An introduction to circlize package

Zuguang Gu <z.gu@dkfz.de>
July 11, 2014

1 Introduction

Circular layout is very useful to represent complicated information, especially for genomic data. It has
advantages to visuallize data with long axes or large amount of categories, described with multiple tracks.
Another unique feature for circular layout is it is effective to visuallize relations between elements.
Clircos (http://circos.ca) is an extraordinarily cool software to draw such circular layout which is
broadly used in real applications, not just popular in Genomic but in a lot of other areas as well. It is not
only a way to visualize data, but enhances the representation of scientific results into a level of aesthetics.
Therefore, most people call figures with circular layout as ‘circos plot’. Here the circlize package aims
to implement Circos in R. One advantage for the implementation in R is that R is an ideal enrivonment
which provides seamless connectioin between data analysis and data visualization. This package is not
a front-end wrapper to generate configuration files for Circos, but completely coded in R style by using
R’s elegant statistical and graphic eigine. We aim to keep the flexibility and configurability of Circos,
also make the package more straightforward to use and enhance it to support more types of graphics.

2 Principle of design

Since most of the figures are composed of simple graphics, such as points, lines, polygon (for filled color)
et al, circlize implements low level functions for drawing graphics in circular layout, so that more higher
level graphics can be easily comprised by low level graphics. This principle ensures the generality of
generating circos plot that types of high level graphics are not restricted by the software but determined
by users.

Currently there are following graphic functions that can be used for plotting, they are similar to the
functions without circos. prefix from the traditional graphic engine (you can also see the correspondence
in figure [1)):

e circos.points: draw points in a cell, similar as points.

e circos.lines: draw lines in a cell, similar as lines.

e circos.rect: draw rectangle in a cell, similar as rect.

e circos.polygon: draw polygon in a cell, similar as polygon.

e circos.text: draw text in a cell, similar as text.

e circos.axis: draw axis in a cell, functionally similar as axis but with more features.

e circos.link: this maybe the unique feature for circos layout to represent relationships between
elements.

For drawing points, lines and text in cells through the whole track (among several sectors), the
following functions are available:

e circos.trackPoints: this can be replaced by circos.points through a for loop.
e circos.trackLines: this can be replaced by circos.lines through a for loop.

e circos.trackText: this can be replaced by circos.text through a for loop.

http://circos.ca

circos.trackPlotRegion ——= plot.default

circos.points —= points
circos.lines ——= lines
circos.text — text
circos.rect —= rect
circos.polygon ——= polygon
circos.axis —= axis

Figure 1: Correspondence between graphic functions in circlize and in traditional R graphic engine.

Also, the function drawing histograms in the whole track is available:
e circos.trackHist

Functions to arrange the circular layout:

e circos.trackPlotRegion: create plotting regions of cells in a track
e circos.updatePlotRegion: update an existed cell

e circos.par: graphic parameters

e circos.clear: reset graphic parameters and internal variables

Theoretically, you are able to draw most kinds of circos figures by the above functions. As you will
see, all figures in the four vignettes are generated by circlize package.

The following part of this vignette is structured as follows: First there is an example to give a quick
glance of how to draw a circular layout by circlize. Then it tells you the basic principle (or the order of
using the circos functions) for drawing. After that there are detailed explainations of graphic parameters,
coordinates and low level functions. Finally it would tell you some tricks for drawing more complicated
circos plot.

3 A quick glance

Following is an example to show the basic feature and usage of circlize package. First generate some
data. There needs to have a factor to represent categories, values on x-axis, and values on y-axis.

> set.seed(12345)

> n = 1000

> a = data.frame(factor = sample(letters[1:8], n, replace = TRUE),
+ x = rnorm(n), y = runif(n))

Initialize the layout. In this step, the circos.initialize function allocates sectors along the circle
according to ranges of x-values in different categories. E.g, if there are two categories, range for x-values
in the first category is ¢ (0, 2) and range for x-values in the second category is c(0, 1), the first category
would hold approximately 67% areas of the circle. Here we only need x-values because all cells in a sector
share the same x-ranges.

> library(circlize)

> par(mar = c(1, 1, 1, 1), lwd = 0.1, cex = 0.7)
> circos.par("default.track.height" = 0.1)

> circos.initialize(factors = a$factor, x = a$x)

Draw the first track (figure [2| top left). Before drawing any track we need to know that all tracks
should firstly be created by circos.trackPlotRegion, then those low level functions can be applied
(recall in traditional R graphic eigine, you need first call plot.default and then you can use functions
such as points and lines to add graphics on it). Since x-lims for cells in the track have already been
defined in the initialization step, so here we only need to specify the y-lims for each cell, either by y or
ylim argument.

We also draw axes for cells in the first track, The axis for each cell is drawn by panel.fun argument.
circos.trackPlotRegion creates plotting region cell by cell and the panel.fun is actually executed
immediately after the creation of the plotting region for a cell. So panel.fun actually means drawing
graphics in the “current cell”. After that, draw points through the whole track by circos.trackPoints.
Finally, add two texts in a certain cell (the cell is specified by sector.index and track.index argument).
In drawing the second text, we do not specify track.index because the package knows we are now in
the first track.

Here what should be noted is that the first track has a index number of 1. An internal variable which
traces the tracks would set the ‘current track index’ to 1. So if the track index is not specified in the
plotting functions such as circos.trackPoints and circos.text which are called after the creation
of the track, the current track index would be assigned internally. (details would be explained in the
following sections).

> circos.trackPlotRegion(factors = a$factor, y = a8y,

+ panel.fun = function(x, y) {

+ circos.axis()

+ })

> col = rep(c("#FF0000", "#O0OFF00"), 4)

> circos.trackPoints(a$factor, a$x, a$y, col = col,

+ pch = 16, cex = 0.5)

> circos.text(-1, 0.5, "left", sector.index = "a'", track.index = 1)
> circos.text(1, 0.5, "right", sector.index = "a")

Draw the second track (figure[2] top right). There are histograms in the track. The circos.trackHist
can also create a new track because drawing histogram is really high level, so we do not need to call
circos.trackPlotRegion. The track index for this track is 2.

> bgcol = rep(c("#EFEFEF", "#CCCCCC"), 4)
> circos.trackHist (a$factor, a$x, bg.col = bgcol, col = NA)

Draw the third track (figure [2} middle left). Different background colors for cells can be assigned. So
it may highlight some features of the circlize package. Here some meta data for a cell can be obtained
by get.cell.meta.data. This function needs sector.index and track.index arguments, and if they
are not specified, it means it is the current sector index and the current track index.

> circos.trackPlotRegion(factors = a$factor, x = a$x, y = a8y,

+ panel.fun = function(x, y) {

+ grey = c("#FFFFFF", "#CCCCCC", "#999999")

+ i = get.cell.meta.data("sector.numeric.index")

+ circos.updatePlotRegion(bg.col = greyl[i 77 3 + 1])

+ circos.points(x[1:10], y[1:10], col = "red", pch = 16, cex = 0.6)
+ circos.points(x[11:20], y[11:20], col = "blue", cex = 0.6)

+ P

You can update an existed cell by specifying sector.index and track.index in circos.updatePlotRegion.
The function erases graphics which have been drawn. Here we erase graphics in one cell in track 2, sector
d and re-draw some points (ﬁgure middle right). circos.updatePlotRegion can not modify the x1im
and ylim of the cell as well as other settings related to the position of the cell.

> circos.updatePlotRegion(sector.index = "d", track.index = 2)
> circos.points(x = -2:2, y = rep(0, 5))

Draw the fourth track (figure[2] bottom left). Here you can choose different line types which is similar
as type argument in lines.

> circos.trackPlotRegion(factors = a$factor, y = a$y)
> circos.trackLines (a$factor[1:100], a$x[1:100], a$y[1:100], type = "h")

Draw links (figure [2| bottom right). Links can be from point to point, point to interval or interval to
interval. Some of the arguments would be explained in the following sections.

> circos.link("a", 0, "b", 0, h = 0.4)

> circos.link("c", c(-0.5, 0.5), "d", c(-0.5,0.5), col
+

>

”red”’
border = "blue", h = 0.2)
circos.link("e", 0, "g", c(-1,1), col = "green", lwd = 2, 1ty = 2)

Finally we need to clean in order to reset the graphic parameters and internal variables, so it will not
mess up your next plotting.

> circos.clear()

The final figure looks like figure

E:

4 Detalils

In this section, more details of the package would be explained.

4.1 Coordinate transformation

There is a data coordinate in which the range for x-axis and y-axis is the range of data, a polar
coordinate to allocates graphics on the circle and a canvas coordinate which really draws the graphics
(figure[3]). The package would first transform from the data coordinate to a polar coordinate and finally
transform into the canvas coordinate.

The finnal canvas coordinate is in fact an ordinary coordinate in R plotting system with x-range from
-1 to 1 and y-range from -1 to 1 by default.

It should be noted that the circular layout is always (or mostly except you want to draw
something out of the circle) drawn inside the circle which has radius of 1 (unit circle), from
outside to inside.

However, for users, they only need to imagine that each cell is a normal rectangular plotting region
(data coordinate) in which x-lim and y-lim are ranges of data in the category respectively. The circlize
package would know which cell you are drawing in and do all the transformations.

4.2 Rules for drawing circular layout

The rules for drawing circular layout is rather simple. It follows the sequence of “initialize - create track
- draw graphics - create track - draw graphics - ... - clear” (figure . See following:

1. Initialize the layout using circos.initialize. Since circular layout in fact visualizes data which
is in categories, there should be a factor and a x-range variable to allocate categories into sectors.

2. Create plotting regions for the new track and add graphics. The new track is created just inside
the previously created one and the index of the track is added by 1 automatically. Only after the
creation of the track can you add other graphics on it. There are three ways to do the plotting job.

(a) After the creation of the track, use low level graphic function like circos.points, cir-
cos.lines, ... to add graphics cell by cell. It always involves a for loop.

(b) Use circis.trackPoints, circos.trackLines, ... to draw same style of graphics through
all cells simultaneously. However, it is not recommended because it would make you a little
confused and also it cannot draw complicated graphics.

¢) Use panel.fun argument in circos.trackPlotRegion to draw graphics immediately after

Use panel.f g t in ci kPlotRegion to draw graphics immediately aft
the creation of a certain cell. panel.fun needs two arguments x and y which are x-values and
y-values that in the current category. This subset operation would be applied automatically.

Plotting regions for cells that have been created can be updated by circos.updatePlotRegion.
circos.updatePlotRegion will erase everything that you have already added in the plotting region
of the cell.

Low level functions such as circos.points can be applied to any created cell by specifying sec-
tor.index and track.index.

3. Repeat step 2 to add more tracks on the circle.
4. Call circos.clear to do cleanings.

As metioned above, there are three ways to add graphics on the created track. 1. create plotting
regions for the whole track and then add graphics by specifying sector.index and track.index. In the
following pseudo code, x1, y1 are data points in a given cell, which means you need to do data subsetting
by yourself.

> circos.initialize(factors, xlim)

> circos.trackPlotRegion(factors, ylim)

> for(sector.index in all.sector.index) {
+ circos.points(x1, y1, sector.index)
+ circos.lines(x2, y2, sector.index)
+

Figure 3: Transformation between different coordinates. Top: data coordinate; Middle: polar coordinate;
Bottom: canvas coordinate.

circos.initialize

circos.points
circos.lines
circos.text

circos.points
circos.lines
circos.text

circos.trackPlotRegion

circos.trackPlotRegion

circos.clear

Figure 4: Order of drawing circular layout

2. add graphics through a batch mode. This can be replaced by circos.points or circos.lines
in a for loop. In the following code, you need to specifying the factors and now x1 and y1 are data
points for all categories. The data points for a given cell will be subsetted according the factors.

circos.initialize(factors, x1im)
circos.trackPlotRegion(factors, ylim)
circos.trackPoints(factors, x1, y1)
circos.trackLines(factors, x2, y2)

vV VvV VvV

3. use a panel function to add self-defined graphics as soon as the cell has been created. This is
the way I recommend since when you look at panel.fun, it is just like adding graphics in traditional
R graphics system. There will be a more detailed explaination of panel.fun argument in the following
section.

> circos.initialize(factors, xlim)

> circos.trackPlotRegion(factors, all_x, all_y, ylim,
+ panel.fun = function(x, y) {

+ circos.points(x, y)

+ circos.lines(x, y)

+

»

There is several internal variables keeping tracing of the current sector and track when applying
circos.trackPlotRegion and circos.updatePlotRegion. So although functions like circos.points,
circos.lines need to specify the index for sector and track, they will take the current calculated ones
by default. As a result, if you draw points, lines, text, et al just after the creation of the track or cell,
you do not need to set the sector index and the track index explicitly and it is just drawn in the most
nearly created cell. Note again, only circos.trackPlotRegion and circos.updatePlotRegion would
reset the current track index and sector index.

Finally, in circlize package, function with prefix circos.track would affect all cells in a track.

4.3 Sectors and tracks

A circular layout is composed of sectors and tracks, as illustrated in figure [5] The red circle is the track
and the blue one is the sector. The intersection of a sector and a track is called a cell which can be
thought as an imaginary plotting region for data points in a certain category (data coordinate).

Sectors are first allocated on the circle and determined by circos.initialize and track allocation
in the radical direction is then determined by circos.trackPlotRegion. circos.initialize needs a
category variable and data value which implicates the range of data in each category. The range of data
can be specified either by x or x1lim.

> circos.initialize(factors, x)
> circos.initialize(factors, xlim)

There are something very important that should be noted in the initialization step. In this step,
not only the width of each sector is assigned, but also the order of each sector on the circle would be
determined. Order of the sectors are determined by the order of levels of the factor. So if you
want to change the order of the sectors, just change of the level of the factors variable. The following
codes would generate different figures (figure @:

> fa = c("d", "f", "e", "c", "g", "b", "a")

> f1 = factor(fa)

> circos.initialize(factors = f1, x1im = c(0, 1))
> f2 = factor(fa, levels = fa)

> circos.initialize(factors = f2, xlim = c(0, 1))

If x which is the x-values corresponding to factors is specified, the range for x-values in different
categories would be calculated according to factors automatically. And if x1im is specified, it should
be either a matrix which has same number of rows as the length of the level of factors or a two-element
vector. If it is a two-element vector, it would be extended to a matrix which has the same number of
rows as the length of factors levels. Here, every row in x1im corresponds to the x-ranges of a category
and the order of rows in x1im corresponds to the order of levels of factors.

Figure 5: Coordinate in circos layout

factor(fa,

’ -

Figure 6: Different factor order in the initialization step.

10

Under the default settings, width of sectors are calculated according to the range of data in each
category. In some circumstance, you many want to manually set the width of each sector (figure .
Normally it is not a good idea to change the default settings, since width of sectors can reflect useful
information of your data. However, sometimes it is useful to set the width of sectors such as you want to
draw your data only in half of the circle and in the other half of the circle, you want to zoom in some part
of your data. For example, someone may want to draw 24 chromosomes in half of the circle and zoom in
two chromosomes at the other half of the circle (As you can see the example in the "How to draw ideogram”
vignette). The width of sectors can be set by sector.width argument in circos.initialize. The value
for the argument should be a vector with length of either one or as same as the number of categories
(again, order of sector.width vector corresponds to the order of levels of factors). sector.width is
some kind of ratio or relative values, and the values will be scaled to percentage later (e.g. if you set
sector.width to c(1, 3), it will be scaled as c(0.25, 0.75)).

Example codes for sector zoomings look like:

factors = sample(letters[1:6], 100, replace = TRUE)
x = rnorm(100)
y = rnorm(100)
zoomed_factor = factors[factors JinJ), c("a", "b")]
zoomed_factor [zoomed_factor == "a"] = "a_zoomed"
zoomed_factor [zoomed_factor == "b"] = "b_zoomed"
zoomed_x = x[factors Jin} c("a", "b")]
zoomed_y = yl[factors 7inj c("a", "b")]
attached to the origin data
factors = c(factors, zoomed_factor)
factors = factor(factors, levels = c(letters[1:6], "a_zoomed", "b_zoomed"))
x = c(x, zoomed_x)
y = c(y, zoomed_y)
xrange = tapply(x, factors, function(x) max(x) - min(x))
see how to scale sector 1:6 to first half of circle and scale sector 7:8
to the other half
circos.initialize(factors, x = x,
sector.width = c(xrange[1:6]/sum(xrange[1:6]), xrange[7:8]/sum(xrange([7:8])))
circos.trackPlotRegion(factors, x = x, y = y, panel.fun = function(x, y) {
circos.points(x, y)
xlim = get.cell.meta.data("x1im")
ylim = get.cell.meta.data("ylim")
sector.index = get.cell.meta.data("sector.index")
circos.text(mean(x1im), ylim[2] + 0.2%(ylim[2] - ylim[1]),
sector.index, adj = c(0.5, 0))

»

if you want to add links from unzoomed sectors to zoomed sectors

circos.link("a", get.cell.meta.data("cell.xlim", sector.index = "a"),
"a_zoomed", get.cell.meta.data("cell.xlim", sector.index = "a_zoomed"),
border = NA, col = "#00000010")

circos.clear()

V++VV+++++++V+HVVVVVVVVVVVYVVYVYVYVY

Since all cells in one sector while in different tracks share the same x-ranges, for each track,
we only need to specify the y-ranges for cells. Similar as circos.initialize, circos.trackPlotRegion
can also receive either y or ylim argument to specify the range of y-values. There is also a force.ylim
argument to sepcify whether all cells in one track should share the same y-ranges. force.ylim is only
used along with y.

> circos.trackPlotRegion(factors, y)
> circos.trackPlotRegion(factors, ylim)

In the track creation step, since all sectors are already allocated in the circle, if factors argument is
not set, circos.trackPlotRegion would create plotting regions for all available sectors. Also, levels of
factors do not need to be specified explicitly because the order of sectors has already be determined in
the initialization step. If factors is just a vector, it would be converted to factor automatically. And

11

PR

Figure 7: manually set the sector width

Figure 8: Regions for a cell

finally if users just create cells in part of sectors in the track (not all sectors), in fact, cells in remaining
unspecified sectors would also be created, but with no borders (pretending they are not created).

Cells are basic units in the circle and are independent with each other. After the creation of cells,
they have self-contained meta values of x-lim and y-lim (range of data in the category, data coordinate,
...). So if you are drawing in one cell, you do not need to consider things outside the cell and also you
do not need to consider you are in the circle. Just pretending it is rectangular.

4.4 Graphic parameters

Some basic parameters for the circular layout can be set through circos.par. The paramters are as
follows, note some parameters can only be assigned before the initialization of the circular layout.

e start.degree: The starting degree at which the circle begins to draw. Note this degree is measured
in the standard polar coordinate which means it is always reverse clockwise. See figure [9]

e gap.degree: Gap between two neighbour sectors. It can be a single value which means all gaps
share same degree, or a vector which has same length as levels of the factors. See figure [0] and

figure

e track.margin: Like margin in Cascading Style Sheets (CSS), it is the blank area out of the plotting
region, also outside of the borders. Since left and right margin are controlled by gap.degree, only
bottom and top margin need to be set. The value for the track.margin is the percentage according
to the radius of the unit circle. See figure

e cell.padding: Padding of the cell. Like padding in Cascading Style Sheets (CSS), it is the blank
area around the plotting regions, but within the borders. The paramter has four values, which

13

5

circos.par(“clock.wise" = FALSE,
start.degree = 30)

circos.par(“clock.wise" = TRUE,
start.degree = -30)

Figure 9: Sector directions. Sector orders are a, ..., h.

Qo)

O

S

14

control the bottom, left, top and right padding respectively. The first and the third padding values
are the percentages according to the radius of the unit circle and the second and fourth values are
the degrees. See figure [§

unit.circle.segments: Since curves are simulated by a series of straight lines, this parameter
controls the amount of segments to represent a curve. The minimal length of the line segment
is the length of the unit circle (2+pi) divided by unit.circle.segments. More segments means
better approximation for the curves while larger size if you generate figures as PDF format. (The
name of this parameter may be a little hard to understand. I will try to change it with a better
one.)

default.track.height: The default height of tracks. It is the percentage according to the radius
of the unit circle. The height includes the top and bottom cell paddings but not the margins.

points.overflow.warning: Since each cell is in fact not a real plotting region but only an ordinary
rectangle (or more precisely, rectangle-like), it does not eliminate points that are plotted out of the
region. So if some points are out of the plotting region, by default, the package would continue
drawing the points and print warnings. But in some circumstances, draw something out of the
plotting region is useful, such as draw some legend or text. Set this value to FALSE to turn off the
warnings.

canvas.xlim: The coordinate for the canvas. The package is forced to draw unit circle, so the x1im
and ylim for the canvas would be c(-1, 1). However, you can set it to a more broad interval if
you want to draw other things out of the circle. By choose proper canvas.xlim and canvas.ylim,
you can draw part of the circle. E.g. setting canvas.xlim to c(0, 1) and canvas.ylim to c(O,
1) would only draw circle in the region of (0, pi/2).

canvas.ylim: The coordinate for the canvas.

clock.wise: The order of drawing sectors. Default is TRUE which means clockwise (figure E[) But
note that inside each cell, the direction of x-axis is always clockwise and direction of y-axis is always
from inside to outside in the circle.

Default values for graphic paramters are in table

parameter default value
start.degree 0

gap.degree 1
track.margin c(0.01, 0.01)
cell.padding c(0.02, 1.00, 0.02, 1.00)
unit.circle.segments 500
default.track.height 0.2
points.overflow.warning TRUE
canvas.xlim c(-1, 1)
canvas.ylim c(-1, 1)
clock.wise TRUE

Table 1: Default graphic parameters

Parameters related to the allocation of sectors cannot be changed after the initialization of the
circos layout. So start.degree, gap.degree, canvas.xlim, canvas.ylim and clock.wise can only
be modified before circos.initialize. The second and the fourth element of cell.padding (left and
right paddings) can not be modified either (or will be ignored).

4.5 Create plotting region

As described above, only after creating the plotting region can you add low level graphics on it. The
minimal set of arguments for this function is to set either y or ylim (remember order of rows of ylim
corresponds to the order of levels of factors and if factors is not specified, then it corresponds to the
order of default sectors which is determined in the initialization step) which will assign range of y-values
for the track. circos.trackPlotRegion create tracks for all sectors although in some case only part

15

of them is visible. If you only want to create the plotting regions but do not draw anything, you do
not need to specify factors and x. While if you want to draw something by panel.fun as soon as you
create the plotting region, then you need to specify factors and x to pass the categories and values to
panel.fun. Graphic arguments such as bg.border and bg.col can either be a scalar or a vector. If it
is a vector, the length must be equal to the length of levels of factors and the order of these graphics
arguments is also as same as the order of levels of factors. With setting these graphics arguments you
can create plot regions with different styles of borders and background colors. If you are confused with
the factors orders, you can also customize the borders and background colors for the plotting region
in panel.fun (using get.cell.meta.data("cell.x1lim") and get.cell.meta.data("cell.ylim") to
get the position of the plotting region).

4.6 Update plotting region

If track.index is specified in circos.trackPlotRegion and the specified track is already created, the
track will be updated with new graphics. In this case, settings related to the positions of the track such
as the height of the track can not be modified.

> circos.trackPlotRegion(data, ylim = c(0, 1), track.index = 1, ...)

For single cell, circos.updatePlotRegion can be used to erase all graphics that have been already
plotted in the cell.

> circos.updatePlotRegion(sector.index, track.index)
> circos.points(x, y, sector.index, track.index)

4.7 Points

Drawing points by circos.points is similar as points function. Possible usage is:

> circos.points(x, y)
> circos.points(x, y, sector.index, track.index)
> circos.points(x, y, pch, col, cex)

Since circos.points is a low level function, it can only be applied to those cells which have been
created. If sector.index or track.index is not specified, it would use the ‘current’ index for sector and
track which would be defined by the nearest circos.trackPlotRegion or circos.updatePlotRegion.

circos.trackPoints can draw points in the whole cells on a same track. However, it is the same if
you use circos.points in a for loop.

4.8 Lines

Parameters for drawing lines by circos.lines are similar to 1ines function, as illustrated in figure
One additional feature is that the areas under/above lines can be specified by area argument which can
help you identifying the direction of y-axes. Also the base line for the area can be set by baseline.
baseline can be pre-defined string of bottom or top, or numeric values. baseline is also workable when
1ty is set to h.

Straight lines will be transformed to curves when mapping to circular layout (figure . Normally,
curves can be approximated by a series of segmentations of straight lines. With more segmentations, there
would be better approximations, but with larger size if you generate the graph as pdf format, especially
for huge genomic data. So, in this package, the number of the segmentation can be controlled by
circos.par("unit.circle.segments"). The length of minimal segment is the length of the unit circle
divided by circos.par("unit.circle.segments"). If you do not want such curve-transformations
(such as radical lines), you can set straight argument to TRUE (e.g. if it is a radical line.).

Possible usage for circos.lines is:

circos.lines(x, y)

circos.lines(x, y, sector.index, track.index)
circos.lines(x, y, col, 1lwd, lty, type, straight)
circos.lines(x, y, col, area, baseline, border)

vV V. VvV

Similar as circos.points, if no sector.index or track.index is specified, ‘current’ index would be
used. Also, there is a circos.trackLines which is identical to circos.lines in a for loop.

16

Figure 10: Line style settings

17

Figure 11: Straight lines will be transformed into curves in the circle

clockwise
93IMMD0|0° 3s 1o

IS
‘ \bq) downwar%\ b&iownward %
£ & % >
Q (4

reperse.clockwise

clockwise
3SIMY0[d

9§IMX30|0°8SI1anal

2
@\Q\}

%
\I},
% downward

3.
g
&
2

downward

ESLNEEE)

reperse.clockwise

5000000%

Figure 12: Text facing settings

19

4.9 Text

Only the facing of text by circos.text should be noted, as illustrated in figure srt in text has
been degenerated as facing in circos.text which support only six types of rotation pre-defined in
c("inside", "outside", "reverse.clockwise", "clockwise", "downward", "bending").

But adj argument is still applicable in circos.text. Possible usage for circos.text is:

> circos.text(x, y, labels)
> circos.text(x, y, labels, sector.index, track.index)
> circos.text(x, y, labels, facing, adj, cex, col, font)

In some circumstance, we may want the text facing clockwisely in right half of the circle while reverse-
closewisely in the left half of the circle. This can be easily done by self-defined codes. Following is an ex-
ample of panel . fun and figure can be found in figure[I2] In the example, get.cell.meta.data("xplot")
will return degrees corresponding to left and right margin of the specified cell.

panel.fun = function(x, y) {
xlim = get.cell.meta.data("x1im")
ylim = get.cell.meta.data("ylim")
theta = mean(get.cell.meta.data("xplot")) 77 360
sector.index = get.cell.meta.data("sector.index")
if (theta < 90 || theta > 270) {

text.facing = "clockwise"
text.adj = c(0, 0.5)

} else {
text.facing = "reverse.clockwise"

text.adj = c(1, 0.5)

}

circos.text(mean(x1lim), ylim[1], labels,
facing = text.facing, adj = text.adj)

There is also a circos.trackText in the package.

4.10 Rectangle

If you imagin the plotting region in a cell as Cartesian coordinate, then it draws rectangles. In the circle,
the up and bottom edge become two arcs. Usage is similar as rect, but it can only draw one rectangle
at a time.

> circos.rect(xleft, ybottom, xright, ytop)
> circos.rect(xleft, ybottom, xright, ytop, sector.index, track.index)
> circos.rect(xleft, ybottom, xright, ytop, col, border, lty, 1wd)

4.11 Polygon

Similar as circos.rect and polygon, it draws a polygon through a series of points in a cell:

> circos.polygon(x, y)
> circos.polygon(x, y, sector.index, track.index)
> circos.polygon(x, y, col, border, lty, lwd)

In figure[13] the area of standard deviation of the smoothed line is drawn by circos.polygon. (Source
code is in the examples section of circos.polygon help page.)

4.12 Axis

Because there may be no space to draw y-axis, only drawing x-axis for each cell is supported by cir-
cos.axis, as illustrated in figure[I4] A lot of styles for axis can be set such as the position and length of
major ticks, the number of minor ticks, the position and direction of the axis labels and the position of
the x-axis. Note the adjustment of label strings is defined internally according to differnet label directions
to ensure the start/end position of the string is located near the major tick.

In figure axis styles in different sectors are :

20

Figure 13: Area of standard deviation of the smoothed line

21

Figure 14: Axis settings

22

e a: Major ticks are calculated automatically, other settings are default.
e b: Ticks are pointing to inside of the circle, facing of tick labels is set to default2.

: Position of x-axis is bottom of the cell.

[]
o

e d: Ticks are pointing to inside of the circle, facing of tick labels is set to vertical_left.

[]
@

: Self-defined major ticks.

L]
el

Self-defined major ticks and tick labels, no minor ticks.
e g: No ticks for both major and minor ones, facing of tick labels is set to vertical_left.

e h: Number of minor ticks between two major ticks is set to 2. Length of ticks is longer and axis
labels are more away from ticks. Facing of tick labels is set to vertical_right.

For circos.axis, possible usage is as follows. h can be pre-defined string of bottom or top, or
numeric values.

circos.axis(h)

circos.axis(h, sector.index, track.index)

circos.axis(h, major.at, labels, major.tick)

circos.axis(h, major.at, labels, major.tick, labels.font, labels.cex,
labels.facing, labels.away.percentage)

circos.axis(h, major.at, labels, major.tick, minor.ticks,
major.tick.percentage, lwd)

+ V. + VvV VvyVv

If you really want the y-axes, you can implement one by yourself. It is just a combination of lines
and text by using circos.lines and circos.text

4.13 Links

Links can be drawn by circos.link from points and intervals (figure top). If both ends are points,
then the link is represented as a line. If one of the ends is an interval, the link would be a belt/ribbon.
The link is in fact a quadratic curve. Links do not hold any position as tracks. So links can be overlapping
with tracks.

The position of the ‘root’ of the link is controlled by roul and rou2 arguments. By default, it is the
end position of the most recently created track. So normally, you don’t need to care about this setting.

The height of the link can be controlled by h argument in circos.link. The default height looks
well from my view point, so you don’t need to change this value.

Possible usage for circos.link is:

circos.link(sector.indexl, 0, sector.index2, 0)

circos.link(sector.index1, c(0, 1), sector.index2, 0)
circos.link(sector.index1, c(0, 1), sector.index2, c(1, 2))
circos.link(sector.indexl, 0, sector.index2, 0, roul, rou2, h, h2)
circos.link(sector.indexl, c(0, 1), sector.index2, 0, col, lwd, 1lty, border)

vV VvV Vv VvV

When the link represents as a belt/ribbon (i.e. link from point to interval or from interval to interval),
It can not ensure that one border is always below or above the other. Which means, in some cases, the
two borders would intersect and it would make the link so ugly. It happens especially when position of
the two ends are too close or the width of one end is extremely large while the width of the other end is
too small. In that case, users can manually set height of the top and bottom border by h and h2.

4.14 The panel.fun argument in circos.trackPlotRegion

panel.fun argument in circos.trackPlotRegion is useful to apply plottings as soon as the cell has been
created. This self-defined function need two arguments x and y which are data points that belong to this
cell. The value for such values are automatically extracted from x and y in circos.trackPlotRegion
function according to the category argument factors. In the following example, x in category a in
panel.fun would be 1:3 and y values are 5:3. If x or y in circos.trackPlotRegion is NULL, then x or
y inside panel.fun is also NULL.

23

Figure 15: Drawing links. Top right: set different positions of roots; Bottom left: set different height of
two borders.

24

> factors = c("a", "a", "a", "b", "b")

>x =1:5

>y =25:1

> circos.trackPlotRegion(factors = factors, x =X, y =Y,
+ panel.fun = function(x, y) {

+ circos.points(x, y)

+

»

In panel.fun, one thing important is that if you use any low level graphic functions, you don’t need to
specify sector.index and track. index explicitly. Remember that when applying circos.trackPlotRegion,
cells in the track are created one after one. When a cell is created, the package would set the sector index
and track index of the cell as the ‘current’ index for the sector and track. When the cell is created, pan-
el.fun would be exceeded afterward immediately. Without specifying sector.index and track.index,
the ‘current’ one would be used and that’s exactly what you need.

The advantage of panel.fun is that it makes you feel you are using graphics functions in traditional
graphics engine (You can see it is the same of using circos.points(x, y) and points(x, y)). And
you just pretend to draw in regular plotting regions. It will be much easier for users to understand and
customize new graphics.

Inside panel. fun, more information of the ‘current’ cell would be obtained through get.cell.meta.data.
Also this funciton takes the ‘current’ sector and ‘current’ track by default, Explaination of get.cell.meta.data
can be found in following section.

4.15 High level plotting functions

With those low-level function such as circos.points, circos.lines, more high level functions can
be easily implemented. The package provides a high level function circos.trackHist which draws
histograms or the density distributions of data (figure . So users would know how to implement
other high-level function to support graphs such as barplot, heatmap, ... according to the source code of
circos.trackHist. In circos.trackHist, first call hist or density to calculate the distribution, then
use circos.rect or circos.lines to draw histgrames or density distributions.

In figure [I6] the first track is histograms in which all the ylim are the same. The second track is
histograms in which force.ylim is FALSE. The third and the fourth tracks are density distributions in
which ylims are forced same or not.

In figure you would see heatmaps and cluster dendrograms in a circular layout. Heatmaps are
series of grids which can be drawn by circos.rect. Dendrograms are series of lines which can be drawn
by circos.lines. However, x-values for heatmaps and dendrograms are not really x-values but just
index for the grid/leaf (i.e., 1, 2, ... for grid/leaf 1, 2, ...), so it would be hard (or not proper) to
make them as general functions for circos plotting. Thus we do not provide such circos.heatmap or
circos.dendrogram in the package for public use. Anyway, we still wrote a not-full-functional cir-
cos.dendrogram in the demo code of the package. If you want to draw heatmap or dendrogram by your
own, this may be helpful for you, especially when you want to customize a complecated phylogenic tree.

4.16 Other functions

draw.sector can be used to draw sectors or part of a ring. This is useful if you want to hightlight some
part of your circos plot. As you can think, this function needs arguments of the position of circle center,
the start degree and the end degree for sectors, and radius for two edges (or one edge) which may be
the up or bottom border of a cell. These information can be obtained by get.cell.meta.data. E.g.
the start degree and end degree can be obtained through cell.start.degree and cell.end.degree,
and the position of the top border and bottom border on the circle radius can be obtained through
cell.top.radius and cell.bottom.radius. An example is as follows and see figure[I8]in which different
colors correspond to different regions that need to be highlighted.

Degrees and radius for any points in a given cell can be obtained by the core function circlize, so
you can highlight any region in the circular layout. Note circlize always returns a matrix with two
columns in which the first column are degrees and the second column are radius for the points.

> circlize(x, y, sector.index, track.index)
> circlize(x, y)

Remember the color should be semi-transparent in the highlighted area. Usage for draw.sector is:

25

Figure 17: Heatmap with clustering

Figure 18: Hightlight sectors

28

> draw.sector(center, start.degree, end.degree, roul)
> draw.sector(center, start.degree, end.degree, roul, rou2)
> draw.sector(center, start.degree, end.degree, roul, rou2, col, border, lwd, lty)

get.cell.meta.cell can provide detailed information for a cell. It needs the index of sector and
track as arguments. As usual, it would use ‘current’ index by default.

> get.cell.meta.data(name)
> get.cell.meta.data(name, sector.index, track.index)

Items that can be extracted by get.cell.meta.data are:

e sector.index: The name (label) for the sector

e sector.numeric.index: Numeric index for the sector. It is the numeric order of levels of factors
in initialization step.

e track.index: Numeric index for the track

e x1lim: Minimal and maximal values on the x-axis

e ylim: Minimal and maximal values on the y-axis

e xrange: Range of x1im

e yrange: Range of ylim

e cell.xlim: Minimal and maximal values on the x-axis extended by cell paddings
e cell.ylim: Minimal and maximal values on the y-axis extended by cell paddings

e xplot: Right and left border degree for the plotting region in the unit circle. The first element cor-
responds to the start point of values on x-axis (cell.x1m[1]) and the second element corresponds
to the end point of values on x-axis (cell.x1im[2]) Since x-axis in data coordinate in cells are
always clockwise, xplot[1] is larger than xplot[2].

e yplot: Bottom and top radius value for borders of the plotting region. It is the value of radius of
arc corresponding to inner border or outer border.

e cell.start.degree: Same as xplot[1]
e cell.end.degree: Same as xplot[2]

e cell.bottom.radius: Same as yplot[1]
e cell.top.radius: Same as yplot[2]

e track.margin: Margins for the cell

e cell.padding: Paddings for the cell

With information returned by get.cell.meta.data, you can customize the plotting region for each
cell. The following two tracks have the same style. The advantages for the second track is that you can
add other graphic such as reference lines and you will not be confused by the settings of factor orders.

> factors = letters[1:3]

> circos.initialize(factors = factors, xlim = c(0, 1))

> circos.trackPlotRegion(ylim = c(0, 1), bg.border = NA, bg.col

> circos.trackPlotRegion(ylim = c(0, 1), bg.border = NA, bg.col

+ panel.fun = function(x, y) {

cell.xlim = get.cell.meta.data("cell.x1im")

cell.ylim = get.cell.meta.data("cell.ylim")

i = get.cell.meta.data("sector.numeric.index")

circos.rect(cell.x1im[1], cell.ylim[1], cell.x1im[2], cell.ylim[2],
col = i, border = NA)

1:3)
NA,

+ + + + + +

29

4.17 Get information of your circos plot

You can get basic information of your current circos plot by circos.info. The function can be applied
at any time.

> factors = letters[1:3]
> circos.initialize(factors = factors, xlim = c(1, 2))
> circos.info()

All your sectors:
[1] |Iall |Ibl| |Icl|

A1l your tracks:
integer(0)

Your current sector.index is
Your current track.index is O

> circos.trackPlotRegion(ylim = c(0, 1))

> circos.info(sector.index = "a", track.index = 1
sector index: a

track index: 1

xlim: [1, 2]

ylim: [0, 1]

Your current sector.index is c
Your current track.index is 1

It can also add labels onto every cell by circos.info(plot = TRUE).

4.18 Do not forget circos.clear

You should always call circos.clear to complete the circos plottings. Because there are several pa-
rameters for circos plot which can only be set before circos.initialize. So before you draw the next
circos plot, you need to reset these parameters.

4.19 A simple example of implementing high level graphics

We will show you a simple example (figure which combine several low level graphic function to
construct a more complicated graphic for specific purpose.

In the following code, we first draw reference lines both from x-direction and y-direction. Then draw
two rectangles which covers region of y > 1 and y < -1. Finally, add points to the region with different
colors.

> library(circlize)

> factors = sample(letters[1:6], 100, replace = TRUE)

> x = rnorm(100)

> y = rnorm(100)

> par(mar = c(1, 1, 1, 1))

> circos.initialize(factors = factors, x = x)

> circos.trackPlotRegion(factors = factors, x = x, y = y, bg.col = "#EEEEEE",
+ bg.border = NA, track.height = 0.4, panel.fun = function(x, y) {
+

+ cell.xlim = get.cell.meta.data("cell.xlim")

+ cell.ylim = get.cell.meta.data("cell.ylim")

+ # reference lines

+ for(xi in seq(cell.xlim[1], cell.x1im[2], length.out = 10)) {

+ circos.lines(c(xi, xi), cell.ylim, lty = 2, col = "white")

+ }

30

Figure 19: Combine low level graphic functions to generate high level graphic

+ for(yi in seq(cell.ylim[1], cell.ylim[2], length.out = 5)) {

+ circos.lines(cell.xlim, c(yi, yi), 1ty = 2, col = "white")

+ +

+

+ xlim = get.cell.meta.data("x1lim")

+ ylim = get.cell.meta.data("ylim")

+ circos.rect(x1im[1], 1, x1im[2], ylim[2], col = "#FF000020", border = NA)
+ circos.rect(x1im([1], ylim[1], x1im[2], -1, col = "#0OFF0020", border = NA)
+

+ circos.points(x[y >= 1], yly >= 1], pch = 16, cex = 0.8, col = "red")

+ circos.points(x[y <= -1], yly <= -1], pch = 16, cex = 0.8, col = "green")
+ circos.points(x[y > -1 & y < 1], yly > -1 & y < 1], pch = 16, cex = 0.5)
+ 1

> circos.clear()

5 Advanced plottings

5.1 Draw part of the circos layout

canvas.xlim and canvas.ylim in circos.par is useful to draw only part of circle. In the example, only
sectors between 0° to 90° are plotted (figure . First, four sectors with the same width are initialized.
Then only the first sector is drawn with points and lines. From figure we in fact created the whole
circle, but only a quarter of the circle is in the canvas region. Codes are as follows.

31

> library(circlize)

> par(mar = c(1, 1, 1, 1))

> circos.par("canvas.xlim" = c(0, 1), "canvas.ylim" = c(0, 1),

+ "clock.wise" = FALSE, "gap.degree" = 0)

> factors = letters[1:4]

> circos.initialize(factors = factors, xlim = c(0, 1))

> circos.trackPlotRegion(factors = factors, ylim = c(0, 1), bg.border = NA)
> circos.updatePlotRegion(sector.index = "a", bg.border = "black")

> x1 = runif (100)

> y1 = runif(100)

> circos.points(x1, y1, pch = 16, cex = 0.5)

> circos.trackPlotRegion(factors = factors, ylim = c(0, 1), bg.border = NA)
> circos.updatePlotRegion(sector.index = "a", bg.border = "black")

> circos.lines(1:100/100, y1, pch = 16, cex = 0.5)

> circos.clear()

In the second situation, you don’t need some sectors or cells but still you need to draw the whole
circle. Remember when you are creating new track with circos.trackPlotRegion and set bg.col
and bg.border to NA, it means create the new track and draw nothing. After that, you can use cir-
cos.updatePlotRegion to update these invisible cells of interest to add graphics on it (figure .

> library(circlize)

> par(mar = c(1, 1, 1, 1))

> factors = letters[1:4]

> circos.initialize(factors = factors, xlim = c(0, 1))

> circos.trackPlotRegion(factors = factors, ylim = c(0, 1), bg.col = NA, bg.border = NA)
> circos.updatePlotRegion(sector.index = "a", bg.border = "black")

> x1 = runif (100)

> y1 = runif(100)

> circos.points(x1l, y1, pch = 16, cex = 0.5)

> circos.trackPlotRegion(factors = factors, ylim = c(0, 1),bg.col = NA, bg.border = NA)
> circos.updatePlotRegion(sector.index = "a", bg.border = "black")

> x1 = runif (100)

> y1 = runif(100)

> circos.points(x1l, y1, pch = 16, cex = 0.5)

> circos.trackPlotRegion(factors = factors, ylim = c(0, 1))

> circos.trackPlotRegion(factors = factors, ylim = c(0, 1))

> circos.clear()

5.2 Combine several parts of circular layouts

Since circular layout by circlize is finally plotted in an ordinary R plotting system. Two seperated circular

layouts can be plotted together by some tricks. Here the key is par(new = TRUE) which allows to draw

a new figure on the previous canvas region. Just remember the radius of the circos is always 1.
The first example is to draw one outer circos plot and an inner circos plot (figure .

> library(circlize)

> par(mar = c(1, 1, 1, 1))

> factors = letters[1:4]

> circos.initialize(factors = factors, xlim = c(0, 1))

> circos.trackPlotRegion(ylim = c(0, 1), panel.fun = function(x, y) {
+ circos.text (0.5, 0.5, "outer circos")

+ }F)

> circos.clear()

> par(new = TRUE)

> circos.par("canvas.xlim" = c(-2, 2), "canvas.ylim" = c(-2, 2))
> factors = letters[1:3]

> circos.initialize(factors = factors, xlim = c(0, 1))

32

Figure 20: Part of the circular layout

33

Figure 21: Part of the circular layout, situation 2.

1.0

VVVVVVVVYV

circos.

Figure 22: An outer and an inner circular layout

trackPlotRegion(ylim = c(0, 1), panel.fun = function(x, y) {

circos.text (0.5, 0.5, "inner circos")

B

circos.

clear()

The second example is drawing two seperated circular layouts in which every circos plot only contains

a half (figure [23)).

library(circlize)
par(mar = c(1, 1, 1, 1))
factors = letters[1:4]

circos

circos.
circos.
circos.
circos.
circos.

.par("canvas.x1lim" = c(-1, 1.5), "canvas.ylim" = c(-1, 1.5), start.degree = -45)

initialize(factors = factors, xlim = c(0, 1))
trackPlotRegion(ylim = c(0, 1), bg.col = NA, bg.border = NA)
updatePlotRegion(sector.index = "a")

text (0.5, 0.5, "first one")

updatePlotRegion(sector.index = "b")

35

n o
- -
'Iﬁﬁaaﬂﬂﬁﬂﬁll
V4
o] |
— o
(2]
(9]
(@]
To) o S
o o o
o
>
(0]
o 10
S T
0 Q
o .
I |
|l .
- - - -
: T T T T T T : T T T T T T
-1.0 -0.5 0.0 0.5 1.0 1.5 -15 -1.0 -0.5 0.0 0.5 1.0
V4
[%2]
(9]
Q
o
>
o
o
>
@
Figure 23: Two seperated circos layouts
> circos.text(0.5, 0.5, "first one")
> circos.clear()
> par(new = TRUE)
> circos.par("canvas.xlim" = c(-1.5, 1), "canvas.ylim" = c(-1.5, 1), start.degree = -45)
> circos.initialize(factors = factors, xlim = c(0, 1))
> circos.trackPlotRegion(ylim = c(0, 1), bg.col = NA, bg.border = NA)
> circos.updatePlotRegion(sector.index = "d")
> circos.text (0.5, 0.5, "second one")
> circos.updatePlotRegion(sector.index = "c")
> circos.text (0.5, 0.5, "second one")
> circos.clear()

The third example is to draw sectors with different radius (figure . In fact, it draws four circos
graphs in which only one sector of each graphs is plotted. Note links can not be drawn in these different
sectors because links can only be drawn in one circos plot.

> library(circlize)

36

R
o/

Figure 24: Sectors with different radius

> par(mar = c(1, 1, 1, 1))

> factors = letters[1:4]

> lim = c(1, 1.1, 1.2, 1.3)

> for(i in 1:4) {

+ circos.par("canvas.xlim" = c(-1im[i], 1im[i]),

+ "canvas.ylim" = c(-1im[i], 1im[i]), "default.track.height" = 0.4)
+ circos.initialize(factors = factors, xlim = c(0, 1))

+ circos.trackPlotRegion(ylim = c(0, 1), bg.border = NA)

+ circos.updatePlotRegion(sector.index = factors[i], bg.border = "black")
+ circos.points(runif (10), runif(10), pch = 16)

+ circos.clear()

+ par (new = TRUE)

+ }

> par(new = FALSE)

It is different from example in “Draw part of the circular layout” section. In that example, cells both
visible and invisible all belong to a same track and they are in a same circos plot, so they should have
same radius. But here, cells have different radius to the center of the circle and they belong to different
circos plot (although only part of each circos plot is visible).

5.3 Draw outside and combine with canvas coordinate

Sometimes it is very useful to draw something outside the plotting region of cell. (You can think it is
similar as par(xpd = NA) setting.) The following is a simple example to illustrate such circumstance

37

this is
the center

o this is the legend

Figure 25: Draw outside the cell and combine with canvas coordinate

(figure . The text is drawn outside the cell.

> library(circlize)

> set.seed(12345)

> par(mar = c(1, 1, 1, 1))

> factors = letters[1:4]

> circos.par("canvas.xlim" = c(-1.5, 1.5), "canvas.ylim" = c(-1.5, 1.5), "gap.degree" = 10)
> circos.initialize(factors = factors, xlim = c(0, 1))

> circos.trackPlotRegion(ylim = c¢(0, 1), panel.fun = function(x, y) {

+ circos.points(1:20/20, 1:20/20)

+ 1)

> circos.lines(c(1/20, 0.5), c(1/20, 3), sector.index = "d", straight = TRUE)
> circos.text (0.5, 3, "mark", sector.index = "d", adj = c(0.5, 0))

> circos.trackPlotRegion(ylim = c¢(0, 1), panel.fun = function(x, y) {

+ circos.points(1:20/20, 1:20/20)

+})

> text (0, 0, "this is\nthe center", cex = 1.5)
> legend("bottomleft", pch = 1, legend = "this is the legend")
> circos.clear()

Since the final graphic is drawn in an ordinary canvas plotting region, we can add additional graphics
through the traditional way. It is useful to add some legends or marks on the figure. You can see how
text and legend work in the example code.

38

5.4 Draw figures with layout

You can use layout to arrange multiple figures together (also it is available from par(mfrow) or

par (mfcol)) (figure [26).

> library(circlize)

> set.seed(12345)

> rand_color = function() {

+ return(rgb(runif (1), runif(1), runif(1)))
+ }

> layout(matrix(1:9, 3, 3))

> for(i in 1:9) {

+ factors = 1:8

+ par(mar = ¢(0.5, 0.5, 0.5, 0.5))

+ circos.par(cell.padding = c(0, 0, 0, 0))

+ circos.initialize(factors, xlim = c(0, 1))

+ circos.trackPlotRegion(ylim = c(0, 1), track.height = 0.05,
+ bg.col = sapply(1:8, function(x) rand_color()), bg.border = NA)
+ for(i in 1:20) {

+ se = sample(1:8, 2)

+ col = rand_color()

+ col = paste(col, "40", sep = "")

+ circos.link(sel[1], runif(2), sel[2], runif(2), col = col)
+ }

+ circos.clear()

+ }

39

	Introduction
	Principle of design
	A quick glance
	Details
	Coordinate transformation
	Rules for drawing circular layout
	Sectors and tracks
	Graphic parameters
	Create plotting region
	Update plotting region
	Points
	Lines
	Text
	Rectangle
	Polygon
	Axis
	Links
	The panel.fun argument in circos.trackPlotRegion
	High level plotting functions
	Other functions
	Get information of your circos plot
	Do not forget circos.clear
	A simple example of implementing high level graphics

	Advanced plottings
	Draw part of the circos layout
	Combine several parts of circular layouts
	Draw outside and combine with canvas coordinate
	Draw figures with layout

