The bnclassify package

Bojan Mihaljevic, Concha Bielza, Pedro Larranaga

2015-07-27
Contents
1 Introduction 1
2 An example 2
3 Structure learning 4
3.1 The Chow-Liu algorithm 4
3.2 Wrapper e e e e e 6
4 Parameter estimation 8
4.1 Parameter weighting 9
5 Predicting 9
5.1 O probabilities L 9
5.2 Incompletedata. L e 10
6 Cross-validation 11
7 Miscelaneous 11
8 Interface to other packages 12
8.1 Selecting features with mlr L L 12
8.2 Operate with Bayesian networks with gRain and bnlearn 12
9 Runtime 13

1 Introduction

The bnclassify package implements algorithms for learning discrete Bayesian network classifiers
from data. It handles both incomplete and complete data, although it is much better suited for the
latter. Prediction with incomplete data is notably slower, rendering the wrapper learning algorithms
infeasible in some cases, whereas parameter estimation is no longer that of maximum likelihood.

We begin with an example showing the main functionalities and then go into some detail with
structure and parameter learning, prediction, cross-validation, and how to leverage related R
packages.

2 An example

This sections shows some of the main functionalities.

First, we load the package and an included data set, car.

library(bnclassify)

data(car)

summary (car)

#> buying maint doors persons lug_boot safety
#> low :432 high :432 2 432 2 576 big :576 high:576
#> med :432 low :432 3 1432 4 :576 med :576 low :576
#> high :432 med :432 4 :432 more:576 small:576 med :576
#> whigh:432 wvhigh:432 5more:432

#> class

#> wunacc:1210
#> acc : 384
#> good : 69
#> wgood: 65

Now, we the learn a naive Bayes from the car data set.

a <- nb('class', car)

a

#>

#> Bayesian network classtifier
#>

#> class wvariable: class
#> num. features: 6

arcs: 6

#> learning algorithm: nb

nb has returned a bnc_dag object, which contains just the network structure, without any parameters.

We can query this object for its features, it factorization type (e.g., whether is a naive Bayes), or
plot its network structure.

features(a)

#> [1] "buying” "maint"” "doors" "persons” "lug_boot" "safety"
is_nb(a)

#> [1] TRUE

plot(a)

““@‘

For more functions to query a bnc_dag object, see ?bnc_dag_object.

We need to learn the parameters before we can classify unseen data. We do this with the 1p function.

b <- 1lp(a, car, smooth = 1)

1p returns a fully specified Bayesian network, an object of class bnc_bn.

We can get the CPT of each variable, including the class, with params. So, the class prior is

params (b) $class

#> class

#> unacc acc good vgood
#> 0.69919169 0.22228637 0.04041570 0.03810624

where is the CPT for buying is

params (b) $class

#> class

#> unacc acc good vgood
#> 0.69919169 0.22228637 0.04041570 0.03810624

For more functions that can be called on a bnc_bn object see ?bnc_bn_object

Once we have fit parameters, we can predict the class or class posterior of unseen data (although in
this example it is the data we used to learn the model).

p <~ predict(b, car, prob = TRUE)

head (p)

#> unacc acc good vgood
#> [1,] 0.9999978 2.170707e-06 6.993227e-08 2.896447e-09
#> [2,] 0.9993626 6.328439e-04 4.505620e-06 4.665331e-09
#> [3,] 0.9990724 9.227497e-04 4.495399e-06 3.964044e-07
#> [4,] 0.9999966 3.196080e-06 9.119657e-08 8.642164e-08
#> [5,] 0.9990625 9.315006e-04 5.873884e-06 1.391584e-07

#> [6,] 0.9986243 1.358020e-03 5.859692e-06 1.182227e-05
p <- predict(b, car)

head (p)

#> [1] unacc unacc unacc unacc uUnacc unacc

#> Levels: unacc acc good vgood

We can estimate the classifier’s predictive accuracy on the training set

accuracy(p, car$class)
#> [1] 0.8709491

or with cross-validation.

cv(b, car, k = 10, dag = FALSE)
#> [1] 0.8581917

3 Structure learning

This section briefly lists the available structure learning algorithms. For additional information see
?bnclassify and the documentation of each particular function regarding the available options.

3.1 The Chow-Liu algorithm

For some network scores, the Chow-Liu algorithm can efficiently (time quadratic in the number of
features) learn optimal one-dependence estimators (i.e., with each feature conditioned on at most
one feature). For three such scores, the log-likelihood, the BIC and the AIC, the tan_cl function
learns the Bayesian network classifier using the Chow-Liu algorithm.

We set the score with the score argument.

t <- tan_cl(class = 'class', dataset = car)
ta <- tan_cl(class = 'class', dataset = car, score = 'aic')
plot(t)

lug_boot

plot(ta)

5]

lug_boot

We can check whether the obtained structures are indeed one-dependence estimators.

is_ode(t)

#> [1] TRUE
is_nb(t)

#> [1] FALSE
is_ode(ta)
#> [1] TRUE
is_nb(ta)

#> [1] FALSE

Note that the BIC and AIC scores may render a forest instead of a tree in the features subgraph.
Log-likelihood, on the other hand, always returns the maximal tree-like network.

See ?tan_chowliu for more information on the Chow-Liu algorithm for Bayesian network classifiers.

3.2 Wrapper

Wrapper learners search the space of structures and select the one that optimizes predictive
performance. This can yield accurate classifiers but is more time consuming than the Chow-Liu
algorithm. Note that this is especially true if the data contains missing values.

Below are examples of four wrapper learning algorithms. Two of them produce one-dependence
estimators (tan_hc and tan_hcsp) whereas two produce semi-naive Bayes' structures.

See?wrapper* for more information.

The one-dependence estimators:

set.seed(0)

a <- tan_hc('class', car, k = 10, epsilon = 0, smooth = 1)

b <- tan_hcsp('class', car, k = 10, epsilon = 0, smooth = 1)
is_ode(a)

#> [1] TRUE

is_ode(b)

#> [1] TRUE

plot(a)

lug_boot

We can check whether they effectively are one-dependence estimators

is_ode(a)
#> [1] TRUE
is_ode(b)
#> [1] TRUE

The semi-naive structure learners:

c <- bsej('class', car, k = 10, epsilon = 0, smooth
d <- fssj('class', car, k 10, epsilon = 0, smooth
is_ode(c)

#> [1] FALSE

is_ode(d)

#> [1] TRUE

is_semi_naive(c)

#> [1] TRUE

is_semi_naive(d)

#> [1] TRUE

plot(c)

b
D)

lug_boot

4 Parameter estimation

You may use the bnc() function as shorthand for the chained application of structure learning and
1p(). Provide the name of the learning function (e.g., tan_cl) as first argument.

a <- tan_cl('class', car, score = 'aic')
a <- 1lp(a, car, smooth = 1)
b <- bnc('tan_cl', 'class', car, smooth = 1, dag_args = list(score = 'aic'))

identical(a, b)
#> [1] TRUE

4.1 Parameter weighting

For naive Bayes, one can combine maximum likelihood and Bayesian parameter estimation with
posterior feature parameter weighting. This involves exponentiating the features’ CPT entries by a
value between 0 and 1 and can alleviate some of the negative effects of redundancy. See 7awnb for
more information.

We use 1pawnb instead of 1lp.

a <- nb('class', car)

b <- 1lp(a, car, smooth = 1)

¢ <- lpawnb(a, car, smooth = 1, trees = 20, bootstrap_size = 0.5)
sum(abs (params (b) $safety - params(c)$safety))

#> [1] 0.1308008

While this is intented for naive Bayes you can use it with other classifiers.

t <- tan_cl('class', car)
t <- 1lp(t, dataset = car, smooth = 1)
ta <- lpawnb(t, car, smooth = 1, trees = 10, bootstrap_size = 0.5)

params (t)$buying

#> class

#> buying Unacc acc good vgood
#> low 0.21334432 0.23195876 0.64383562 0.57971014
#> med 0.22158155 0.29896907 0.32876712 0.39130435
#> high 0.26771005 0.28092784 0.01369863 0.01449275
#> whigh 0.29736409 0.18814433 0.01369863 0.01449275
params (ta) $buying

#> class

#> buying unacc acc good vgood
#> low 0.22865173 0.24033379 0.52770941 0.49147055
#> med 0.23370788 0.27825807 0.35799258 0.39169316
#> high 0.26067042 0.26843623 0.05714901 0.05841814
#> whigh 0.27696997 0.21297192 0.05714901 0.05841814

5 Predicting

5.1 0 probabilities

If for some instance there is 0 probability for each class, then a uniform distribution over the classes
is returned (not the class prior).

nb <- nb('class', car)

nb <- 1lp(nb, carlc(1, 700),], smooth = 0)

predict(object = nb, newdata = car[1000:1001,], prob = TRUE)
#> unacc acc good vgood

#> [1,] 0.25 0.25 0.25 0.25

#> [2,] 0.25 0.25 0.25 0.25

5.2 Incomplete data

For instances that have missing (NA) values, bnclassify uses the gRain package to compute its
class posterior, since gRain implements exact inference for Bayesian networks. This is much slower
than the prediction for complete data implemented in bnclassify.

library (microbenchmark)
nb <- nb('class', car)
nb <- 1lp(nb, car, smooth = 0)
gr <- as_grain(nb)
microbenchmark(predict(object = nb, newdata = car, prob = TRUE))
#> Unit: milliseconds
#> expr min lqg mean
#> predict(object = nb, newdata = car, prob = TRUE) 6.347417 7.0568 9.08768
#> median uq maz meval
#> 7.41699 7.993295 44.79595 100
microbenchmark(gRain: :predict.grain(gr, 'class', newdata = car),
times = 1)
#> Unit: seconds

#> expr min lg
#> gRain::predict.grain(gr, "class", newdata = car) 4.187424 4.187424
#> mean median uq maz neval
#> 4.187424 4.187T424 4.187424 4.187424 1

With even a single missing value in the data set, the prediction can become notably slower. This is
relevant when performing cross-validation, such as within wrapper learning.

a <- bnc('nb', 'class', car, smooth = 1)

car_cv <- car[1:300, 1]

microbenchmark: :microbenchmark(cv(a, car_cv, k = 2, dag = FALSE), times = 3el)
#> Unit: milliseconds

#> expr min lg mean median

#> cv(a, car_cv, k = 2, dag = FALSE) 17.1447 18.36256 23.58018 19.29741

#> uq maz neval

#> 20.29934 79.96117 30

car_cv[1, 4] <- NA

microbenchmark: :microbenchmark(cv(a, car_cv, k = 2, dag = FALSE), times = 3el)
#> Unit: milliseconds

10

#> expr min lqg mean median
#> cv(a, car_cv, k = 2, dag = FALSE) 50.47248 52.12184 63.54114 55.40608
#> uq maz neval
#> 84.26659 114.5849 30

6 Cross-validation

To perform cross valiation, pass a list of classifiers (or a single one) to the ‘cv’ function. Each
classifier may be a bnc_dag or a bnc_bn object.

In the example below, we compare a naive Bayes, a weighted naive Bayes, and a one-dependence
estimators with 3-fold cross-validation. We keep the structures fixed (dag = FALSE) and only learn
parameters from the training sets.

data(voting)

dag <- nb('Class', voting)

a <- 1lp(dag, voting, smooth = 1)

b <- lpawnb(dag, voting, smooth = 1, trees = 40, bootstrap_size = 0.5)

¢ <= bnc('tan_cl', 'Class', voting, smooth = 1)
r <- cv(list(a, b, c), voting, k = 3, dag = FALSE)
r

#> [1] 0.9034483 0.9494253 0.9517241

If we wanted to also perform structure learning, we would need to set dag = TRUE (this would have
only affected the one-dependence estimator, since naive Bayes’ structure is fixed).

7 Miscelaneous

You can compute the log-likelihood of a network with compute_11.

a <- bnc('tan_cl', 'class', car, smooth = 0.01)
b <- bnc('nb', 'class', car, smooth = 0.01)
compute_11(a, car)

#> [1] -13250.7

compute_11(b, car)

#> [1] -13503.8/

Also the (conditional) mutual information between two variables. Mutual information of maint and
buying:

cmi('maint', 'buying', car)
#> [1] 0

and of maint and buying conditioned to class:

11

cmi('maint', 'buying', car, 'class')
#> [1] 0.07199921

8 Interface to other packages

You can convert a bnclassify object to bnlearn, gRain and mlr objects and use functionalities
from those packages.

8.1 Selecting features with mlr

Some of the implemented algorithms, such as the £ssj and bsej perform implicit feature selection.
However, ‘outer’ loop of feature selection is not within the scope of bnclassify and best done with
another package such as mlr.

Assuming you have mlr installed, call as_mlr () to convert a bnc_bn to an mlr learner. This allows
you to use mlr functionalities: selecting features, benchmarking, etc.

Set up a mlr task

library(mlr)

#> Loading required package: BBmisc

#> Loading required package: ggplot2

#> Loading required package: ParamHelpers

ct <- mlr::makeClassifTask(id = "compare", data = car, target = 'class',
fixup.data = "no", check.data = FALSE)

Learn a naive Bayes and convert to mlr learner

nf <- 1p(ab('class', car), car, 1)
bnl <- as_mlr(nf, dag = TRUE)

Then use wrapper feature selection

ctrl = makeFeatSelControlSequential(alpha = O, method = "sfs")

rdesc = makeResampleDesc(method = "Holdout")

sfeats = selectFeatures(learner bnl, task = ct, resampling = rdesc,
control = ctrl, show.info = FALSE)

sfeats$x
#> [1] "buying”
detach('package:mlr')

8.2 Operate with Bayesian networks with gRain and bnlearn
gRbase and bnlearn provide multiple functionalities for querying and manipulating Bayesian

networks. We can convert a bnc_bn to a gRain via as_grain(). From the gRain object you can
then obtain a bnlearn one (see bnlearn docs).

12

Using as_grain:

a <- 1lp(ab('class', car), car, smooth = 1)
g <- as_grain(a)

gRain: :querygrain.grain(g) $buying

#> buying

#> low med high vhigh
#> 0.2488415 0.2495832 0.2507330 0.2508423

9 Runtime

The wrapper algorithms can be computationlly intensive, especially with large data sets. I get the
following times for bsej and tan_hc on my Windows 2.80 GHz, 16 GB RAM machine.

microbenchmark: :microbenchmark (
bsej = {b <- bsej('class', car, k = 10, epsilon = 0)} ,
tan_hc = {t <- b <- tan_hc('class', car, k = 10, epsilon = 0)},
times = 10)

#> Unit: seconds

#> expr min lq mean median uq maz neval
#> bsej 2.578518 2.720906 3.188944 3.341617 3.389287 3.677820 10
#> tan_hc 1.968562 2.201919 2.238606 2.246080 2.361516 2.420327 10

10-fold cross-validation of these two classifiers should take rougly 10 times more than learning them
the full data set.

microbenchmark: :microbenchmark(
cv(list(b, t), car, k = 10, dag = TRUE, smooth = 0.01), times = 10)

#> Unit: seconds

#> expr min lg
#> cvu(list(b, t), car, k = 10, dag = TRUE, smooth = 0.01) 49.64341 50.6362/
#> mean median uq maz neval

#> 51.28273 51.456354 51.96889 52.2837, 10

Thus, it takes about a minute to cross-validate these two classifiers on the car data (6 features, 1728
instances).

Note that non-wrapper classifiers are much faster.
nb <- nb('class', car)
tcl <- tan_cl('class', car)

microbenchmark: :microbenchmark (
cv(list(nb, tcl), car, k = 10, dag = TRUE, smooth = 0.01), times = 10)

13

#> Untt: milliseconds

#>
#> cvu(list(nb, tcl), car, k = 10, dag = TRUE, smooth = 0
#> lg mean median uq maz meval

#> 712.8001 721.6526 T720.6743 T24.6895 737.8496 10

Let us a look at a data set with 36 features.
library(mlbench)

data(Soybean)
dim(Soybean)

#> [1] 683 36

Inference with incomplete data is slow. Thus, we remove incomplete

soy_complete <- na.omit(Soybean)

bsej takes almost 10 minutes.
microbenchmark: :microbenchmark(
b <- bsej('Class', soy_complete, k = 10, epsilon = 0),

times = 1)

#> Unit: seconds

#> expr
#> b <- bsej("Class", soy_complete, k = 10, epsilon = 0)
#> mean median uq maz neval
#> 569.6894 569.6894 569.6894 569.6894 1

expr min
.01) 709.4578

instances.

min lg
569.6894 569.6894

We could expect a 10-fold cross-validation to take around 100 minutes. Note that we have a nested
10 x 10 cross-validation, though. Decreasing k& would decrease runtime and increasing epsilon would

likely do the same.

14

	Introduction
	An example
	Structure learning
	The Chow-Liu algorithm
	Wrapper

	Parameter estimation
	Parameter weighting

	Predicting
	0 probabilities
	Incomplete data

	Cross-validation
	Miscelaneous
	Interface to other packages
	Selecting features with mlr
	Operate with Bayesian networks with gRain and bnlearn

	Runtime

