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Abstract

The brms package implements Bayesian generalized linear mixed models in R using the
probabilistic programming language Stan. A wide range of distributions and link functions
are supported, allowing to fit – among others – linear, robust linear, binomial, Poisson,
survival, and ordinal models. Further modeling options include multiple grouping factors
each with multiple random effects, autocorrelation of the response variable, user defined
covariance structures, censored data, as well as meta-analytic standard errors. Prior
specifications are flexible and explicitly encourage users to apply prior distributions that
actually reflect their beliefs. In addition, model fit can easily be assessed and compared
with the Watanabe-Akaike-Information Criterion and leave-one-out cross-validation.
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1. Introduction

Generalized linear mixed models (GLMMs) offer a great flexibility for researchers across
sciences (Brown and Prescott 2015; Pinheiro and Bates 2006; Demidenko 2013) and it is
not surprising that many packages for R (R Core Team 2015) have been developed to fit
GLMMs. Possibly the most widely known package in this area is lme4 (Bates, Maechler,
Bolker, and Walker 2014), which uses maximum likelihood or restricted maximum likelihood
methods for model fitting. Although alternative Bayesian methods have several advantages
over frequentist approaches (e.g., the possibility of explicitly incorporating prior knowledge
about parameters into the model), their practical use was limited for a long time because
the posterior distributions of more complex models (such as GLMMs) could not be found
analytically. Markov chain Monte Carlo (MCMC) algorithms allowing to draw random sam-
ples from the posterior were not available or too time-consuming. In the last few decades,
however, this has changed with the development of new algorithms and the rapid increase of
general computing power. Today, several software packages implement these techniques, for
instance WinBugs (Lunn, Thomas, Best, and Spiegelhalter 2000; Spiegelhalter, Thomas, Best,
and Lunn 2003), OpenBugs (Spiegelhalter, Thomas, Best, and Lunn 2007), JAGS (Plummer
2013), MCMCglmm (Hadfield 2010) and Stan (Stan Development Team 2015a) to mention
only a few. With the exception of the latter one, all of these programs are primarily using
combinations of Metropolis-Hastings updates (Metropolis, Rosenbluth, Rosenbluth, Teller,
and Teller 1953; Hastings 1970) and Gibbs-sampling (Geman and Geman 1984; Gelfand and
Smith 1990), sometimes also coupled with slice-sampling (Damien, Wakefield, and Walker
1999; Neal 2003). While being relatively easy to implement, convergence is usually rather
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slow for high-dimensional models with correlated parameters (Neal 2011; Hoffman and Gel-
man 2014; Gelman, Carlin, Stern, and Rubin 2014). Furthermore, Gibbs-sampling requires
priors to be conjugate to the likelihood of parameters in order to work efficiently (Gelman
et al. 2014), thus reducing the freedom of the researcher in choosing a prior that reflects his
or her beliefs. In contrast, Stan implements Hamiltonian Monte Carlo (Duane, Kennedy,
Pendleton, and Roweth 1987; Neal 2011) and its extension, the No-U-Turn Sampler (NUTS)
(Hoffman and Gelman 2014). These algorithms converge much more quickly especially for
high-dimensional models regardless of whether the priors are conjugate or not (Hoffman and
Gelman 2014).

Similar to software packages like WinBugs, Stan comes with its own programming language
allowing for great modeling flexibility (c.f. Stan Development Team, 2015b). Many researchers
may still hesitate to use Stan directly, as every model has to be written, debugged and possibly
also optimized. This may be a time taking and error prone process even for researchers familiar
with Bayesian inference. The package brms, presented in this paper, aims at closing this gap
(at least for GLMMs) allowing the user to benefit from the merits of Stan only by using simple,
lme4-like formula syntax. brms supports a wide range of distributions and link functions,
allows for multiple grouping factors each with multiple random effects, autocorrelation of the
response variable, user defined covariance structures, as well as flexible and explicit prior
specifications.

The purpose of the present article is to provide a general overview of the brms package (version
0.5.0). We begin by explaining the underlying structure of GLMMs. Next, the software is
introduced in detail using recurrence times of infection in kidney patients (McGilchrist and
Aisbett 1991) and ratings of inhaler instructions (Ezzet and Whitehead 1991) as examples.
We end by comparing brms to other R packages implementing GLMMs and describe future
plans for extending the package.

2. Model description

The core of every GLMM is the prediction of the response y through the linear combination
η of fixed and random effects predictors transformed by the inverse link function f assuming
a certain distribution D for y. We write

yi ∼ D(f(ηi), θ)

to stress the dependency on the ith data point. In many R packages, D is also called the
‘family’ and we will use this term in the following. The parameter θ describes additional
family specific parameters that typically do not vary across data points, such as the standard
deviation σ in normal models or the shape α in Gamma or negative binomial models. The
linear predictor can generally be written as

η = Xβ + Zu

where X,Z are the fixed and random effects design matrices respectively and β, u the cor-
responding fixed and random effects. The design matrices X and Z as well as y make up
the data, whereas β, u, and θ are the model parameters being estimated. Except for linear
models, we do not incorporate an additional error term for every observation by default. If
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desired, such an error term can always be modeled using a random effect with as many levels
as observations in the data.

2.1. Prior distributions

Fixed effects

In brms, fixed effects are not restricted to have normal priors. Instead, every fixed effect
can have every one-dimensional prior implemented in Stan, for instance uniform, Cauchy or
even Gamma priors. As a negative side effect of this flexibility, correlations between fixed
effects cannot be modeled as parameters. If desired, point estimates of the correlations can
be obtained after sampling has been done. By default, fixed effects have an improper flat
prior over the reals.

Random effects

The random effects u are assumed to come from a multivariate normal distribution with mean
zero and unknown covariance matrix Σ:

u ∼ N(0,Σ)

As it is generally the case, covariances between random effects of different grouping factors
are assumed to be zero. This implies that Z and u can be split up into several matrices Zk

and random effects uk, where k indexes grouping factors, so that the model can be simplified
to

uk ∼ N(0,Σk)

Usually, but not always, we can also assume random effects associated with different levels
(indexed by j) of the same grouping factor to be independent leading to

ukj ∼ N(0, Vk)

The covariance matrices Vk are modeled as parameters. In most packages, an Inverse-Wishert
distribution is used as prior for Vk. This is mostly because its conjugacy leads to good
properties of Gibbs-Samplers (Gelman et al. 2014). However, there are good arguments
against the Inverse-Wishart prior (Natarajan and Kass 2000; Kass and Natarajan 2006). The
NUTS-Sampler implemented in Stan does not require priors to be conjugate. This advantage
is utilized in brms: Vk is parameterized in terms of a correlation matrix Ωk and a vector of
standard deviations σk through

Vk = σTk Ωkσk

Priors are then specified for the parameters on the right hand side of the equation. For Ωk,
we use the LKJ-Correlation prior with parameter ζ > 0 by Lewandowski, Kurowicka, and Joe
(2009)1:

Ωk ∼ LKJ(ζ)

If ζ = 1 (the default in brms) the density is uniform over correlation matrices of the respective
dimension. If ζ > 1, non-zero correlations become less likely, whereas 0 < ζ < 1 results in

1Internally, the Cholesky factor of the correlation matrix is used, as it more efficient and numerically stable.
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higher probabilities for non-zero correlations. For every element of σk, any prior can be applied
that is defined on the non-negative reals only. As default in brms we use a half Cauchy prior
following the recommendations of Gelman (2006).

Sometimes – for instance when modeling pedigrees – different levels of the same grouping
factor cannot be assumed to be independent. In this case, the covariance matrix of uk becomes

Σk = Vk ⊗Ak

where Ak is the known covariance matrix between levels and ⊗ is the Kronecker product.

Family specific parameters

For some families, additional parameters need to be estimated. In the current section, we only
name the most important ones. Normal, Student and Cauchy distributions need the parameter
σ to account for residual error variance. By default, σ has a half Cauchy prior. Furthermore,
Student’s distributions needs the parameter ν representing the degrees of freedom. By default,
ν has a wide proper flat prior over positive values. Technically, it would be more appropriate
to use an improper flat prior as Student’s distribution tends to the normal distribution as
ν →∞. However, using such a prior does often lead to bad convergence so that a wide proper
prior is used instead. Gamma and Weibull distributions need the shape parameter α that has
a wide Gamma prior by default.

3. Parameter estimation

The brms package does not fit models itself but uses Stan on the back-end. Accordingly, all
samplers implemented in Stan can be used to fit brms models. Currently, these are the static
Hamiltonien Monte-Carlo (HMC) Sampler sometimes also referred to as Hybrid Monte-Carlo
(Neal 2011, 2003; Duane et al. 1987) and its extension the No-U-Turn Sampler (NUTS) by
Hoffman and Gelman (2014). HMC like algorithms produce samples, which are much less
autocorrelated than those of other samplers such as the random-walk Metropolis algorithm
(Hoffman and Gelman 2014; Creutz 1988). The main drawback of this increased efficiency
is the need to calculate the gradient of the log-posterior, which can be automated using
algorithmic differentiation (Griewank and Walther 2008) but is still a time taking process for
more complex models. Thus, using HMC leads to higher quality samples but takes more time
per sample than other algorithms typically applied. Another drawback of HMC is the need
to pre-specify at least two parameters, which are both critical for the performance of HMC.
The NUTS Sampler allows to set these parameters automatically thus eliminating the need
for any hand-tuning, while still being at least as efficient as a well tuned HMC (Hoffman and
Gelman 2014). For more details on the sampling algorithms applied in Stan, see the Stan
user’s manual (Stan Development Team 2015b) as well as Hoffman and Gelman (2014).

Despite the estimation of model parameters, brms allows to draw samples from the posterior
predictive distribution as well as from the pointwise log-likelihood. Both can be used to
assess model fit. The former allows a comparison between the actual response y and the
response ŷ predicted by the model. The pointwise log-likelihood can be used, among others, to
calculate the Watanabe-Akaike information criterion (WAIC) proposed by Watanabe (2010)
and leave-one-out cross-validation (LOO; Gelfand, Dey, and Chang 1992; Vehtari, Gelman,
and Gabry 2015a; see also Ionides 2008) allow for comparing different models applied to the
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same data (lower WAICs and LOOs indicate better model fit). The WAIC can be viewed
as an improvement of the popular deviance information criterion (DIC), which has been
criticized by several authors (Vehtari et al. 2015a; Plummer 2008; van der Linde 2005; see
also the discussion at the end of the original DIC paper by Spiegelhalter, Best, Carlin, and
Van Der Linde 2002) in part because of problems arising from fact that the DIC is only a
point estimate. In brms, WAIC and LOO are implemented using the loo package (Vehtari,
Gelman, and Gabry 2015b) also following the recommendations of Vehtari et al. (2015a).

4. Software

The brms package provides functions for fitting GLMMs using Stan for full Bayesian inference.
To install the latest release version of brms from CRAN, type install.packages("brms")

within R. The current developmental version can be downloaded from GitHub via

library(devtools)

install_github("paul-buerkner/brms")

Additionally, a C++ compiler is required. This is because brms internally creates Stan code,
which is translated to C++ and compiled afterwards. The program Rtools (available on
https://cran.r-project.org/bin/windows/Rtools) comes with a C++ compiler for Win-
dows2. On OS X, one should use Xcode from the App Store. To check whether the compiler
can be called within R, run system("g++ -v") when using Rtools or system("clang++ -v")

when using Xcode. If no warning occurs and a few lines of hardly readable system code are
printed out, the compiler should work correctly. For more detailed instructions on how to
get the compilers running, see the prerequisites section on https://github.com/stan-dev/

rstan/wiki/RStan-Getting-Started.

4.1. A worked example

In the following, we use an example about the recurrence time of an infection in kidney
patients initially published by McGilchrist and Aisbett (1991). The data set consists of 76
entries of 7 variables:

> library("brms")

> data("kidney")

> head(kidney, n = 3)

time censored patient recur age sex disease

1 8 0 1 1 28 male other

2 23 0 2 1 48 female GN

3 22 0 3 1 32 male other

Variable time represents the recurrence time of the infection, censored indicates if time is
right censored (1) or not censored (0), variable patient is the patient id, and recur indicates
if it is the first or second recurrence in that patient. Finally, variables age, sex, and disease

make up the predictors.

2During the installation process, there is an option to change the system PATH. Please make sure to check
this options, because otherwise Rtools will not be available within R.

https://cran.r-project.org/bin/windows/Rtools
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
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4.2. Fitting models with brms

The core of the brms package is the brm function and we will explain its argument structure
using the example above. Suppose we want to predict the (possibly censored) recurrence time
using a log-normal model with a random intercept and a random slope for age nested within
patients. Then, we may use the following code:

fit1 <- brm(formula = time | cens(censored) ~ age + sex + disease

+ (1 + age|patient),

data = kidney, family = c("gaussian", "log"),

prior = c(set_prior("normal(0,10)", class = "b"),

set_prior("cauchy(0,2)", class = "sd"),

set_prior("lkj(2)", class = "cor")),

n.warmup = 500, n.iter = 2000, n.chains = 2)

4.3. formula: Information on the response, fixed and random effects

Without doubt, formula is the most complicated argument, as it contains information on the
response variable, fixed effects, and random effects at the same time. Everything before the
∼ sign relates to the response part of formula. In the usual and most simple case, this is
just one variable name (e.g., time). However, to incorporate additional information about
the response, one can add one or more terms of the form | fun(variable). fun may be
one of a few functions defined internally in brms and variable corresponds to a variable
in the data set supplied by the user. In this example, cens makes up the internal function
that handles censored data, and censored is the variable that contains information on the
censoring. Other available functions in this context are weights for weighted regression, se
to specify known standard errors primarily for meta-analysis, trials for binomial models3,
and cat to specify the number of categories for categorical and ordinal models.

Everything on the right side of ∼ specifies predictors. The syntax closely resembles that of
lme4. For both, random and fixed effects terms, the + is used to separate different effects from
each other. Random terms are of the form (random | group), where random contains one or
more variables whose effects are assumed to vary with the levels of the grouping factor given
in group. Multiple grouping factors each with multiple random effects are possible. In the
present example, only one random term is specified in which 1 + age are the random effects
and the grouping factor is patient. This implies that the intercept of the model as well as
the effect of age is supposed to vary between patients. By default, random effects within a
grouping factor are assumed to be correlated. Correlations can be set to zero by using the
(random || group) syntax. Everything on the right side of formula that is not recognized
as part of a random term is treated as a fixed effect. In this example, the fixed effects are
age, sex, and disease.

4.4. family: Distribution of the response variable

Argument family should be a vector of either one or two elements. The first always defines the
distribution of the response variable and the second is the link function. If left blank, default

3In functions such as glm or glmer, the binomial response is typically passed as cbind(success, failure).
In brms, the equivalent syntax is success | trials(success + failure).
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link functions are applied. brms comes with a large variety of families. Linear and robust
linear regression can be performed using the gaussian, student, or cauchy family combined
with the identity link. For dichotomous and categorical data, families bernoulli, binomial,
and categorical combined with the logit link, by default, are perfectly suited. Families
poisson, negbinomial, and geometric allow for modeling count data. Families gaussian,
gamma, exponential, and weibull can be used (among others) for survival regression when
combined with the log link. Finally, ordinal regression can be performed using the families
cumulative, cratio, sratio, and acat. In our example, we use family = c("gaussian",

"log") implying a log-normal4 “survival” model for the response variable time.

4.5. prior: Prior distributions of model parameters

Every fixed effect has its corresponding regression parameter. These parameters are named
as b_<fixed>, where <fixed> represents the name of the corresponding fixed effect. The
default prior for fixed effects parameters is an improper flat prior over the reals. Suppose, for
instance, that we want to set a normal prior with mean 0 and standard deviation 10 on the
fixed effect of age and a uniform prior between -5 and 5 on sexfemale5. Then, we may write

prior <- c(set_prior("normal(0,10)", class = "b", coef = "age"),

set_prior("uniform(-5,5)", class = "b", coef = "sexfemale"))

To put the same prior (e.g., a normal prior) on all fixed effects at once, we may write as
a shortcut set_prior("normal(0,10)", class = "b"). This also leads to faster sampling,
because priors can be vectorized in this case. Note that we could also omit the class argument
for fixed effects, as it is the default class in set_prior.

Each random effect of each grouping factor has a standard deviation parameter, which is
restricted to be non-negative and, by default, has a half Cauchy prior with scale parame-
ter 5. Stan implicitly defines this prior by using a Cauchy prior on a restricted parameter
(Stan Development Team 2015b). For other reasonable priors on standard deviations see
Gelman (2006). In brms, standard deviations are named as sd_<group>_<random>, so that
sd_patient_Intercept and sd_patient_age are the parameter names in the example. If
desired, it is possible to set a different prior on each parameter, but statements such as
set_prior("cauchy(0,5)", class = "sd", group = "patient") or even
set_prior("cauchy(0,5)", class = "sd") may also be used and are again faster because
of vectorization.

If there is more than one random effect per grouping factor, correlations between random
effects are estimated. As mentioned in Section 2, the LKJ-Correlation prior with param-
eter ζ > 0 (Lewandowski et al. 2009) is used for this purpose. In brms, this prior is ab-
breviated as "lkj(zeta)" and correlation matrix parameters are named as cor_<group>,
(e.g., cor_patient), so that set_prior("lkj(2)", class = "cor", group = "patient")

is a valid statement. To set the same prior on every correlation matrix in the model,

4For reasons of numerical efficiency and stability of the sampling algorithm, family gaussian with link log

is interpreted as a log-normal distribution with identity link.
5When factors are used as predictors, parameter names will depend on the factor levels. To get an

overview of all parameters and parameter classes for which priors can be specified, use funcion get_prior. For
the present example, get_prior(time | cens(censored) ∼ age + sex + disease + (1 + age|patient),

data = kidney) does the desired.
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set_prior("lkj(2)", class = "cor") is also allowed, but does not come with any effi-
ciency increases.

Other model parameters such as the residual standard deviation sigma in normal models or
the shape in Gamma models have their priors defined in the same way, where each of them is
treated as having its own parameter class. A complete overview on possible prior distributions
is given in the Stan user’s manual (Stan Development Team 2015b). Note that brms performs
no checks if the priors are written in correct Stan language. Instead, Stan will check their
correctness when the model is parsed to C++ and returns an error if they are not.

4.6. Analyzing the results

The example model fit1 is fitted using 2 chains, each with 2000 iterations of which the first
500 are warm-up to calibrate the sampler, leading to a total of 3000 posterior samples6. For
researchers familiar with Gibbs or Metropolis-Hastings sampling, this number may seem far to
small to achieve good convergence and reasonable results, especially for hierarchical models.
However, as brms utilizes the NUTS sampler (Hoffman and Gelman 2014) implemented in
Stan, even complex models can often be fitted with not more than a few thousand samples. Of
course, every iteration is more computationally intensive and time taking than the iterations
of other algorithms, but the quality of the samples is way higher.

While fitting the model, you may have observed quite a few informational messages at start
that "The current Metropolis proposal is about to be rejected ...". In almost all
circumstances, they can be safely ignored. Set argument silent = TRUE to stop these mes-
sages from being printed out.

After the posterior samples have been computed, the brm function returns an R object, con-
taining (among others) the fully commented model code in Stan language, the data to fit
the model, and the posterior samples themselves. The model code and data for the present
example can be extracted through stancode(fit1) and standata(fit1) respectively7. A
model summary is readily available using

> summary(fit1)

Family: gaussian (log)

Formula: time | cens(censored) ~ age + sex + disease + (1 + age | patient)

Data: kidney (Number of observations: 76)

Samples: 2 chains, each with n.iter = 2000; n.warmup = 500; n.thin = 1;

total post-warmup samples = 3000

WAIC: 660.52

Random Effects:

~patient (Number of levels: 38)

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sd(Intercept) 0.39 0.28 0.02 1.01 1020 1

sd(age) 0.01 0.01 0.00 0.02 767 1

cor(Intercept,age) -0.14 0.46 -0.87 0.77 1323 1

6To save time, chains may also run in parallel when using argument n.cluster.
7Both, model code and data, may be amended and used to fit new models. That way, brms can also serve

as a good starting point in building more complicated models in Stan, directly.
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Fixed Effects:

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

Intercept 3.35 0.58 2.18 4.50 1865 1

age 0.00 0.01 -0.03 0.03 1644 1

sexfemale 1.56 0.40 0.80 2.33 3000 1

diseaseGN -0.27 0.51 -1.29 0.72 1709 1

diseaseAN -0.47 0.51 -1.49 0.50 1532 1

diseasePKD 0.74 0.72 -0.75 2.12 1659 1

Family Specific Parameters:

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sigma(time) 1.14 0.13 0.92 1.43 1633 1

Samples were drawn using NUTS(diag_e). For each parameter, Eff.Sample is a

crude measure of effective sample size, and Rhat is the potential scale

reduction factor on split chains (at convergence, Rhat = 1).

On the top of the output, some general information on the model is given, such as family,
formula, number of iterations and chains, as well as the WAIC. Next, random effects are
displayed separately for each grouping factor in terms of standard deviations and correlations
between random effects. On the bottom of the output, fixed effects are displayed. If incor-
porated, autocorrelation and family specific parameters (e.g., the residual standard deviation
sigma) are also given.

In general, every parameter is summarized using the mean (Estimate) and the standard
deviation (Est.Error) of the posterior distribution as well as two-sided 95% Credible intervals
(l-95% CI and u-95% CI) based on quantiles. The last two values (Eff.Sample and Rhat)
provide information on how well the algorithm could estimate the posterior distribution of
this parameter. If Rhat is considerably greater than 1 (i.e. > 1.1), the algorithm has not yet
converged and it is necessary to run more iterations and / or set stronger priors.

To visually investigate the chains as well as the posterior distributions, the plot method can
be used (see Figure 1). An even more detailed investigation can be achieved by applying the
shinystan package (Gabry 2015) through method launch_shiny.

With respect to the above summary, sexfemale seems to be the only fixed effect with consid-
erable effect on the response. Because the mean of sexfemale is positive, the model predicts
longer periods without an infection for females than for males. Looking at the random effects,
the standard deviation of age is suspiciously small. To test whether it is smaller than the
standard deviation of Intercept, we apply the hypothesis method:

> hypothesis(fit1, "Intercept - age > 0", class = "sd", group = "patient")

Hypothesis Tests for class sd_patient:

Estimate Est.Error l-95% CI u-95% CI Evid.Ratio

Intercept-age > 0 0.38 0.27 0.02 Inf 80.08 *

---

'*': The expected value under the hypothesis lies outside the 95% CI.

The one-sided 95% credibility interval does not contain zero, thus indicating that the standard
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deviations differ from each other in the expected direction. In accordance with this finding,
the Evid.Ratio shows that the hypothesis being tested (i.e. Intercept - age > 0) is about
80 times more likely than the alternative hypothesis Intercept - age < 0.

When looking at the correlation between both random effects, its distribution displayed in
Figure 1 and the 95% credibility interval in the summary output appear to be rather wide.
This indicates that there is not enough evidence in the data to reasonably estimate the corre-
lation. Together, the small standard deviation of age and the uncertainty in the correlation
raise the question if the random effect of age should be modeled at all. To answer this
question, we fit another model (named fit2) similar to fit1 but with formula = time |

cens(censored) ~ age + sex + disease + (1|patient) and without any prior for cor.
A good way to compare both models is the WAIC8, which can by called in brms using

> WAIC(fit1, fit2)

WAIC SE

fit1 660.52 47.26

fit2 659.93 47.28

fit1 - fit2 0.59 0.83

In the output, the WAIC for each model as well as the difference of the WAICs each with its
corresponding standard error is shown. Both, WAIC and LOO are approximately normal if
the number of observations is large so that the standard errors can be very helpful in evaluating
differences in the information criteria. However, for small sample sizes, standard errors should
be interpreted with care (Vehtari et al. 2015a). For the present example, it is immediately
evident that both models have very similar fit. Accordingly, the more parsimonious model
fit2 not containing random effects for age may be preferred.

4.7. Modeling ordinal data

In the following, we want to briefly discuss a second example to demonstrate the capabilities
of brms in handling ordinal data. Ezzet and Whitehead (1991) analyze data from a two-
treatment, two-period crossover trial to compare 2 inhalation devices for delivering the drug
salbutamol in 286 asthma patients. Patients were asked to rate the clarity of leaflet instruc-
tions accompanying each device, using a four-point ordinal scale. Ratings are predicted by
treat to indicate which of the two inhaler devices was used, period to indicate the time of
administration, and carry to model possible carry over effects.

> data("inhaler")

> head(inhaler, n = 1)

subject rating treat period carry

1 1 1 0.5 0.5 0

Typically, the ordinal response is assumed to originate from the categorization of a latent con-
tinuous variable. That is there are K latent thresholds (model intercepts), which partition the

8Alternatively, the LOO method can be used to compute leave-one-out cross-validation, which may be an
even better information criterion than the WAIC (Vehtari et al. 2015a). Unfortunately, its implementation in
the loo package currently runs into errors for some models including the ones fitted in the present paper, so
we decided to use the WAIC instead.
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continuous scale into the K + 1 observable, ordered categories. Following this approach leads
to the cumulative or graded-response model (Samejima 1969) for ordinal data implemented
in many R packages. In brms, it is available via family cumulative. Fitting the cumulative
model to the inhaler data, also incorporating a random intercept over subjects, may look this:

fit3 <- brm(formula = rating ~ treat + period + carry + (1|subject),

data = inhaler, family = "cumulative")

While the support for ordinal data in most R packages ends here9, brms allows changes to
this basic model in at least three ways. First of all, three additional ordinal families are
implemented. Families sratio (stopping ratio) and cratio (continuation ratio) are so called
sequential models (Tutz 1990). Both are equivalent to each other for symmetric link functions
such as logit but will differ for asymmetric ones such as cloglog. The fourth ordinal family is
acat (adjacent category) also known as partial credits model (Masters 1982; Andrich 1978b).
Second, restrictions to the thresholds can be applied. By default, thresholds are ordered for
family cumulative or are completely free to vary for the other families. This is indicated by
argument threshold = "flexible" (default) in brm. Using threshold = "equidistant"

forces the distance between two adjacent thresholds to be the same, that is

τk = τ1 + (k − 1)δ

for thresholds τk and distance δ (see also Andrich 1978a; Andrich 1978b; Andersen 1977).
Third, the assumption that predictors have constant effects across categories may be relaxed
for non-cumulative ordinal models (Van Der Ark 2001; Tutz 2000) leading to category spe-
cific effects. For instance, variable treat may only have an impact on the decision between
category 3 and 4, but not on the lower categories. Without using category specific effects,
such a pattern would remain invisible.

To illustrate all three modeling options at once, we fit a (hardly theoretically justified) stop-
ping ratio model with equidistant thresholds and category specific effects for variable treat

on which we apply an informative prior.

fit4 <- brm(formula = rating ~ period + carry + (1|subject),

data = inhaler, family = "sratio",

partial = ~ treat, threshold = "equidistant",

prior = set_prior("normal(1,2)", coef = "treat"))

Note that priors are defined on category specific effects as if they were fixed effects. A model
summary can be obtained in the same way as before:

> summary(fit4)

Family: sratio (logit)

Formula: rating ~ period + carry + (1 | subject) + partial(treat)

Data: inhaler (Number of observations: 572)

Samples: 2 chains, each with n.iter = 2000; n.warmup = 500; n.thin = 1;

total post-warmup samples = 3000

9Exceptions known to us are the packages ordinal (Christensen 2015) and VGAM (Yee 2010). The former
supports only cumulative models but with different modeling option for the thresholds. The latter supports
all four ordinal families also implemented in brms as well as category specific effects but no random effects.
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WAIC: 913.78

Random Effects:

~subject (Number of levels: 286)

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sd(Intercept) 1.04 0.25 0.51 1.51 267 1

Fixed Effects:

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

period 0.26 0.18 -0.10 0.61 3000 1

carry -0.31 0.23 -0.77 0.13 1645 1

Intercept[1] 0.72 0.12 0.48 0.97 1675 1

Intercept[2] 2.59 0.35 1.91 3.27 455 1

Intercept[3] 4.46 0.66 3.13 5.76 468 1

treat[1] -0.89 0.30 -1.49 -0.30 1886 1

treat[2] -0.45 0.47 -1.40 0.44 3000 1

treat[3] -1.83 1.25 -4.34 0.64 3000 1

Family Specific Parameters:

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

delta 1.87 0.32 1.22 2.49 514 1

Samples were drawn using NUTS(diag_e). For each parameter, Eff.Sample is a

crude measure of effective sample size, and Rhat is the potential scale

reduction factor on split chains (at convergence, Rhat = 1).

Trace and density plots of the model parameters as produced by plot(fit4) can be found
in Figure 2. We see that three intercepts (thresholds) and three effects of treat have been
estimated, because a four-point scale was used for the ratings. The treatment effect seems to
be strongest between category 3 and 4. At the same time, however, the credible interval is also
much larger. In fact, the intervals of all three effects of treat are highly overlapping, which
indicates that there is not enough evidence in the data to support category specific effects.
On the bottom of the output, parameter delta specifies the distance between two adjacent
thresholds and indeed the intercepts differ from each other by the magnitude of delta.

5. Comparison between packages

Over the years, many R packages have been developed that implement GLMMs, each being
more or less general in their supported models. Comparing all of them to brms would be too
extensive and barely helpful for the purpose of the present paper. Accordingly, we concentrate
on a brief comparison with two packages that we believe are the most general and widely
applied, namely lme4 by Bates et al. (2014) and MCMCglmm by Hadfield (2010).

Regarding model families, all three packages support the most common types such as linear
and binomial models as well as Poisson models for count data. Currently, brms and MCM-
Cglmm provide more flexibility when modeling categorical and ordinal data. In addition,
brms supports robust linear regression using Student’s distribution, whereas MCMCglmm
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has some families to fit zero-inflated and hurdle models currently not available in brms or
lme4.

In all three packages, there are quite a few additional modeling options. Variable link functions
can be specified in brms and lme4 but not in MCMCglmm in which only one link is available
per family. MCMCglmm generally supports multivariate responses using data in wide format,
whereas brms currently only offers this option for family gaussian. It should be noted that it
is always possible to transform data from wide to long format for full compatibility with brms
or lme4. Autocorrelation of the response can only be fitted in brms, which supports auto-
regressive as well as moving-average effects. For ordinal models in brms, effects of predictors
may vary across different levels of the response as explained in the inhaler example.

Information criteria are available in all three packages. The advantage of WAIC and LOO
implemented in brms is that their standard errors can be easily estimated to get a better sense
of the uncertainty in the criteria. Comparing the prior options of the Bayesian packages, brms
offers a little more flexibility than MCMCglmm, as virtually any prior distribution can be
applied on fixed effects as well as on the standard deviations of random effects. In addition,
we believe that the way priors are specified in brms is more intuitive as it is directly evident
what prior is actually applied (see the model specification in Section 4). A more detailed
comparison of the packages can be found in Table 1. To facilitate the understanding of the
model formulation in brms, Table 2 shows lme4 function calls to fit sample models along with
the equivalent brms syntax.

So far the focus was only on capabilities. Another important topic is speed, especially for huge
and complex models. Of course, lme4 is usually much faster than the other packages as it
uses maximum likelihood methods instead of MCMC algorithms, which are slower by design.
As compared to MCMCglmm, brms needs more time per iteration, but also produces higher
quality samples, so that the default of 3000 posterior samples is often more than enough to
achieve good results. On the other hand, MCMCglmm may require hundreds of thousand
iterations, but can manage to get this in the same time brms samples a few thousand. For
small models, it feels that MCMCglmm is faster than brms as the latter additionally requires
a few seconds to compile the model. For larger models, brms can benefit from the possibility
of parallelizing chains to drastically improve its efficiency.

6. Conclusion

The present paper is meant to provide a general overview on the R package brms implement-
ing GLMMs using the probabilistic programming language Stan for full Bayesian inference.
Although only a small selection of the modeling options available in brms are discussed in
detail, we hope that this article can serve as a good starting point to further explore the
capabilities of the package.

For the future, we have several plans on how to improve the functionality of brms. We want to
include more families to fit, among others, zero-inflated and hurdle models, requiring brms to
work with multiple response variables coming from different distributions. Also, generalized
additive mixed models (Hastie and Tibshirani 1990) may be implemented in future versions of
the package. Besides MCMC sampling, Stan also provides algorithms for penalized maximum
likelihood and variational inference (Stan Development Team 2015b). While providing sup-
port for penalized maximum likelihood is probably of less importance, variational inference
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brms lme4 MCMCglmm

Suppored model types:

Linear models yes yes yes
Robust linear models yes no no
Binomial models yes yes yes
Categorical models yes no yes
Multinomial models no no yes
Count data models yes yes yes
Survival models yes1 yes yes
Ordinal models various no cumulative
Zero-inflated and hurdle models no no yes

Additional modeling options:

Variable link functions various various no
Weights yes yes no
Offset using priors yes using priors
Multivariate responses limited no yes
Autocorrelation effects yes no no
Category specific effects yes no no
Standard errors for meta-analysis yes no yes
Censored data yes no yes
Customized covariances yes no yes

Bayesian specifics:

parallelization yes – no
fixed effects priors flexible – normal
random effects priors normal – normal
covariance priors flexible – flexible

Other:

Estimator HMC, NUTS ML, REML MH, Gibbs2

Information criterion WAIC, LOO AIC, BIC DIC
C++ compiler required yes no no
Modularized no yes no

Table 1: Comparison of the capabilities of the brms, lme4 and MCMCglmm package. Notes:
(1) Weibull family only available in brms. (2) Estimator consists of a combination of both
algorithms.
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Dataset Function call

cake

lme4
lmer(angle ∼ recipe * temperature + (1|recipe:replicate),

data = cake)

brms
brm(angle ∼ recipe * temperature + (1|recipe:replicate),

data = cake)

sleepstudy

lme4 lmer(Reaction ∼ Days + (Days|Subject), data = sleepstudy)

brms brm(Reaction ∼ Days + (Days|Subject), data = sleepstudy)

cbpp1

lme4
glmer(cbind(incidence, size - incidence) ∼ period + (1 | herd),

family = binomial(link = "logit"), data = cbpp)

brms
brm(incidence | trials(size) ∼ period + (1 | herd),

family = c("binomial", "logit"), data = cbpp)

grouseticks1

lme4
glmer(TICKS ∼ YEAR + HEIGHT + (1|BROOD) + (1|LOCATION),

family = poisson(link = "log"), data = grouseticks)

brms
brm(TICKS ∼ YEAR + HEIGHT + (1|BROOD) + (1|LOCATION),

family = c("poisson", "log"), data = grouseticks)

VerbAgg2

lme4
glmer(r2 ∼ (Anger + Gender + btype + situ)^2 + (1|id)

+ (1|item), family = binomial, data = VerbAgg)

brms
brm(r2 ∼ (Anger + Gender + btype + situ)^2 + (1|id)

+ (1|item), family = "bernoulli", data = VerbAgg)

Table 2: Comparison of the model syntax of lme4 and brms using data sets included in
lme4. Notes: (1) Default links are used to that the link argument may be omitted. (2)
Fitting this model takes some time. A proper prior on the fixed effects (e.g., prior =

set_prior("normal(0,5)")) may help in increasing sampling speed.
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can serve as a good alternative to MCMC sampling, if the latter is unfeasible for instance
because it is not fast enough. At the time of writing this article, variational inference was
not yet fully available in rstan (the R interface of Stan) so that it could not be implemented
in the present version of brms.
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Figure 1: Trace and Density plots of all relevant parameters of the kidney model discussed in
Section 4.
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Figure 2: Trace and Density plots of all relevant parameters of the inhaler model discussed
in Section 4.
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