))

> par(op)

> ani.stop()

There a plenty of examples in the help pages of each animation functions.
Just try them if you like.

Having provided a mechanism for generating animations, next I shall go into
the huge project of statistical animations in the many branches.

1Use the function browseURL() in utils.

15

Chapter 5

Statistical Animations
Gallery

In section 3 I have explained some basic connections between animation and the
discipline of statistics. In this section I just give a summary of the animation
functions in the package animation. This gallery will be supplemented day by
day.

5.1 Probability Theory

Probabbility theory is a subject relevant to randomness. As mentioned in section
3.2, animation can be closely related to this subject.

5.1.1 Probability in Flipping Coins

In the first class of learning probability we usually begin with the probability
in flipping coins or tossing dice, and the function flip.coin() gives a simple
simulation. Here the concept of a “coin” is acutally abstract: it can be anyting,
and you just have to specify the true probabilities (or take the default NULL) for
each “face”.

Usage

flip.coin(faces = 2, prob = NULL, border = "white", col = 1:2,
type = "p", pch = 21, bg = "transparent",
control = ani.control(interval = 0.2, nmax = 100), ...)

For example, we toss the coin for 50 times, and considering that sometimes
the result of flipping a coin is neither head or tail (the coin just stands on
the table!), we specify there are three possible results Head, Tail, Stand with
probabilities 0.45, 0.1, 0.45 respectively, as the result Stand is not likely to
happen. Figure 5.1 shows the result of flipping this coin.

16

5.1. Probability Theory Chapter 5. Statistical Animations Gallery

Head Stand Tail

0.
0

0.
1

0.
2

0.
3

0.
4

F
re

qu
en

cy

F
lip

 'c
oi

ns
'Tail

Stand

Head

Tail

Stand

Tail

Tail

Head

Tail Head

Head

Tail

Head

Stand

Stand

Tail

Tail

Tail Head

Head

Tail

Head

Tail
StandTail

Tail

Stand

Head

Head

TailTail

Head

Head

Tail

Head

Tail

Head Tail

Head

Tail

Head

Tail
Head

Head

Tail

Head

Stand

Tail

Tail
Head

0.4 0.14 0.46

Figure 5.1: Probability of flipping a coin: Head? Tail? Or just stand on the
table? Run in R to watch the animation.

> flip.coin(faces = c("Head", "Stand", "Tail"), interval = 0.2,

+ nmax = 50, type = "n", prob = c(0.45, 0.1, 0.45),

+ col = c(1, 2, 4))

You may set larger times of flipping nmax to check whether the frequencies
will approximate to the true probabilities.

5.1.2 Buffon’s Needle

This problem has been mentioned in section 3.2, so I will not repeat again here.

Usage

buffon.needle(l = 0.8, d = 1, redraw = TRUE,
control = ani.control(interval = 0.05, nmax = 100), ...)

5.1.3 Brownian Motion

Brownian Motion, a.k.a“random walk”, characterizes the trace of a point moving
in a line or a plane (or in higher dimensions). Suppose the current location
of the point is xt, then the next location will be xt+1 = xt + εt+1 with i.i.d
εt ∼ N(µ, σ2).

It is very easy to simulate this process in R. If the initial location is 0, the
next k locations can be computed simply by cumsum(rnorm(k)). The function
rnorm() generates k i.i.d random numbers following Normal distribution, and
cumsum() computes cumulative sums for these numbers, which is essentially
the moving process of Brownian Motion.

The function brownian.motion() in animation has provided a simulation for
Brownian Motion with animations.

17

5.1. Probability Theory Chapter 5. Statistical Animations Gallery

●
●●

●
●

●

●
●

●

●
●●●

● ●

−3 −2 −1 0 1 2 3

−
3

−
1

0
1

2
3

1

23

4

5

6

7
8

9

10
111213

14
15 ●

●●

●

●

●●

●

●

● ●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
1

0
1

2
3

1
2

3

4

5

7
8

10

11 12

13

14

15

Figure 5.2: Two sample frames of Brownian Motion.

Usage

brownian.motion(n = 10, main = "Demonstration of Brownian Motion",
xlim = c(-20, 20), ylim = c(-20, 20), pch = 21, cex = 5,
col = "red", bg = "yellow", control = ani.control(nmax = 100,
interval = 0.05), ...)

For example, the code below shows the traces of 15 points moving in the 2D
plane for 100 steps. Figure 5.2 shows two sample frames of the animation.

> brownian.motion(control = ani.control(interval = 0.05,

+ nmax = 100))

5.1.4 Law of Large Numbers

TODO...

From frequency to probability.

5.1.5 Monte-Carlo Simulation for Computing Areas

TODO...

Monte-Carlo integration.

5.1.6 Central Limit Theorem

TODO...

Limit distribution of the sample mean x̄.

18

5.2. Sampling Survey Chapter 5. Statistical Animations Gallery

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 5.3: A possible result of simple random sampling: 13 points are sampled
from a population of 50 points.

5.2 Sampling Survey

Sampling survey is also a subject based on random numbers: the process of
sampling is essentially generating random numbers for indexing the sampling
frame. Therefore the problem behind sampling is just the manner to generate
random numbers.

5.2.1 Simple Random Sampling

Simple Random Sampling is the purest form of probability sampling. Each
member of the population has an equal and known chance of being selected.
When there are very large populations, it is often difficult or impossible to iden-
tify every member of the population, so the pool of available subjects becomes
biased.

In most cases, we conduct the sampling in a “without-replacement” manner,
i.e. we don’t put back the sample points once we pick them out. Correspondingly
there is another way “sampling with replacement”: every time before we do
the sampling, we put all the individuals back again; although this is rare in
practical sampling work, it’s extremely important and closely related to the
idea of bootstrapping (see section 5.10.1).

Here we only discuss the case of “Simple Random Sampling Without Re-
placement” (SRSWOR). The function sample() is convenient for us to conduct
the sampling.

Usage

sample(x, size, replace = FALSE, prob = NULL)

To randomly sample 10 individuals from a population of 100 elements,
sample(100, 10) is enough for indexing. Actually the other kinds of sampling
are also based on this useful function.

19

5.2. Sampling Survey Chapter 5. Statistical Animations Gallery

● ● ● ● ● ● ●● ●● ●

● ● ●● ●

● ● ● ● ● ● ● ●●

● ● ● ● ●●●

● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ●●

Figure 5.4: A possible result of stratified sampling: 14 points are sampled from
a population of 5 stratum.

If we keep on sampling from a population, the samples will also change ran-
domly, so this is the base of animations. The function sample.simple() provides
such animations for SRSWOR.

Usage

sample.simple(nrow = 10, ncol = 10, size = 15,
control = ani.control(interval = 0.2), ...)

Figure 5.3 is one possible result for simple random sampling.

Web page: http://r.yihui.name/stat/sampling_survey/simple_random/

5.2.2 Stratified Sampling

Stratified Sampling is commonly used probability method that is superior to ran-
dom sampling because it reduces sampling error. A stratum is a subset of the
population that share at least one common characteristic. Examples of stratums
might be males and females, or managers and non-managers. The researcher
first identifies the relevant stratums and their actual representation in the pop-
ulation. Random sampling is then used to select a sufficient number of subjects
from each stratum. “Sufficient” refers to a sample size large enough for us to
be reasonably confident that the stratum represents the population. Stratified
sampling is often used when one or more of the stratums in the population have
a low incidence relative to the other stratums.

The function sample.strat() provides the demonstration of stratified sam-
pling:

Usage

sample.strat(pop = ceiling(10 * runif(10, 0.5, 1)),

20

http://r.yihui.name/stat/sampling_survey/simple_random/

5.2. Sampling Survey Chapter 5. Statistical Animations Gallery

● ● ● ●● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

Figure 5.5: A possible result of cluster sampling: 2 clusters are sampled from a
population of 5 clusters.

size = ceiling(pop * runif(length(pop), 0, 0.5)),
control = ani.control(interval = 0.2), ...)

Figure 5.4 is one possible result for stratified sampling.

Web page: http://r.yihui.name/stat/sampling_survey/stratified/

5.2.3 Cluster Sampling

Sometimes it is cheaper to “cluster” the sample in some way e.g. by selecting
respondents from certain areas only, or certain time-periods only. (Nearly all
samples are in some sense “clustered” in time – although this is rarely taken into
account in the analysis.)

The function sample.cluster() provides the demonstration of cluster sam-
pling:

Usage

sample.cluster(pop = ceiling(10 * runif(10, 0.2, 1)),
size = 3, control = ani.control(interval = 0.2), ...)

Figure 5.5 is one possible result for cluster sampling.

Web page: http://r.yihui.name/stat/sampling_survey/cluster/

5.2.4 Systematic Sampling

Systematic Sampling is often used instead of random sampling. It is also called
an Nth name selection technique. After the required sample size has been
calculated, every Nth record is selected from a list of population members. As
long as the list does not contain any hidden order, this sampling method is

21

http://r.yihui.name/stat/sampling_survey/stratified/
http://r.yihui.name/stat/sampling_survey/cluster/

5.2. Sampling Survey Chapter 5. Statistical Animations Gallery

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●●

● ● ●

● ●

● ● ●

● ●

●

Figure 5.6: A possible result of systematic sampling: 12 points are sampled from
a population of 50 points. Please note that the point at (8, 5) is the starting
point!

as good as the random sampling method. Its only advantage over the random
sampling technique is simplicity. Systematic sampling is frequently used to
select a specified number of records from a computer file.

The function sample.system() provides the demonstration of systematic sam-
pling. The sample points with equal intervals are drawn out according to a
random starting point.

Usage

sample.system(nrow = 10, ncol = 10, size = 15,
control = ani.control(interval = 0.2), ...)

Figure 5.6 is one possible result for systematic sampling.

Web page: http://r.yihui.name/stat/sampling_survey/systematic/

5.2.5 CLT in Sampling Survey

TODO...

Central Limit Theorem in sampling survey for estimation and inference.

22

http://r.yihui.name/stat/sampling_survey/systematic/

5.3. Mathematical Statistics Chapter 5. Statistical Animations Gallery

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

●

●

●●

● ●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●●

●
●

●

Figure 5.7: The first iteration for K-Means cluster analysis.

5.3 Mathematical Statistics

5.3.1 Confidence Intervals

5.4 Linear Models

5.4.1 Subset Selection

5.5 Multivariate Statistics

5.5.1 K-Means Cluster Analysis

This algorithm has already been discussed in section 3.1.

Usage

kmeans.ani(x = matrix(runif(100), ncol = 2), centers = 2,
control = ani.control(interval = 2, nmax = 30), ...)

You may try several examples for yourself.

> x = matrix(runif(100), ncol = 2)

> kmeans.ani(x, centers = 2, interval = 1)

> x = matrix(runif(300), ncol = 2)

> kmeans.ani(x, centers = 6, interval = 0.5)

Figure 5.7 shows the first iteration in the K-Means algorithm: random centers
are selected in the left plot, then distances are computed to determine the cluster
membership; next we shall calculate the cluster centers again and repeat the

23

5.6. Nonparametric Statsitics Chapter 5. Statistical Animations Gallery

●

●

●

● ● ● ● ●

●

●

●

●

●
●

● ●
● ●

●

●
● ● ●

●

●

●
●

● ●
● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

0 10 20 30 40 50

−
1.

0
0.

0
1.

0

O
rig

in
al

 d
at

a

0 10 20 30 40 50

−
0.

5
0.

0
0.

5
1.

0

A
R

(1
)

co
ef

fic
ie

nt

●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ●

● ●
●

● ● ●

●

●
●

● ●
●

●
●

●
●

Figure 5.8: A general illustration for Moving Window Auto-Regression: the top
plot is the original data points, and the bottom plot shows the AR(1) coefficients
(with confidence intervals) changing along with time.

steps till the maximum number of iterations is reached or the cluster membership
is stable.

5.6 Nonparametric Statsitics

5.6.1 Kernal Density Estimation

5.7 Time Series Analysis

I’m not sure whether everyone knows the famous Hans Rosling presentation1

in which a large number of animations were displayed and the talk was a great
success (at least it seemed to be) due to the exciting moving pictures (surely
as well as his excellent skills at giving presentations). Hans just showed the
changing relationship of several variables over time.

5.7.1 Moving Window Auto-Regression

As described in Section 3.3, we may check the variation of some statistics over
time, and MVR is just one kind of such methods.

1It was named “Debunking third-world myths with the best stats you’ve ever seen”.

24

http://www.ted.com/index.php/talks/view/id/92

5.8. Computational Statistics Chapter 5. Statistical Animations Gallery

Usage

mwar.ani(x, k = 15, conf = 2, control = ani.control(), ...)

This function just fulfills a very naive idea about moving window regression
using rectangles to denote the“windows”and move them, and the corresponding
AR(1) coefficients as long as rough confidence intervals are computed for data
points inside the “windows” during the process of moving.

Figure 5.8 demonstrates a process of moving windows and computing AR(1)
coefficients for a random sample. Both the colors and locations of the above
“windows” are corresponding to the confidence intervals below.

You may try more examples like:

> mwar.ani(interval = 0.3)

> data(pageview)

> mwar.ani(pageview$visits, k = 30, interval = 0.2)

> ani.start()

> mwar.ani(interval = 0, width = 600, height = 500)

> ani.stop()

5.8 Computational Statistics

5.8.1 Gradient Descent Algorithm

5.9 Data Mining

5.10 Machine Learning

5.10.1 Bootstrapping

What I am to introduce here is rather superficial; for further knowledge about
bootstrapping, please refer to [2] for theories, and [7] can also be a simple guide
to implementations in S language.

The two critical points for bootstrapping are: (1) data generating mecha-
nism; (2) plug-in principle. The first tells us how to re-generate data from a
sample, while the latter point tells us how to make estimations. The idea of
bootstrapping is based on the method of resampling to a large degree. In the
real world, we only have one sample, say, n sample points x1, x2, . . . , xn, then
the problems we must face (when making inferences) are:

• How to guarantee the population distribution which we have assumed is
correct?

• How to derive the expression of the point estimate or confidence interval
of a parameter if the population distribution is tooooooo complicated?

25

5.10. Machine Learning Chapter 5. Statistical Animations Gallery

●

●

●

● ● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

5 10 15 20

0.
0

0.
4

0.
8

Demonstration of bootstrapping for i.i.d data
x

●

●

●

●

●

●

●

●

●

●

Distribution of bootstrap estimates

D
en

si
ty

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

0
1

2
3

4
5

Figure 5.9: Bootstrapping for i.i.d data.

• Or how can we obtain the distribution of a statistic when the population
distribution is complicated?

We have always been deriving mathematical formulae... for this statistic...
for that statistic... under perfect but unwarranted assumptions...

Why not re-generate some samples (resample the original sample with re-
placement) and re-compute the values of our statistic of interest? Then we can
get a series of estimations of a certain parameter and in a result, we are able
to make inferences based on these numbers using the plug-in principle, e.g. we
may compute the standard error of a parameter by compute the corresponding
standard error of that series of numbers (please do note the factual computa-
tion is not exactly so; read the references to learn the details), and estimate the
quantiles of a statistic just by computing the corresponding quantiles of that
series of numbers, etc. If you are confused by my description here, just keep on
to the below animation example.

The function boot.iid() is provided for bootstrapping i.i.d data since the
package version 0.1-2.

Usage

boot.iid(x = runif(20), statistic = mean, m = length(x),
control = ani.control(), ...)

We just resample m points from x for nmax times, and in each time we com-
pute the statistics of interest (e.g. mean, median, quantiles, etc). In the end,

26

5.10. Machine Learning Chapter 5. Statistical Animations Gallery

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Demonstration of Cross Validation

Sample index

S
am

pl
e

va
lu

e

Test Set

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●
●

●

●

Training Set

Figure 5.10: An illustration of 10-fold cross-validation.

the approximate distribution of the statistic is illustrated in a histogram with a
density line.

The blue points denote the orignial dataset, while the red points with (pos-
sible) leaves denote sample points being resampled; the number of leaves in the
sunflower scatter plot just means how many times these points are resampled,
as bootstrap samples with replacement.

Figure 5.9 is a demonstration of bootstrapping 20 random numbers following
U(0, 1) for the distribution of the sample mean. Here are some more examples:

> boot.iid()

> boot.iid(x = rchisq(15, 5), statistic = median)

> ani.start()

> boot.iid(saveANI = TRUE, width = 600, height = 500, interval = 0)

> ani.stop()

Web page: http://r.yihui.name/stat/machine_learning/bootstrapping/

5.10.2 k-fold / Leave-one-out Cross-validation

Cross-validation, sometimes called rotation estimation ([3]), is the statistical
practice of partitioning a sample of data into subsets such that the analysis is
initially performed on a single subset, while the other subset(s) are retained for
subsequent use in confirming and validating the initial analysis.

The initial subset of data is called the training set ; the other subset(s) are
called validation sets or testing sets.

The theory of cross-validation was inaugurated by Seymour Geisser. It is
important in guarding against testing hypotheses suggested by the data (“Type
III error”), especially where further samples are hazardous, costly or impossible
(uncomfortable science) to collect.

27

http://r.yihui.name/stat/machine_learning/bootstrapping/

5.10. Machine Learning Chapter 5. Statistical Animations Gallery

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

?

?

?

?

?

?

●

●

?

● first class

second class

training set

test set

?●

Figure 5.11: kNN algorithm in the 2D plane: gray dashed lines stand for “dis-
tances” so that neighbors can be decided; the red polygon means the k nearest
neighbors (15 in this example); at last let these neighbors vote for the classifi-
cation, and the symbol (classification) was changed according to the majority
vote. Points marked by question marks “?” are the remaining points in the test
set with unknown classifications yet.

The function cv.ani() provides an illustration for k-fold cross-validation.
Computation of the sizes of subsets is based on the function kfcv(). When k is
specified as length(x), the k-fold cross-validation will become “leave-one-out
cross-validation”.

Usage

cv.ani(x = runif(150), k = 10, control = ani.control(interval = 2,
nmax = 50), ...)

Figure 5.10 shows a possible partition of the whole data set into a training
set and test set (10-fold cross-validation). The test test can move from the first
part to the last part, and this is the base for animations.

5.10.3 k-Nearest Neighbor Classification

The k-nearest neighbor algorithm is amongst the simplest of all machine learn-
ing algorithms. It is a supervised learning algorithm where the result of new
instance query is classified based on majority of k-nearest neighbor category.
The purpose of this algorithm is to classify a new object based on attributes

28

5.10. Machine Learning Chapter 5. Statistical Animations Gallery

and training samples. The classifiers do not use any model to fit and only based
on memory. Given a query point, we find k number of objects or (training
points) closest to the query point. The classification is using majority vote
among the classification of the k objects. Any ties can be broken at random.
k-nearest neighbor algorithm used neighborhood classification as the prediction
value of the new query instance.

The function knn.ani() provides the animated demonstration for kNN algo-
rithm in the 2D case.

Usage

knn.ani(train, test, cl, k = 10, interact = FALSE,
control = ani.control(), ...)

You may either provide a test set or specify interact = TRUE so that you
can simply use mouse-click to decide the test set. Figure 5.11 is an intermediate
result of the whole classification process.

Acknowledgements

I’m grateful to Dr Paul Murrell for his instructions and suggestions on the initial
idea of my animation package. I’d like to thank Gregor Gorjanc for reminding
me of creating an RSS feed for my web site http://R.yihui.name.

29

http://www.stat.auckland.ac.nz/~paul/
http://R.yihui.name

Appendix A

Introduction to R

30

Appendix B

R Graphics

31

Appendix C

Misc Functions in animation

C.1 Functions for R

C.1.1 Tidy up the Source Code

For people who are lazy to type spaces and tabs in the source code, this simple
function tidy.source() might be of a little help, which mainly uses parse() to get
the parsed code.

Usage

tidy.source(file)

For example, this is the original (ugly) code:

pdf('kmeansframe.pdf',height=3)
par(mfrow=c(1,2),mar=c(2,2,0,1),cex.axis=.8,cex.main=1,ann=F)
x= matrix(runif(300), ncol = 2)
kmeans.ani(x,6,interval=0,nmax=1)
dev.off()

Proper spaces, tabs, and indents will be added after tidy.source() is used to
the file:

pdf("kmeansframe.pdf", height = 3)
par(mfrow = c(1, 2), mar = c(2, 2, 0, 1), cex.axis = 0.8,

cex.main = 1, ann = F)
x = matrix(runif(300), ncol = 2)
kmeans.ani(x, 6, interval = 0, nmax = 1)
dev.off()

32

C.2. Functions for Systems Chapter C. Misc Functions in animation

C.1.2 Generate R Definition File for Highlight

The default definition file for R in the software Highlight1 is somewhat incom-
plete, and this function highlight.def() is to dynamically generate such a file
according to packages in the search path.

Usage

highlight.def(file = "r.lang")

Just copy the output to the directory langDefs of Highlight, and you will
be able to convert your R code into other formats such as HTML, which is used
almost everywhere in http://R.yihui.name.

C.2 Functions for Systems

TODO

rename a sequence of files rename.seq()

C.3 Functions for the Web (HTML/XML/RSS)

Here are some functions related to web pages (HTML/XML/RSS):

C.3.1 Create RSS Feed from a CSV Data File

The function write.rss() can create an RSS feed given an appropriate data file;
I choose the CSV format because it’s relatively convenient to edit with other
software.

Usage

write.rss(file = "feed.xml", entry = "rss.csv", xmlver = "1.0",
rssver = "2.0", title = "What's New?",
link = "http://R.yihui.name",
description = "Animated Statistics Using R",
language = "en-us", copyright = "Copyright 2007, Yihui Xie",
pubDate = Sys.time(), lastBuildDate = Sys.time(),
docs = "http://R.yihui.name",
generator = "Function write.rss() in R package animation",
managingEditor = "xieyihui[at]gmail.com",
webMaster = "xieyihui[at]gmail.com",
maxitem = 10, ...)

1Highlight is a freeware for converting source code to formatted text with syntax highlight-
ing by André Simon; it is released under the terms of the GNU GPL license. It supports more
than 100 programming languages, including R.

33

http://www.andre-simon.de/
http://R.yihui.name

C.3. Functions for the Web Chapter C. Misc Functions in animation

title link author description pubDate guid category
...

Table C.1: Common elements of an item in an RSS feed.

The structure of the CSV data file is just like Table C.1. Note the order of
items in the CSV file: newer items are added to the end of the file. But this order
will be reversed in the RSS file! Just refer to http://cyber.law.harvard.edu/
rss/rss.html for the specification of an RSS file. Here is a simple example:

> write.rss(entry = system.file("js", "rss.csv", package = "animation"))

The result might be like this:

<?xml version="1.0"?>
<rss version="2.0">
<channel>
<title>What's New in 'Animated Statistics Using R'?</title>
<link>http://R.yihui.name</link>
<description>Animated Statistics Using R</description>
<language>en-us</language>
<pubDate>Mon, 17 Dec 2007 13:19:15 GMT</pubDate>
<lastBuildDate>Mon, 17 Dec 2007 13:19:15 GMT</lastBuildDate>
<docs>http://R.yihui.name</docs>
<generator>write.rss() in R package animation</generator>
<managingEditor>xieyihui[at]gmail.com</managingEditor>
<webMaster>xieyihui[at]gmail.com</webMaster>
<item>
<title>The Way of Animation Found</title>
<link>http://r.yihui.name/misc/java.htm</link>
<author>Yihui Xie, xieyihui[at]gmail.com</author>
<description>
<![CDATA[
<p>I spent really a lot of time on searching for a proper
way for animations. After
several trials, I found
JavaScript could help me.
<acronym title="The HTML Document Object Model">HTML DOM
</acronym> is really important. </p>
<p>Cheers! Users won't need R or any other special programs
to see my animations now -- just a browser supporting
JavaScript is enough. </p>
]]>
</description>
<pubDate>Sun, 14 Oct 2007 00:00:00 GMT</pubDate>
<guid>2</guid>
<category>Technique</category>

</item>
<item>

34

http://cyber.law.harvard.edu/rss/rss.html
http://cyber.law.harvard.edu/rss/rss.html

C.3. Functions for the Web Chapter C. Misc Functions in animation

<title>Creation of This Website</title>
<link>http://r.yihui.name/news/index.htm</link>
<author>Yihui Xie, xieyihui[at]gmail.com</author>
<description>
<![CDATA[
<p>Personally I don't like those complicated mathematical
theories... And I believe many people hold the same opinion
with me. I want to find some simpler approaches to learn
statistics. That's my original motivation to create such a
website.</p>
<p>Sure, I'm too lazy. Simulation and graphics alone cannot
contribute to mathematics and statistics directly. So, we
should face the reality anyway... We should prove
the effect of gradient descent algorithm X_{n+1}
= X_n - γF'(X_n) instead of
just giving an illustration. </p>
]]>
</description>
<pubDate>Sat, 06 Oct 2007 00:00:00 GMT</pubDate>
<guid>1</guid>
<category>Web</category>

</item>
</channel>

</rss>

35

Bibliography

[1] Rudolf Beran. The impact of the bootstrap on statistical algorithms and
theory. Statistical Science, 18(2):175–184, 2003.

[2] Bradley Efron and Robert Tibshirani. An Introduction to the Bootstrap.
Chapman & Hall/CRC, 1994.

[3] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estima-
tion and model selection. Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, 2(12):1137–1143, 1995.

[4] Paul Murrell. R Graphics. Chapman & Hall/CRC, 2005.

[5] R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2007.
ISBN 3-900051-07-0.

[6] Robert A. Meyer, Jr. Estimating coefficients that change over time. Inter-
national Economic Review, 13(3):705–710, 1972.

[7] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer,
4th edition, 2002.

36

http://www1.cs.columbia.edu/ids/oldwebsite_before_12_2005/library/accest.ps
http://www1.cs.columbia.edu/ids/oldwebsite_before_12_2005/library/accest.ps

	1 Introduction
	2 Tools for Animation
	2.1 R Graphical Devices
	2.2 HTML & JavaScript
	2.3 Other Tools

	3 Statistics and Animations
	3.1 Iterative Algorithms
	3.2 Random Numbers
	3.3 Dynamic Trends

	4 Package animation Overview
	5 Statistical Animations Gallery
	5.1 Probability Theory
	5.1.1 Probability in Flipping Coins
	5.1.2 Buffon's Needle
	5.1.3 Brownian Motion
	5.1.4 Law of Large Numbers
	5.1.5 Monte-Carlo Simulation for Computing Areas
	5.1.6 Central Limit Theorem

	5.2 Sampling Survey
	5.2.1 Simple Random Sampling
	5.2.2 Stratified Sampling
	5.2.3 Cluster Sampling
	5.2.4 Systematic Sampling
	5.2.5 CLT in Sampling Survey

	5.3 Mathematical Statistics
	5.3.1 Confidence Intervals

	5.4 Linear Models
	5.4.1 Subset Selection

	5.5 Multivariate Statistics
	5.5.1 K-Means Cluster Analysis

	5.6 Nonparametric Statsitics
	5.6.1 Kernal Density Estimation

	5.7 Time Series Analysis
	5.7.1 Moving Window Auto-Regression

	5.8 Computational Statistics
	5.8.1 Gradient Descent Algorithm

	5.9 Data Mining
	5.10 Machine Learning
	5.10.1 Bootstrapping
	5.10.2 k-fold Cross-Validation
	5.10.3 k-Nearest Neighbor Classification

	A Introduction to R
	B R Graphics
	C Misc Functions in animation
	C.1 Functions for R
	C.1.1 Tidy up the Source Code
	C.1.2 Generate R Definition File for Highlight

	C.2 Functions for Systems
	C.3 Functions for the Web
	C.3.1 Create RSS Feed from a CSV Data File

